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Abstract. Support Vector Machines (SVMs) can learn from high-dimensional and small amounts of training

data, thanks to effective optimization methods and a diverse set of kernel functions (KFs). The adaptability of SVM

to numerous real-world problems has increased interest in the SVM method, and studies conducted with this method

carry significant weight in various fields. The fixed parameter ‘‘AtanK’’ for KFs must be specified before the SVM

model training process. Therefore, determining the appropriate kernel parameter values can be timE-consuming

and may lead to slow convergence of the SVM model. On the other hand, the method provides faster and more

robust convergence due to the adaptive parameter in the SVM model. In this study, a new Adaptive Arctan (AA) KF,

tailored to the characteristics of different datasets, is proposed as an enhancement to the AtanK KF for the SVM

algorithm. The proposed AA KF is compared with experimental results on 30 public KEEL and UCI datasets,

alongside AtanK, adaptive Gaussian, Radial Basis Function, linear, and polynomial KFs. The results demonstrate

that the proposed AA KF outperforms the other KFs, and it exhibits superior learning ability.

Keywords. Support vector machine; adaptive Arctan; kernel function; classification.

1. Introduction

The support vector machine (SVM) is a machine learning

model developed by Vapnik. It is used in clustering and

regression problems, especially in classification [1–3].

SVM is a non-parametric, supervised machine learning

method based on statistical learning theory [4]. Researchers

widely prefer SVM for classification algorithms due to its

successful performance, robust mathematical infrastructure,

and relatively fast speed [5, 6]. In SVM, mapping is per-

formed to transfer data samples to a dimensional space, and

the classification process begins with the hyperplane that

separates the two classes. Samples close to the boundaries

are defined as support vectors. The separation of SVM

training samples into different subgroups using support

vectors is determined by the choice of kernel functions

(KFs). Although there are various types of KFs, the basic

ones for classification are Linear, Polynomial, Gaussian,

Radial Based Function (RBF), and Sigmoid kernels [7–10].

The choice of KFs has a significant impact on the classi-

fication performance in SVM. SVM can mitigate the

shortcomings of existing models, such as overfitting, reli-

ance on a single consideration factor, and the inability to

generate predictions for lengthy periods. As a supervised

learning model, SVM is an effective statistical machine

learning tool for classifying datasets of both linear and

nonlinear separable types. One of the key features that

makes SVM advantageous is its use of the Lagrange binary

optimization problem. This allows for the optimal number

of training iterations, resulting in a significant time

advantage compared to other machine learning methods.

SVM excels on datasets that require substantial memory

and datasets with many features but few samples.

A Kernel Function (KF) transforms the input data into

Hilbert space within the Support Vector Machine (SVM),

creating intervals for the hyperplane to classify the data.

While there are several well-known KFs, new proposals

continue to emerge every day. The most renowned and
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successful KFs can be categorized as linear, *Gaussian,

RBF, polynomial, and AtanK. Some of these functions

include a parameter with an arbitrary value. This arbitrary

value can be manually adjusted according to the dataset,

and classification in the SVM is performed using the most

suitable version of the KF for the dataset. FinE-tuning the

optimal arbitrary value based on the dataset requires time

and results in a high processing load. Although the Gaus-

sian KF is one of the most well-known KFs with parame-

ters, recent studies have also introduced parameters for

AtanK. In Eqs. (1) and (2), the Gaussian KF and AtanK KF

are presented, respectively.

Kðs; qÞ ¼ exp � s� qk k2
2

2r2

 !
ð1Þ

K s; qð Þ ¼ 2

p
arctan

r2

s� qk k2
2

 !
ð2Þ

where s and q are input vectors. These vectors are

expressed in KFs with the Euclidean norm. r is a real

number, which is an arbitrary value. These KFs vary

smoothly in the input feature space in all directions around

the support vector, resulting in hyper-spherical contours of

the KF.

KFs are expressed as a set of mathematical functions

used to process input data [11]. KFs play a crucial role in

solving nonlinear problems with the aid of a linear classi-

fier. In the context of the SVM architecture, KFs are

employed to achieve accurate data separation by trans-

forming the nonlinear structure of the input dataset from a

higher-dimensional space to a linear structure [12]. Fur-

thermore, KFs are recommended to simplify complex

Figure 1. Behavior of the SVM with AtanK on nonlinear separable synthetic 3 class dataset; (a) 3D AtanK surface with r ¼ 5,

(b) Nonlinearly separable synthetic 3 class dataset, (c) Dataset mapped to Hilbert space by AtanK.
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computations, enabling the creation of hyperplanes in

higher dimensions without increasing complexity. In sum-

mary, KFs are utilized to address nonlinear problems.

Additionally, given the unique characteristics of each

dataset, identifying the most appropriate KF for optimal

data classification has become a significant research focus

in recent years [13].

Selecting appropriate KFs can be a challenging process.

To choose the most suitable KF for the characteristics of

the dataset in use, the performance of SVM algorithms with

different KFs is compared. Additionally, parameter tuning

for each KF is a timE-consuming process. Therefore,

proposing an adaptive KF that can adjust to the data, rather

than attempting to find the optimal function by experi-

menting with KFs having various parameter values, reduces

a substantial workload. The adaptive approach enables

SVM to diminish parameter dependency in KFs during

classification and regression processes [14].

The Linear, Polynomial, Sigmoid, Gaussian, and RBF

kernels are widely used in the literature [15]. However,

many studies in the literature have observed that new

functions are proposed to outperform existing KFs. Elen

and colleagues introduced a new KF called Adaptive

Gaussian (AG), inspired by the Gaussian kernel used in the

SVM [13]. In their study, Anna et al proposed a new KF by

combining three types of KFs: polynomial, RBF, and

Fourier [7]. As a result of the experimental evaluation, they

reported that the combined KF offers better performance

than other KFs. Ding et al introduced a new KF, the random

radial basis function (RRBF). The proposed RRBF out-

performs traditional RBF and other KFs [16]. Negri et al

presented two new KFs for classifying remotely sensed

images in their study [17]. They reported that the proposed

new KFs perform well on both remote sensing and real-

world datasets compared to other functions. In the study by

Tian and Li, the ArcTan KF (AtanK) is proposed as an

alternative to the Gaussian KF to increase the practicality of

the SVM [18]. They reported that the proposed AtanK has

better efficiency and robustness than the polynomial kernel,

Gaussian kernel, and exponential radial basis functions.

Khan et al introduced a new KF, a combination of poly-

nomial and RBF, to improve the performance of the SVM

used to classify protein structures. They reported that they

achieved better performance than other machine learning

algorithms with the proposed hybrid KF SVM [19]. In the

study by Li and He, an adaptive KF is proposed to enhance

the classification performance of the SVM [20]. In the

study by Ba et al, a soft sensing method based on least

square the SVM regression with multi-core learning was

proposed. In the proposed model, they reported that they

used the RBF, polynomial, and sigmoid KFs to construct

the multiple kernel structure [21]. The adaptive arctan KF

proposed in this study outperformed the KFs suggested in

the literature in the experimental evaluations conducted on

30 public UCI datasets.

In this study, a new Adaptive Arctan (AA) KF is pro-

posed to align with the characteristics of various datasets in

the SVM classification algorithm. It often consumes a

significant amount of time to determine the most suit-

able parameter value when applying KFs to the SVM

problems. However, the proposed AA KF SVM can

ascertain the most appropriate parameter during the initial

run, enabling quicker classification with optimal perfor-

mance during the learning process. Instead of a fixed r
parameter value used in the AtanK function, the AA KF,

capable of adjusting itself to each dataset, is suggested.

Consequently, the SVM model delivers faster and more

accurate classification. The proposed AA KF permits us to

construct hyperplanes in higher dimensions without

increasing complexity. Furthermore, the overfitting issue

commonly observed in the SVM can be effectively

addressed with the proposed AA KF. The proposed AA KF

is compared with AtanK, AG, RBF, LIN, and POL KFs

through experiments conducted on 30 public UCI datasets.

The results indicate that the proposed AA KF outperforms

other KFs and exhibits superior learning capabilities.

The contributions of this study are listed as follows:

• The new adaptive arctan KF is proposed.

• The proposed adaptive arctan KF has a better learning

ability.

• Since it does not need problem-specific parameters, it

can be applied directly and practically to all classifi-

cation problems.

Figure 2. Plot of the Arctan Kernel function at various r values.
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Motivation to the SVM and KF are presented in Sec-

tion 2 of the study. Proposed adaptive arctan KF is

presented in Section 3, experimental results are presented in

Section 4, and conclusions are discussed in section 5.

Figure 3. The proposed AA vs. arctangent function on various input data (x) intervals. (a) �1� x� 1, (b) �5� x� 5, (c) �10� x� 10,

(d) �100� x� 100.

Figure 4. Process steps of experimental studies for KFs.

  120 Page 4 of 16 Sådhanå          (2024) 49:120 



2. Motivation

2.1 Support vector machine

The AtanK function is used in SVM, where the input

vectors of the kernel are in their raw form. This function is

unimodal and symmetric about the third axis. For small

values of r, the function exhibits a Gaussian-like bell-

shaped curve, while at large values, it assumes a plateau-

like shape. Although the variation in this shape scale is

effective in separating the classes in the Hilbert space, it is

Figure 5. k-fold cross validation of the dataset [13].

Table 1. Benchmark balanced datasets for evaluation of the SVM kernels.

# Repository Dataset Features Instances Classes

1 KEEL Appendicitis 7 106 2

2 Bupa 6 345 2

3 Phoneme 5 5404 2

4 Ring 20 7400 2

5 Spam base 57 4597 2

6 Wine 13 178 3

7 Zoo 16 101 7

8 UCI Banknote authentication 4 1372 2

9 User knowledge modeling 5 403 4

10 Vertebral column 2C 6 310 2

11 Vertebral column 3C 6 310 3

12 Breast cancer 9 277 2

13 Monks-1 6 124 2

14 Monks-2 6 169 2

15 Monks-3 6 122 2

16 Plrx 12 182 2

17 Transfusion 4 748 2

18 WDBC 30 569 2

19 WPBC 33 198 2
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determined through testing the parameter r, which provides

the optimum plateau width. This experimental process

involves an iterative method that is timE-consuming and

power-intensive. Therefore, there is a need for an efficient

method to determine the optimum value of r based on the

data. In this study, drawing inspiration from the AtanK

function and the Adaptive Gaussian KF, a statistical model

that adapts to the data within the function instead of r is

proposed. A snapshot of the AtanK function can be repre-

sented as a plateau in the context of threE-class synthetic

data distributions and a threE-dimensional surface, as

shown in figure 1.

2.2 Kernel trick

Let skf g; be a sequence in the S; dð Þ metric space. If there is

M number such as

d sk; slð Þ\e ð3Þ

is called Cauchy sequence for 8e[ 0 and 8k; l�M. . Every

Cauchy sequence in the full metric space is convergent. A

distance in the norm space is defined by

d sk; slð Þ ¼ sk � slk k ð4Þ

Also, the complete inner product space in metric space is

called Hilbert space H.

K s; qð Þ ¼ c sð Þ; c qð Þh iH ð5Þ

is defined as K : S� S ! R KF by means of inner product.

Here, H is feature space of K and c : S� S ! H is feature

map. Further, with the inner product’s property, f ; g 2 H be

gin by

f sð Þ ¼
Xk
i¼1

giK si; sð Þ;

g qð Þ ¼
Xl
j¼1

kjK qj; q
� � ð6Þ

Then

f ; gh i ¼
Xk
i¼1

Xl
j¼1

gikjK si; qj
� �

¼
Xk
i¼1

gig sið Þ ¼
Xl
j¼1

kjf qj
� � ð7Þ

Mercer Theorem. For the kernel K s; qð Þ with c sð Þ,
integral in Eq. (8) should always provide non-negativity,

the purpose of being a valid SVM KF [1].Z Z
K s; qð Þc sð Þc qð Þdsdq� 0 ð8Þ

If j is the kernel matrix of K s; qð Þ KF with ji;j ¼ K s; qð Þ,

qTjq ¼
X

i;j
qiqjK s; qð Þ ¼ c sð Þ; c qð Þh i

¼
X

i
qic sð Þ

��� ���2

� 0
ð9Þ

Table 2. Benchmark imbalanced datasets for evaluation of the SVM kernels.

# Repository Dataset Features Instances Classes

1 KEEL Bands 19 365 2

2 Cleveland 13 303 5

3 German 20 1000 2

4 Haberman 3 306 2

5 House votes 16 435 2

6 Ionosphere 33 351 2

7 New thyroid 5 215 3

8 Yeast 8 1483 10

9 UCI South German credit 20 1000 2

10 Glass 9 214 6

11 Satimage 36 4435 6

Table 3. Synthetic datasets for evaluation of the SVM kernels.

# Dataset Features Instances Classes

1 3-Spiral 2 312 3

2 Atom 3 800 2

3 Cassini 2 1000 3

4 Chain-link 3 1000 2

5 Compound 2 399 6

6 R-15 2 600 15
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Figure 6. Visualizations of the synthetic datasets.
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3. Adaptive Arctan kernel function

KFs in the SVM are similarity scales between two samples.

The selection of a kernel function is an important process

for the SVM and has a significant impact on the results. The

kernel function expresses the inner product in the feature

space. The Gaussian, as given in Eq. (1), is one of the most

preferred and efficient classifying KFs. In this study, we

drew inspiration from the Gaussian KF and the AtanK

function provided in Eq. (2). The arctan part in the AtanK

function creates the curve shape, while the 2=p factor sets

the upper limit on the vertical axis to 1. Although 2=p is

convenient for visualization, it does not affect the SVM

classification process. According to AtanK, the arctan KF

given in Eq. (10) is proposed as a simpler and non-adaptive

function.

KA s; qð Þ ¼ arctan � s� qk k2

r2

 !
ð10Þ

Negativity in parentheses prevents the inversion of the

curve. This negativity actually aids in visualization.

Although the highest value of the proposed arctan KF is 0,

it does not introduce any negativity in the SVM classifi-

cation process. Figure 2 displays the graphs of the proposed

Table 4. Accuracy rates of kernels for the KEEL and UCI balanced datasets.

Datasets Proposed AA AtanK AG RBF LIN POL

Appendicitis 0.860 0.802 0.879 0.888 0.860 0.879

Bupa 0.661 0.580 0.580 0.609 0.580 0.693
Phoneme 0.800 0.707 0.645 0.792 0.771 0.794

Ring 0.961 0.505 0.627 0.978 0.764 0.973

Spam base 0.931 0.606 0.741 0.922 0.901 0.926

Wine 0.989 0.599 0.985 0.989 0.992 0.977

Zoo 0.985 0.824 0.981 0.962 0.980 0.978

Banknote authentication 1.000 0.555 0.961 0.985 0.980 0.999

User knowledge modeling 0.978 0.660 0.973 0.966 0.965 0.974

Vertebral column 2C 0.840 0.677 0.810 0.813 0.765 0.839

Vertebral column 3C 0.881 0.656 0.852 0.856 0.830 0.877

Breast cancer 0.751 0.708 0.755 0.755 0.729 0.722

Monks-1 0.742 0.476 0.734 0.718 0.661 0.775
Monks-2 0.674 0.621 0.716 0.650 0.621 0.657

Monks-3 0.853 0.508 0.845 0.893 0.763 0.844

Plrx 0.709 0.714 0.654 0.714 0.714 0.687

Transfusion 0.775 0.762 0.521 0.763 0.762 0.767

WDBC 0.978 0.627 0.912 0.975 0.974 0.977

WPBC 0.763 0.753 0.703 0.778 0.758 0.773

Mean values: 0.8490 0.6495 0.7825 0.8424 0.8089 0.8479

Table 5. Accuracy rates of kernels for the KEEL and UCI imbalanced datasets.

Datasets Proposed AA AtanK AG RBF LIN POL

Bands 0.712 0.630 0.710 0.710 0.674 0.649

Cleveland 0.818 0.816 0.818 0.826 0.825 0.821

German 0.758 0.700 0.747 0.754 0.753 0.693

Haberman 0.732 0.735 0.663 0.732 0.739 0.726

House votes 0.966 0.535 0.944 0.927 0.966 0.927

Ionosphere 0.92 0.641 0.897 0.949 0.877 0.858

New thyroid 0.972 0.798 0.960 0.941 0.919 0.969

Yeast 0.918 0.862 0.888 0.915 0.911 0.918
South German credit 0.761 0.700 0.756 0.760 0.751 0.696

Glass 0.880 0.785 0.885 0.877 0.860 0.889
Satimage 0.960 0.747 0.927 0.965 0.954 0.966
Mean values: 0.8332 0.6905 0.8114 0.8236 0.8086 0.8133
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arctan KF at various r values. As the value of r increases, it

becomes evident that the arctan KF transitions from a bell-

shaped form to a plateau.

Instead of the arbitrary r value in Eq. (10), the adaptive

arctan (AA) KF given in Eq. (11) is proposed to adapt to the

data.

KAA s; qð Þ ¼ arctan �
s� qk k2�d s� qk k2

� �
þ x

d s� qk k2
� �

0
@

1
A
ð11Þ

While the r value is determined manually in the AtanK

KF, the proposed kernel function (AA KF) adapts to dif-

ferent problems by calculating the inverse tangent of the

input vector with a coefficient obtained depending on the

standard deviation in the input vector. In order to handle

division by a value in undefined or infinite results, which

can occur if the standard deviation is equal to zero, division

by a very small a value is provided in Eq. (12).

KAA s; qð Þ ¼ arctan �
s� qk k2�d s� qk k2

� �
þ x

d s� qk k2
� �

þ a

0
@

1
A
ð12Þ

where d �ð Þ is a function of the standard deviation, a is an

extremely small number to eliminate dividing by zero and

x is as shown in Eq. (13).

x ¼ s� qk k2�d s� qk k2
� ���� ���; s� qk k2\d s� qk k2

� �
0; otherwise

(

ð13Þ

The proposed AA KF’s denominator in parentheses

responds to the input vectors. Simultaneously adaptation is

supplied by computing the square norm of the input vector

differences and their standard deviations in the numerator.

As a result, the proposed AA kernel is regarded as adapt-

able. When the numerator portion of the piecewise function

x is utilized, if the numerator part’s minimum value is less

than zero, the numerator part’s absolute value is computed,

and an offset operation is then performed on the whole

dataset.

A dataset with a two-dimensional property space can be

used for visualization to simplify the comprehension of the

Table 6. Confidence Interval Profile of KFs for balanced and

imbalanced datasets (for accuracy rates).

Kernel function

95% Confidence intervals

Balanced dataset Imbalanced dataset

Proposed AA 0.8490 ± 0.002865 0.8332 ± 0.002983

AtanK 0.6495 ± 0.003818 0.6905 ± 0.003699

AG 0.7825 ± 0.003301 0.8114 ± 0.003130

RBF 0.8424 ± 0.002916 0.8236 ± 0.003050

LIN 0.8089 ± 0.003146 0.8086 ± 0.003148

POL 0.8479 ± 0.002874 0.8133 ± 0.003118

Table 7. F1-scores of KF for the KEEL and UCI balanced datasets.

Dataset Proposed AA AtanK AG RBF LIN POL

Appendicitis 0.728 0.445 0.775 0.793 0.733 0.797
Bupa 0.577 0.367 0.548 0.459 0.367 0.654
Phoneme 0.751 0.414 0.621 0.749 0.716 0.748

Ring 0.961 0.335 0.573 0.978 0.762 0.973

Spam base 0.925 0.377 0.689 0.917 0.895 0.922
Wine 0.982 0.19 0.977 0.983 0.988 0.966

Zoo 0.829 0.085 0.877 0.709 0.819 0.825

Banknote authentication 1.000 0.357 0.96 0.985 0.98 0.999

User knowledge modeling 0.957 0.121 0.946 0.914 0.91 0.954

Vertebral column 2C 0.821 0.404 0.788 0.769 0.677 0.81

Vertebral column 3C 0.8001 0.217 0.728 0.737 0.652 0.78

Breast cancer 0.609 0.414 0.623 0.622 0.634 0.615

Monks-1 0.736 0.349 0.727 0.714 0.657 0.774
Monks-2 0.638 0.383 0.706 0.591 0.383 0.634

Monks-3 0.852 0.337 0.843 0.892 0.762 0.843

Plrx 0.415 0.417 0.395 0.417 0.417 0.437
Transfusion 0.707 0.432 0.479 0.449 0.432 0.461

WDBC 0.982 0.386 0.909 0.973 0.971 0.975

WPBC 0.59 0.449 0.572 0.578 0.526 0.685
Mean values: 0.7821 0.3410 0.7229 0.7488 0.6990 0.7816
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adaptive property. Distributed vectors on a 3D bell or

plateau-shaped surface are formed due to all the vectors

entering the kernel in alignment with the central vector or

in the central static state. These Hilbert space vectors can

now be quickly categorized using the SVM. In figure 3, bell

and plateau curves of the AtanK function, and the bell and

plateau curves of the AA KF corresponding to inputectors

in various value ranges, are contrasted. The AA KF, which

creates a smooth bell curve distribution regardless of the

data range, offers an adaptive feature. Thus, the problem of

Table 8. F1-scores of KF for the KEEL and UCI imbalanced datasets.

Dataset Proposed AA AtanK AG RBF LIN POL

Bands 0.682 0.387 0.672 0.628 0.568 0.604

Cleveland 0.235 0.14 0.239 0.262 0.276 0.308
German 0.682 0.412 0.669 0.655 0.679 0.628

Haberman 0.529 0.424 0.505 0.433 0.436 0.451

House votes 0.968 0.348 0.944 0.925 0.966 0.926

Ionosphere 0.912 0.391 0.886 0.944 0.855 0.842

New thyroid 0.942 0.274 0.903 0.862 0.792 0.931

Yeast 0.545 0.048 0.468 0.542 0.495 0.539

South German credit 0.680 0.412 0.675 0.664 0.675 0.636

Glass 0.581 0.087 0.551 0.439 0.382 0.603
Satimage 0.852 0.065 0.763 0.869 0.823 0.874
Mean values: 0.6916 0.2716 0.6613 0.6566 0.6315 0.6675

(a)

(b)

Proposed AA AtanK AG RBF LIN POL
Balanced 0.8490 0.6495 0.7825 0.8424 0.8089 0.8479
Imbalanced 0.8332 0.6905 0.8114 0.8236 0.8086 0.8133

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000

Ac
cu

ra
cy

Proposed AA AtanK AG RBF LIN POL
Balanced 0.7821 0.3410 0.7229 0.7488 0.6990 0.7816
Imbalanced 0.6916 0.2716 0.6613 0.6566 0.6315 0.6675

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000

F 1- s
co

re

Figure 7. Mean classification results of the SVM kernels on KEEL and UCI repositories. (a) Accuracy, (b) F1-score.
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finding the optimum value of the parameter r in Arctan KF

and AtanK function, which is an arbitrary real constant

value, is eliminated with the AA KF.

4. Experimental results

In experimental studies, two repository datasets, namely

KEEL, and UCI, were used to evaluate the performance of

the proposed kernel function. The Gaussian KFs r param-

eter value was taken default value 1. Additionally, the

polynomial kernel degree value was taken default value 2.

The steps used in the experimental studies for the AA KF

are shown in figure 4. In order to test the performances of

machine learning algorithms, the k-fold crossover method

is used as shown in figure 5.

In the study, the k-fold value was determined as five for

the experimental evaluation. The cross-validation method is

a widely used method to evaluate the predictive perfor-

mance of models. In the k-fold cross-validation method, the

data set is randomly divided into k subgroups of approxi-

mately equal size. Thus, k runs are performed for each data

set in the training and testing process of machine learning

models.

Then, the average accuracy values were calculated and

the overall success rate of the model was obtained. The two

repository datasets, namely KEEL, and UCI used for the

experimental evaluation are presented in tables 1 and 2 as

balanced, imbalanced. To measure how the proposed kernel

function generalizes to different data distributions, six dif-

ferent synthetic datasets are given in table 3. Visualizations

of the synthetic datasets are given in figure 6.

The performances of classification algorithms were

compared according to the criteria of accuracy (ACC), and

F1-score, respectively Eqs. (14) and (15) [22–25].

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
ð14Þ

Table 9. Confidence interval profile of KFs for balanced and

imbalanced datasets (for F1-scores).

Kernel function

95% Confidence intervals

Balanced dataset Imbalanced dataset

Proposed AA 0.7821 ± 0.003303 0.6916 ± 0.003695

AtanK 0.3410 ± 0.003793 0.2716 ± 0.003559

AG 0.7229 ± 0.003581 0.6613 ± 0.003789

RBF 0.7488 ± 0.003470 0.6566 ± 0.003800

LIN 0.6990 ± 0.003670 0.6315 ± 0.003860

POL 0.7816 ± 0.003306 0.6675 ± 0.003770

Table 10. Test accuracies of the synthetic datasets.

Accuracy RBF LIN POL AG AtanK Proposed AA

3-Spiral Mean 0.5629 0.5438 0.6026 0.6401 0.5608 0.8152
Std. Dev. 0.0271 0.0164 0.0205 0.0370 0.0211 0.0214

Min 0.5054 0.5161 0.5699 0.5873 0.5269 0.7849

Max 0.6085 0.5699 0.6237 0.7097 0.5979 0.8413

Atom Mean 1.0000 0.6469 1.0000 0.6163 0.4988 0.9981

Std. Dev. 0.0000 0.0236 0.0000 0.0357 0.0040 0.0042

Min 1.0000 0.6125 1.0000 0.5750 0.4875 0.9875

Max 1.0000 0.6813 1.0000 0.6813 0.5000 1.0000

Cassini Mean 0.9997 0.9937 0.9993 0.9980 0.3333 1.0000
Std. Dev. 0.0011 0.0037 0.0014 0.0023 0.0000 0.0000

Min 0.9967 0.9867 0.9967 0.9933 0.3333 1.0000

Max 1.0000 1.0000 1.0000 1.0000 0.3333 1.0000

Chain-link Mean 0.9350 0.6520 0.9370 0.8355 0.5655 1.0000
Std. Dev. 0.0191 0.0435 0.0151 0.0287 0.0673 0.0000

Min 0.9000 0.5750 0.9050 0.7900 0.5000 1.0000

Max 0.9600 0.7050 0.9600 0.8800 0.6650 1.0000

Compound Mean 0.9545 0.9428 0.9607 0.9808 0.7987 0.9858
Std. Dev. 0.0053 0.0051 0.0045 0.0112 0.0018 0.0074

Min 0.9458 0.9375 0.9542 0.9625 0.7958 0.9747

Max 0.9667 0.9536 0.9667 0.9958 0.8000 0.9958

R-15 Mean 0.9989 0.9993 0.9992 0.9986 0.8667 0.9989

Std. Dev. 0.0010 0.0008 0.0007 0.0011 0.0000 0.0012

Min 0.9967 0.9978 0.9978 0.9967 0.8667 0.9967

Max 1.0000 1.0000 1.0000 1.0000 0.8667 1.0000
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F1 ¼ 2TP

2TPþ FPþ FN
ð15Þ

The experimental results of the proposed Adaptive Arc-

tan (AA) KF and the AtanK, AG, RBF, LIN, and POL KFs

on the 30 datasets are presented in tables 4, 5, 6 and 7.

Tables 4 and 5 show the experimental results performed

on the KEEL and UCI datasets. When analyzing table 4, we

observe that the proposed AA KF achieves an average best

accuracy value of 0.8488 on the balanced distributed data

sets. The closest average accuracy value to the proposed KF

is seen as polynomial (PO) 0.8479. The worst success rate

Table 11. Test F1-scores of the synthetic datasets.

Accuracy RBF LIN POL AG AtanK Proposed AA

3-spiral Mean 0.3418 0.3134 0.3977 0.4574 0.2073 0.7218
Std. Dev. 0.0419 0.0255 0.0342 0.0543 0.0597 0.0328

Min 0.2566 0.2696 0.3444 0.3768 0.1500 0.6774

Max 0.4221 0.3527 0.4387 0.5571 0.2993 0.7615

Atom Mean 1.0000 0.5957 1.0000 0.5478 0.3328 0.9981

Std. Dev. 0.0000 0.0349 0.0000 0.0551 0.0018 0.0042

Min 1.0000 0.5440 1.0000 0.4813 0.3277 0.9875

Max 1.0000 0.6452 1.0000 0.6452 0.3333 1.0000

Cassini Mean 0.9994 0.9880 0.9987 0.9963 0.0000 1.0000
Std. Dev. 0.0020 0.0070 0.0027 0.0043 0.0000 0.0000

Min 0.9937 0.9747 0.9937 0.9877 0.0000 1.0000

Max 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

Chain-link Mean 0.9347 0.6516 0.9369 0.8352 0.4762 1.0000
Std. Dev. 0.0195 0.0437 0.0151 0.0288 0.1454 0.0000

Min 0.8990 0.5745 0.9050 0.7895 0.3333 1.0000

Max 0.9599 0.7050 0.9600 0.8799 0.6650 1.0000

Compound Mean 0.6918 0.6200 0.7257 0.9295 0.0945 0.9474
Std. Dev. 0.0361 0.0266 0.0255 0.0423 0.0009 0.0303

Min 0.6191 0.5861 0.6858 0.8725 0.0931 0.9012

Max 0.7500 0.6889 0.7521 0.9867 0.0952 0.9867

R-15 Mean 0.9917 0.9950 0.9941 0.9891 0.0000 0.9916

Std. Dev. 0.0078 0.0058 0.0058 0.0079 0.0000 0.0089

Min 0.9753 0.9833 0.9826 0.9749 0.0000 0.9747

Max 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000
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Figure 8. Mean accuracy of the kernel functions on synthetic datasets.
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on balanced datasets was obtained with the AtanK KF. It is

given in table 4 that the multi-class dataset Zoo achieved

higher success compared to other KFs. In table 5, it can be

observed that the suggested AA KF achieved an average

best accuracy value of 0.8832 on imbalanced distributed

data sets. In addition, the closest average success rate to the

proposed AA KF was observed as 0.8236 with the RBF

kernel. It has been observed that the best success rate on the

multiclass dataset Yeast is associated with the proposed AA

KF. Consequently, tables 4 and 5 display that a high suc-

cess rate was achieved on multi-class datasets. The AA KF,

when tested on both balanced and imbalanced datasets,

yielded significantly better results than the original AtanK

function. In table 6, confidence intervals at a 95% confi-

dence level were also calculated for each kernel. The pro-

posed AA KF exhibits a more favorable confidence interval

profile with a higher mean and a narrower interval com-

pared to other kernels.

Tables 7 and 8 present the results of the F1-score crite-

rion from experiments performed on the KEEL and UCI

datasets. Table 7 shows that the average best F1-score,

which is 0.7821, belongs to the proposed AA KF on bal-

anced distributed datasets. The mean F1-score value closest

to AA KF is 0.7816 in PO KF. Additionally, the worst F1-
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Figure 9. Mean F1-scores of the kernel functions on synthetic datasets.

Table 12. Comparison of the Wilcoxon signed-rank test results (p ¼ 0:05) for balanced datasets.

Dataset AA vs. AtanK AA vs. AG AA vs. RBF AA vs. LIN AA vs. POL

Appendicitis 3.7756E-04 6.7756E-01 5.3879E-01 1.0000E?00 2.3894E-01

Bupa 2.1951E-13 6.3709E-08 1.5709E-04 2.1951E-13 7.9065E-04

Phoneme 0.0000E?00 5.6441E-120 4.3536E-09 5.0007E-03 1.4259E-05

Ring 0.0000E?00 0.0000E?00 1.6946E-02 2.5085E-14 4.6258E-02

Spam base 0.0000E?00 3.3852E-54 9.6543E-01 2.8672E-01 8.6243E-01

Wine 1.7159E-01 8.3970E-01 8.9123E-01 9.4834E-01 8.3466E-01

Zoo 1.5836E-19 8.4242E-01 1.1916E-01 9.5798E-01 7.5791E-01

Banknote authentication 1.5612E-172 7.0069E-01 4.2065E-01 3.0069E-01 9.3880E-01

User knowledge modeling 1.6815E-36 8.7133E-01 7.7763E-01 8.1704E-01 9.1708E-01

Vertebral column 2C 8.7166E-27 3.0675E-01 6.0307E-02 1.4922E-05 6.6314E-01

Vertebral column 3C 3.4741E-06 4.0022E-01 1.8392E-01 8.1900E-05 9.7042E-01

Breast cancer 5.8236E-09 6.9647E-01 8.9544E-01 5.3265E-03 1.7952E-02

Monks-1 3.7550E-01 5.2464E-01 5.2681E-01 1.0000E?00 4.4753E-01

Monks-2 2.4613E-15 1.8556E-02 2.2871E-01 2.4613E-15 8.9379E-02

Monks-3 1.4864E-20 5.2189E-01 2.5045E-01 3.7164E-01 5.2357E-01

Plrx 3.1998E-01 3.3907E-03 3.1998E-01 3.1998E-01 1.0467E-02

Transfusion 6.7785E-06 2.4643E-94 2.4937E-03 6.7785E-06 5.6296E-03

WDBC 8.2596E-70 9.5238E-01 1.8156E-02 7.5735E-03 1.5353E-02

WPBC 9.0458E-05 2.9196E-02 1.2976E-01 1.2976E-01 1.7942E-03
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score on balanced datasets was 0.3410 in AtanK KF.

Table 8 shows that the best average F1-score value is

0.6916 for AA SF over imbalanced distributed datasets.

Furthermore, the average success rate closest to AA KF is

observed as 0.6675 in PO CF. Additionally, the worst F1-

score on imbalanced datasets was obtained as 0.2716 in the

Table 13. Comparison of the Wilcoxon signed-rank test results (p ¼ 0:05) for imbalanced datasets.

Dataset AA vs. AtanK AA vs. AG AA vs. RBF AA vs. LIN AA vs. POL

Bands 7.6628E-22 1.5018E-02 3.1191E-02 2.1053E-03 1.5018E-02

Cleveland 3.1480E-29 9.7778E-01 9.2331E-01 2.8165E-01 3.2130E-02

German 5.0725E-47 1.3240E-01 2.4249E-01 8.5202E-02 5.5838E-07

Haberman 3.5408E-08 1.6163E-03 2.3955E-06 1.6296E-07 8.1745E-04

House votes 6.7244E-34 7.8089E-01 2.2617E-01 8.5311E-01 7.8089E-01

Ionosphere 1.4314E-34 6.3414E-01 8.7455E-01 1.1414E-02 4.2574E-01

New thyroid 5.9311E-18 2.1773E-01 7.1559E-02 9.2387E-03 4.9336E-01

Yeast 7.3414E-52 6.3309E-17 6.7154E-05 6.3120E-04 9.6747E-05

South German credit 4.0782E-44 1.5387E-01 5.9440E-01 2.4564E-02 2.0663E-10

Glass 5.0129E-01 6.3142E-02 2.7590E-02 3.7958E-01 4.7455E-02

Satimage 0.0000E?00 5.0933E-02 3.8217E-01 7.4414E-02 4.6759E-02

Table 14. Execution times (in sec.) of KF for the KEEL and UCI imbalanced datasets.

Dataset AAtanK AtanK AG RBF LIN POL

Appendicitis 0.00514 0.00169 0.00204 0.00116 0.00104 0.00109

Bands 0.01603 0.01781 0.01710 0.00116 0.00091 0.00141

Bupa 0.00534 0.01306 0.00840 0.00117 0.00109 0.00133

Cleveland 0.02172 0.01623 0.02821 0.00472 0.00271 0.00428

German 0.08093 0.11009 0.08909 0.00160 0.00118 0.00163

Haberman 0.00357 0.00658 0.00492 0.00112 0.00086 0.00112

House votes 0.00257 0.00746 0.00345 0.00133 0.00087 0.00127

Ionosphere 0.00736 0.02166 0.00622 0.00108 0.00096 0.00120

New Thyroid 0.00422 0.00423 0.00587 0.00189 0.00130 0.00174

Phoneme 0.39817 0.91874 0.34395 0.01664 0.00136 0.01567

Ring 0.55989 2.42200 0.56229 0.00312 0.00181 0.00226

Spam base 0.76060 1.42186 0.75576 0.01513 0.00208 0.00821

Wine 0.00413 0.00614 0.00527 0.00159 0.00127 0.00164

Yeast 0.28272 0.63290 0.36073 0.02281 0.01473 0.02086

Zoo 0.01435 0.01334 0.01994 0.00670 0.00472 0.00697

Banknote authentication 0.00730 0.09589 0.01056 0.00153 0.00102 0.00124

South German credit 0.07842 0.11270 0.08613 0.00137 0.00108 0.00135

User knowledge modeling 0.01261 0.03431 0.01775 0.00310 0.00195 0.00276

Vertebral column 2C 0.00329 0.00719 0.00444 0.00099 0.00081 0.00101

Vertebral column 3C 0.00640 0.01361 0.00880 0.00178 0.00127 0.00178

Breast cancer 0.00328 0.00595 0.00464 0.00126 0.00100 0.00106

Glass 0.01715 0.01620 0.02310 0.00539 0.00353 0.00538

Monks-1 0.00203 0.00254 0.00284 0.00095 0.00085 0.00095

Monks-2 0.00306 0.00299 0.00382 0.00093 0.00080 0.00097

Monks-3 0.00263 0.00249 0.00304 0.00114 0.00086 0.00092

Plrx 0.00280 0.00243 0.00368 0.00112 0.00107 0.00104

Satimage 1.47356 10.83170 1.45625 0.01696 0.01188 0.01162

Transfusion 0.00818 0.02965 0.00962 0.00122 0.00089 0.00130

WDBC 0.00652 0.06096 0.00854 0.00108 0.00106 0.00119

WPBC 0.00469 0.00293 0.00493 0.00107 0.00105 0.00120

Mean 0.12662 0.56118 0.12871 0.00404 0.00220 0.00348
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AtanK function. It has been observed that much better

results are obtained with AA KF when tested on both bal-

anced and unbalanced datasets compared to the original

AtanK function. A graphic is shown in figure 7 for the

accuracy and F1-score results of the KFs on the KEEL and

UCI datasets.

In table 9, the proposed AA KF exhibits a better confi-

dence interval profile with a higher mean and a smaller

interval compared to the other kernels. Figure 7 shows the

general classification accuracies of the SVM kernel

according to dataset repositories. It is seen that the pro-

posed method (AA) has higher classification accuracy on

both the KEEL and UCI dataset repositories compared to

other kernels.

The experimental results of the proposed Adaptive Arc-

tan (AA) and AtanK, AG, RBF, LIN, and POL kernels on

the six synthetic datasets are presented in tables 10 and 11.

The mean accuracy and F1-scores of the kernel functions on

the synthetic datasets are shown in figures 8 and 9

respectively.

Tables 10 and 11 present the results of the accuracy and

F1-score criterion from experiments performed on the

synthetic datasets. It is observed that the proposed AA KF

gives better accuracy and F1-score results in four out of six

synthetic datasets compared to other KFs.

In tables 12 and 13, Wilcoxon signed-rank test was used

to determine whether there is a difference between the

measurement findings of two kernels via results obtained

from the data sets in the experimental evaluations. The

level of significance for the hypothesis test was determined

as 0.05. The proposed adaptive arctan (AA) KF can be

clearly distinguished from other KFs, as shown in the test

results obtained from the hypothesis test.

When table 14 is analyzed, it is observed that the pro-

posed AA KF on average takes shorter time than AtanK and

AG, but takes longer time than the other kernels.

In this study, we propose a new AA KF that adapts to the

characteristics of various datasets. The AA KF is obtained

by hybridizing the AG and AtanK KFs. When using KFs in

SVM, a significant amount of time is required to determine

the most suitable r value for real-world problems. Our

proposed SVM with the AA KF streamlines the learning

process, as it employs a statistical model in the initial run

instead. Instead of using a fixed r parameter as in the

AtanK function, we introduce the AA KF with an adaptive

structure tailored to each dataset. This modification results

in faster and more efficient convergence for the SVM

model. In the results we obtained, it is evident that the SVM

model, when used with the proposed KF, performs excep-

tionally well on the KEEL and UCI datasets. No single

method consistently delivers accurate F1-score values

across all datasets, as each dataset possesses unique char-

acteristics. However, the proposed AA KF outperforms

most of the previously suggested KFs in terms of average

accuracy for the KEEL and UCI repositories.

5. Conclusion

The SVM is preferred by researchers in classification

algorithms due to its successful performance, robust

mathematical infrastructure, and relatively fast speed.

Kernel functions (KFs) have a significant impact on both

the performance and computational costs of SVMs. During

the training process of the SVM model, manually deter-

mining the constant arbitrary value parameter of the AtanK

KF can be timE-consuming and may lead to slow con-

vergence of the SVM model. On the other hand, by intro-

ducing an adaptive KF into the SVM model, it’s possible to

obtain the most suitable Hilbert space decompositions for

the datasets and the SVM during the training process. As a

result, the SVM can achieve faster and better convergence.

In this study, a new Adaptive Arctan (AA) KF is proposed

for the SVM algorithm, which adapts to the characteristics

of different datasets. Experimental evaluations were con-

ducted on 30 public KEEL and UCI datasets using the

proposed AA KF as well as AtanK, AG, RBF, linear, and

polynomial kernels. The results indicate that the AA KF

outperforms the other KFs and exhibits superior learning

ability. Future work aims to finE-tune hyper parameters,

including computational cost, kernel parameters, and the

penalty constant. Additionally, in future studies, perfor-

mance evaluation will extend to hybrid models involving

real-time data and transfer learning. There is also an

intention to introduce a new SVM kernel by incorporating

an optimized ANN weight vector with a meta-heuristic

optimization method, transformed into a Bayesian-opti-

mized the SVM kernel.
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