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Abstract. In this study, the effect of drilling 6061-T651 aluminum alloy with different lengths of indexable

insert drills, called U drills, on thrust force, torque, and surface roughness was investigated. As input parameters,

length-to-diameter ratio, feed rate, and cutting speed were chosen for experimental works. The optimum values

of the test parameters were determined by the ratio of signal to noise. In addition, output responses were

modeled and compared with Taguchi, artificial neural networks (ANN), and the adaptive neuro-fuzzy inference

system (ANFIS) methods. Both the experimental results and the signal-to-noise ratios derived from the

experimental results were employed in the modeling process. The models with the highest accuracy were created

using ANN when the predicted results from the models were compared to the experimental findings. The MAPE

values of the ANN model created with the SN ratio were obtained as 0.18% for thrust force, 0.17% for torque,

and 1.79% for surface roughness. Converting the output responses to SN ratios and using them in the models

enabled the estimation of thrust, torque, and surface roughness with less error and satisfactory reliability. With

the method proposed in this study, output responses according to input variables can be predicted with higher

precision, resulting in the efficiency and reliability required by the industry.
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1. Introduction

6061-T651 is an aluminum alloy containing more magne-

sium and silicon than other elements [1]. These high-al-

loying elements contribute to the increase in strength of the

material by forming Mg and Si-based precipitates with the

precipitation hardening process [2]. The prominent

mechanical characteristics of this alloy, such as its high

strength, superior weldability, and light weight, are the

primary factors in its selection [3]. It is widely used in

industries such as advanced structural components, auto-

mobiles, storage tanks, frames, high-speed trains, pipelines,

shipbuilding, and defense, especially in the aircraft and

aerospace industry [2, 4]. The rate of hole drilling among

the total metal cutting operations is estimated to be 36%

when all machines are taken into account and 40% when

CNC machines are taken into account [5]. Drilling opera-

tions have an important place in the sectors where this

material is used. Due to the semi-enclosed environment in

which drilling is performed, there are issues including

friction between the cutting tool and the workpiece, high

drilling temperatures, and challenges with chip removal [6].

In the processing of aluminum materials, phenomena such

as friction, adhesion, and chip evacuation can adversely

affect the drilling process and hole quality [7]. It is crucial

to establish the ideal input parameter values in order to

solve such difficulties. The key influencing elements for

output reactions such thrust force, torque, and surface

roughness in machining operations are feed rate and cutting

speed [8]. In addition to these variables, the cutting tool is

vital to the operation’s optimization. It is estimated that the

largest amount of money in the cutting tool class is spent on

drills [9]. In the drilling tool market, U drills are estimated

to have a 53% market share [10]. Although it has a high

market share, there are not enough scientific studies about

the U drill. Drilling of aluminum alloys with the U drill is

very limited and quite insufficient [11–14]. When the lit-

erature was scanned, no study was found in which 6061

aluminum alloy was drilled with a U drill. The fact that

there is so little research on it causes the cutting tool to not

be used efficiently and causes unnecessary cost increases

for the industry. Proper selection of drilling parameters

contributes to increased hole quality, optimum drilling

forces, and a more efficient drilling process [5]. In the

highly competitive industry, choosing and knowing the

optimum drilling parameters is very important for quality
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[15]. Because, in a competitive environment, it has a direct

and significant impact on cost [16]. In drilling, feed rate,

cutting speed, and cutter type directly affect the drilling

time. One of the most significant cost indicators is time.

Scientific studies in the academic field will guide the

determination of the optimum processing parameters nee-

ded by the industry, thus obtaining the desired output

responses at the optimum cost [17]. Various algorithms and

artificial intelligence techniques, such as fuzzy logic and

artificial neural networks, as well as experimental, analyt-

ical, mathematical, and numerical approaches are used to

explore the determination of the best processing parameters

and how they affect output responses [18]. 6061 aluminum

alloy has been studied in various studies on hole drilling.

Chern and Lee [19] experimentally investigated the effect

of vibration-assisted drilling on hole oversize and round-

ness, which are hole quality parameters. Chang and Bone

[20] created an analytical model for the estimation of burr

height obtained by vibration-assisted and conventional

drilling and compared the model with experimental results.

Ravisubramanian and Shunmugam [21] experimentally

investigated the small thrust force and torque values

resulting from micro-hole drilling by measuring them with

a high-resolution dynamometer. Experimental research on

the impacts of cutting speed and feed rate on thrust force,

torque, hole diameter, burr formation, circularity, and

roughness was conducted by Uddin et al[8]. Chu et al [7]
experimentally compared the differences between conven-

tional drilling and ultrasonic drilling on material removal

amount, torque, and temperature. Moghaddas et al [22]

experimentally investigated the differences between con-

ventional drilling and ultrasonic drilling in temperature by

comparing them according to the parameters of amplitude,

feed rate, and cutting speed. Seif et al [23] investigated

thrust, torque, and temperature by comparing them with

numerical, analytical, and combination models. Bain and

Raj [24] experimentally investigated the effects of normal

drills and the drills they developed for the deep hole drilling

process on surface roughness, tool wear, hole oversize, and

chip morphology. When the studies in which AA 6061

material is drilled are examined, there are experimental,

analytical, and numerical studies, but algorithms such as

Taguchi, fuzzy logic, artificial neural networks, and artifi-

cial intelligence modeling techniques were not used. Opti-

mization and estimation modeling methods are increasing

in popularity day by day, and modeling results are obtained

as close as possible to the desired output responses. Dif-

ferent optimization, estimation, and artificial intelligence

techniques have been used in studies involving hole dril-

ling. Many problems involving variables with nonlinear and

complex interactions are solved using artificial intelligence

approaches [18]. From these studies, Dhawan et al [25]

modeled the thrust force, torque, and delamination factor

for drilling fiber-reinforced plastics using ANN, fuzzy

logic, and ANFIS. Aguiar et al [26] used a multilayer

perceptron artificial neural network (MLP ANN), ANFIS,

and a radial basis function (RBF) neural network to esti-

mate the hole diameter for both Ti-6Al-4V and AA2024-T3

materials. Meral et al [27] modeled the surface roughness,

thrust force and torque obtained by drilling AISI 4140

material with different drill geometries according to

Taguchi L16 experimental design by Taguchi analysis and

GRA optimization method. Mondal et al [28] drilled an

aluminum alloy with the Taguchi L27 orthogonal index. In

order to optimize the input parameters that will minimize

the burr height, they created prediction models with

regression analysis and ANN using the Flower Pollination

Algorithm. Valarmathi et al [29] drilled particleboard

composite panels according to Taguchi L27. The response

surface method’s (RSM) mathematical models and the

ANFIS results were compared to the estimation of surface

roughness. Kumar and Hynes [30] used ANFIS and a

genetic algorithm (GA) for the optimization and estimation

of the surface quality of galvanized steels drilled according

to the Taguchi L27 orthogonal index. Dedeakayoğulları
et al [18] used multilayer perceptrons (MLP), learning

vector quantization (LVQ), and fuzzy-Mamdani methods

for the estimation and optimization of surface roughness in

drilling Ti-6Al-4V material. When these methods and

studies are examined, it is predicted that Taguchi, ANN,

and ANFIS methods can be used to determine the ideal

drilling parameters in order to obtain the optimum thrust

force, torque, and surface roughness. When the previously

used methods are examined, the experimental results are

used directly in the classification and analysis of the data. In

some cases, the data are normalized to values ranging from

0 to 1, increasing their predictive ability [28]. In the

Taguchi method, the mean of the experimental results and

the signal-to-noise ratio are used in the analysis and esti-

mation of the output parameters. In some studies in which

Taguchi analysis was performed, averages were taken into

account in the effect graphs and response tables [15], while

in others [31], SN ratios were taken into account.

Manoharan et al [32] used gray taguchi-based response

surface methodology. They used the SN ratios of the

experimental results to determine the GRG value and to

find the optimum test order. However, a comparison of

GRG for experimental results and GRG for SN ratios was

not made in this study. The use of SN ratios increases the

analysis and prediction abilities of the models. Thus, the

predictions made are more in agreement with the experi-

mental results. SN ratios in models made with artificial

intelligence techniques were not examined when the liter-

ature was reviewed. Clarification of this issue is very

important in terms of obtaining effective, accurate, and

sensitive results. For this purpose, SN ratios were calcu-

lated separately by considering the experimental results of

thrust force, torque, and surface roughness output respon-

ses. With these calculation results, models were created

with Taguchi, ANN, and ANFIS methods for both experi-

mental results and SN ratios. With the help of the created

models, prediction results were obtained for each output
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response. The performance of the prediction results was

compared with parameters such as MAD, MSE, RMSE, and

R2. With the proposed method, stronger, higher-accuracy

models were established, and more accurate predictions

were made. Feed rate, cutting speed, and drill length vari-

ables were considered input parameters. Optimal input

parameters have been determined with response tables and

main effects plots in order to obtain optimal output

responses in indexable drilling. The effect of drilling AA

6061-T651 material with U drills of different lengths on

thrust force, torque, and surface roughness was investigated

by comparing the estimation methods and the proposed

method. The Taguchi L18 orthogonal index, which is

generally preferred as an experimental design method, has

been determined [33]. Thus, it was thought that it would be

possible to fill a gap in the literature.

2. Experimental workflow and method

2.1 Workpiece and tools used

6061-T651 aluminum alloy was preferred for the experi-

mental study. Experiment samples were prepared and used

in cube sizes of 40 mm. The hole depth is 40 mm. Although

the aluminum alloy is certified, the spectra were measured

with at least three replications and averaged. Table 1 pro-

vides information on the chemical content of the substance

based on the spectrum analysis. The average of the hard-

ness measurements of the workpiece was calculated at 115

Brinell. As a result of the mechanical tensile test, the

average tensile strength was determined to be 334 MPa, the

yield strength to be 301 MPa, and the elongation value to be

9.5%.

The brand of CNC vertical machining center used in the

experiments is the Johnford VMC-850. The operating sys-

tem is Fanuc, and the spindle has a power of 7.5 kW, a top

speed of 8000 rpm, with a measuring accuracy of 1 lm. An

emulsion was prepared by mixing 5% semi-synthetic cut-

ting and cooling fluid with water for the cooling process.

Drilling experiments were carried out according to the

through-hole and normal hole drilling principles. The cut-

ting tools used in the experiments, the experimental setup,

and the measurement method are given in figure 1.

U drills with three different drill lengths were used in the

experiments. All U drills have nominal diameters of 20

mm, and drill lengths are different. The ratio of drill length

to diameters 3, 4, and 5 was preferred. The dimension

information of the U drills used in the experiments is shown

in table 2. The dimension information of the cutting inserts

used is given in figure 2.

In this study, the central and peripheral inserts of the U

drill have different geometric properties, but both are

uncoated carbide inserts suitable for aluminum machining.

XOET07T205-ND was used as the central insert, and

SPET07T208-ND geometry and H01 quality inserts were

used for the peripheral insert. U drills of the same nominal

diameter and identical inserts were used. At the end of each

drilling process, new, unused inserts were attached to the U

drill body. A BT-40 VT 25 90 Veldon type tool holder was

used to connect the U drill to the spindle. The recommen-

dations from cutting tool catalogs and information from the

Table 1. Chemical composition of AA 6061-T651.

Fe Si Mn Cr Ti Cu Mg Zn Al

0.5 0.68 0.15 0.17 0.027 0.32 0.98 0.16 Balance

Figure 1. (a) U drills used, (b) Experiment setup and (c) Roughness measurement.

Table 2. U drill dimensions used.

U Drills Diameter (D: mm) Length (L: mm)

3D 20 60

4D 80

5D 100
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literature were taken into consideration when selecting the

drilling settings. Table 3 provides the drilling parameters.

The thrust force and torque were measured using a

Kistler 9272 dynamometer, and the Kistler 5070A was

utilized as an amplifier. In-hole surface roughness mea-

surements of all drilled workpieces were made. For the

measurements, the ‘‘Mahr Perthometer M1’’ type surface

roughness device in figure 1c was used. The arithmetic

average was taken by repeating the measurements from 4

sides, 5 mm inside from both the entrance and the exit of

the hole. The arithmetic mean value was determined as the

mean surface roughness value (Ra). Tracer tip method,

scanning speed 0.5 mm/s, cut-off 0.8 mm, scanning length

5.6 mm were determined as a measuring method in the

device.

2.2 Data preparation

The flow chart of the current study is given in figure 3. In

the first stage, a Taguchi L18 orthogonal array was pre-

ferred in the experiment design in order to obtain the output

parameters according to the input parameters. At the end of

the experiments, thrust force and torque data were obtained

from the dynamometer. Surface roughness measurements

were taken from the roughness measuring device. Using the

Minitab 19 program and the least-squares method, the

experimental findings of each of the output response were

transformed into SN ratios in the second stage. In the third

stage, each output response was modeled according to both

experimental and SN ratios with Taguchi, ANN, and

ANFIS methods. The predictions obtained as a result of the

modeling were compared with the experimental results.

Minitab 19 software was preferred for Taguchi, and Matlab

R2017b software was preferred for ANN, and ANFIS. At

the last stage, the estimation results of Taguchi, ANN and

ANFIS models created for each output response were cal-

culated and compared according to MAD, MSE, RMSE,

and R2 performance criteria.

2.3 Calculation of signal to noise ratios

A number of experimental studies required for modeling

and optimization of input parameters with Taguchi can be

done with this method. This method provides simultaneous

monitoring of controllable and uncontrollable factors by

converting the output responses to the logarithmic function

signal-to-noise ratio (SN) to determine processing perfor-

mance. It is used to determine the best input variables for

any output response during the manufacturing process.

Criteria such as ‘‘small is better’’ and ‘‘large is better’’ are

used in calculating SN ratios. As the smaller values of all

output responses selected in this study are better, the ‘‘small

is better’’ criterion was chosen. Taguchi SN ratios were

calculated with the following equation (1).

Figure 2. Cutting inserts and sizes.

Table 3. Indexable drilling parameters used.

Parameters

Levels

1 2 3

Cutting speed, Vc (m/min) 200 250 300

Feed rate, f (mm/rev) 0.06 0.09 –

Drill length/diameter Ratio, LD 3D 4D 5D

Figure 3. Flow chart.
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n represents the number of observations, yi represents the

observed data. Experimental results and SN ratios of output

responses are given in table 4.

3. Experimental results and discussion

Efficiency is essential for the industry. In order to obtain the

desired output responses, the optimum input variables must

be determined so that the efficiency can be the highest.

Optimal input parameters can only be obtained through

modeling and optimization. According to the input

parameters, the output responses are compared and ana-

lyzed individually or in multiples with various estimation

and optimization methods. When these methods are

examined, different experimental designs are used. One of

the best-known of these methods is the Taguchi experi-

mental design method. Experimental results, or SN ratios,

are preferred for optimization and prediction in the Taguchi

experimental design method. However, in artificial intelli-

gence techniques such as ANN and ANFIS, experimental

data sets are used directly or normalized. The use of nor-

malized data sets leads to estimates that are closer to the

experimental results. When the literature was examined, the

modeling example with ANN and ANFIS could not be

reached after converting the experimental results to SN

ratios. The impact of SN ratios on the modeling output was

examined in this study. It was found that the use of SN

ratios increased the Taguchi and ANN prediction abilities.

Estimates made by Taguchi, the ANN, and the ANFIS

models were compared with each other. In this study, cut-

ting speed, feed rate, and the ratio of drill length to diameter

were determined as input parameters. As output responses,

thrust force, torque, and surface roughness were taken into

account. The studies carried out are listed below according

to the subject headings.

3.1 Determination of optimum factor levels
with Taguchi

For the selected output responses (Fz, Mz, and Ra), the

minimum values of experimental results are ideal. The

largest of the Taguchi SN ratios represents optimum levels.

The results of the experiments performed according to

Taguchi’s experimental design were analyzed according to

response tables and main effect plots. Means or SN ratios

were used to analyze these tables and graphs. The response

tables according to the mean and SN ratios of all output

responses are shown in tables 5, 6, 7, respectively. From

these tables, input factors and optimum levels of factors

affecting responses can be determined. When the response

tables are examined separately according to the means and

SN ratios, the order of importance of the input parameters

on the output response is ordered according to the delta

value. The determination of which of the control factors is

Table 4. Experimental results.

Test No

Drilling parameters Experimental results SN ratios of experimental results

LD Vc f Fz Mz Ra Fz Mz Ra

m/min mm/rev N Ncm lm dB dB dB

1 3D 200 0,06 347 333 2,825 - 50.81 - 50.46 - 9.02

2 3D 200 0,09 481 504 5,186 - 53.65 - 54.04 - 14.30

3 3D 250 0,06 433 429 2,983 - 52.74 - 52.64 - 9.49

4 3D 250 0,09 442 443 4,661 - 52.90 - 52.92 - 13.37

5 3D 300 0,06 316 318 2,585 - 49.98 - 50.04 - 8.25

6 3D 300 0,09 466 484 4,150 - 53.37 - 53.69 - 12.36

7 4D 200 0,06 399 369 4,560 - 52.03 - 51.35 - 13.18

8 4D 200 0,09 543 553 9,312 - 54.70 - 54.86 - 19.38

9 4D 250 0,06 334 328 3,733 - 50.47 - 50.33 - 11.44

10 4D 250 0,09 587 606 5,135 - 55.37 - 55.65 - 14.21

11 4D 300 0,06 353 335 3,802 - 50.95 - 50.51 - 11.60

12 4D 300 0,09 431 456 4,829 - 52.70 - 53.17 - 13.68

13 5D 200 0,06 352 344 4,326 - 50.93 - 50.73 - 12.72

14 5D 200 0,09 502 515 3,976 - 54.02 - 54.23 - 11.99

15 5D 250 0,06 358 349 3,654 - 51.07 - 50.85 - 11.25

16 5D 250 0,09 491 503 5,255 - 53.82 - 54.03 - 14.41

17 5D 300 0,06 360 370 5,871 - 51.13 - 51.36 - 15.37

18 5D 300 0,09 474 497 4,875 - 53.51 - 53.93 - 13.76
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more effective is determined according to the delta value. A

higher delta value has a higher impact. For example, the

response table for Fz is given in table 5. According to the

table, the order of importance for Fz is f, Vc, and LD for

both means and SN ratios. The optimum Fz was given by

Vc3, f1, and LD1. All output responses increase with

increasing f values. The main effect plots of all output

responses are shown in figures 4, 5, 6, respectively. The

optimal levels of factors for each response are clearly

visualized with these main effect graphs. For example, the

optimum levels of Fz factors determined from the response

table are further confirmed by the main effects plot for the

SN ratios of Fz shown in figure 4. When the main effect

plots obtained for the mean and SN ratios were examined,

the levels of importance of the factors were the same. There

is no need to repeat the experiment because the points on

the two graphs are at the same level, indicating that the

experiments were highly accurate [34].

The main effect plots were obtained according to the

response tables. Fz and Mz increased with growing f in

figures 4 and 5. The delta value of the f values in response

tables 5 and 6 is quite high compared to the others. It is

clear that f is the most influential parameter on Fz and Mz.

With the rise of Vc, Fz, and Mz first increased slightly, then

decreased significantly. Finer chips were formed because of

the rising Vc. On the other hand, thinner chips break more

easily, facilitating chip evacuation and thus decreasing the

Fz and Mz values. For the LD ratio, the U drills create Fz

and Mz values close to each other. The delta value is the

smallest and has the least effect. When figure 6 is exam-

ined, unlike the other output responses, Ra values were

negatively affected by the larger LD ratio. Because the

axial deviations increase and the in-hole quality is

adversely affected by the extended drill length. According

to the response tables, Vc3, f1, and LD1 were obtained for

optimum Fz and Mz, while Vc2, f1, and LD1 were obtained

for optimum Ra. Choosing a low LD rate, a low f value, and

a higher Vc value in drilling AA 6061-T651 material with

U drills resulted in more optimum output values.

Chips obtained from drilling experiments with different

U drills are similar to each other as in figure 7. At low

cutting speeds and feed rates, the chips are in the form of a

continuous ribbon. With the expansion in cutting speed and

feed rate, shorter and tighter chips were obtained. As the

Table 5. Response table of the means and SN ratios for Fz.

Symbol

Means S/N ratios

Level 1 Level 2 Level 3 Delta Rank Level 1 Level 2 Level 3 Delta Rank

Vc 437.5 440.8 399.9 40.9 2 - 52.69 - 52.73 - 51.94 0.79 2

f 361.3 490.9 129.5 1 - 51.12 - 53.78 2.66 1

LD 414.2 441.2 422.8 27 3 - 52.24 - 52.7 - 52.41 0.46 3

Bold Levels of optimum Fz

Table 6. Response table of the means and SN ratios for Mz.

Symbol

Means S/N ratios

Level 1 Level 2 Level 3 Delta Rank Level 1 Level 2 Level 3 Delta Rank

Vc 436.4 442.9 409.8 33.1 2 - 52.61 - 52.74 - 52.12 0.62 2

f 352.8 506.6 153.8 1 - 50.92 - 54.06 3.14 1

LD 418.3 441.3 429.5 22.9 3 - 52.3 - 52.64 - 52.52 0.34 3

Bold Levels of optimum Mz

Table 7. Response table of the means and SN ratios for Ra.

Symbol

Means S/N ratios

Level 1 Level 2 Level 3 Delta Rank Level 1 Level 2 Level 3 Delta Rank

Vc 5.031 4.237 4.352 0.794 3 - 13.43 - 12.36 - 12.5 1.07 3

f 3.815 5.264 1.449 2 - 11.37 - 14.16 2.79 1

LD 3.731 5.228 4.659 1.497 1 - 11.13 - 13.91 - 13.25 2.78 2

Bold Levels of optimum Ra.
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cutting speed and feed rate enlarge, more chips are cut in a

shorter time. More chips per unit time cause more power

consumption. Thus, the Fz, Mz, and Ra values increase. As

the LD ratio of U drills increases, the tendency to increase

the through-hole Ra values increases. However, there was

no significant difference for Fz and Mz.

It is always desirable to achieve ideal results in opti-

mization and forecasting models. However, when the lit-

erature is examined, it is a gap whether the experimental

results are used directly or whether the conversion to SN

ratios gives more optimal results. This study will reveal

which one would be more suitable to obtain more effective

models in future studies. For this purpose, by using

Taguchi, ANN, and ANFIS estimation methods, individual

output responses were estimated by constructing models

according to both experimental results and SN ratios. The

performances of the experimental results and the prediction

results of the models were compared with methods such as

MAPE, MSE, RMSE, and R2.

4. Estimation methods

The comparison of experimental results and estimation

modeling methods based on SN ratios with each other and

the differences between them could not be clarified when

Figure 4. Main effect plots of the means and SN ratios for Fz.

Figure 5. Main effect plots of the means and SN ratios for Mz.

Figure 6. Main effect plots of the means and SN ratios for Ra.
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the literature was examined. In the current study, different

estimation methods were examined according to experi-

mental results and SN ratios, and their performances were

compared. Using the experimental results and SN ratios,

prediction models with Taguchi, ANN, and ANFIS were

created for each output response. The experimental results

and the predictions obtained from the models were com-

pared. Equation (2) was used to calculate the estimation

errors for each output response using the Taguchi, ANN,

and ANFIS models. For all output response values, the

average percentage error (APE) was calculated using the

experimental and predicted values.

APE ¼ Exp� Prej j
Exp

� �
� 100 ð2Þ

Exp stands for experimental result and Pre stands for

predicted result. APE is the percent estimation error

between the experimental and predicted values.

4.1 Taguchi-based estimation method

SN ratios were determined according to the results of the

experiments performed with the Taguchi L18 experimental

design. Separate models were obtained for each of the

output responses (Fz, Mz, and Ra). Considering these

models, all of the experimental results and SN ratios were

estimated. ‘‘Linear ? interactions’’ were used for both

means and SN ratios to obtain Taguchi models. In other

words, the terms Vc, f, LD, Vc9f, Vc9LD and f9LD were

selected and modeled in the Minitab 19 environment.

Estimation values were obtained according to these models.

The obtained estimation results and error percentages are

given in table 8. According to the findings of the experi-

ment, the mean absolute percentage error (MAPE) was

calculated as 5.07%, 5.25%, and 9.07% for Fz, Mz, and Ra,

respectively. MAPE, according to the SN ratios, was

0.84%, 0.86%, and 4.55% for Fz, Mz, and Ra, respectively.

Using the experimental results by converting them to SN

ratios instead of using them directly in Taguchi prediction

models resulted in obtaining values that are more approx-

imate to the output responses of the model. The predictive

ability of the model increased significantly, as shown in

figure 8. It is clear that the models obtained are sufficient

for the estimation of output responses. Using the SN ratio

instead of the experimental result reduced MAPE by 83.4%

for Fz, 83.6% for Mz, and 49.8% for Ra.

4.2 ANN based estimation method

Artificial neural networks (ANN) are used for modeling

output parameters according to input parameters. Some of

the data is used for training the model, while other parts are

used for testing and estimation. In this study, networks for

all output responses are trained using the Levenberg-Mar-

quardt (trainlm) algorithm. The training data set and the test

data set were separated from the experimental data set. The

test data set did not contain any of the information from the

training data set. Five of the data sets were used as the test

data set and 13 were selected at random to serve as the

training data set. The performance choice was made to be

the ‘‘mean squared error’’ (MSE). Experimental results and

SN ratios were all subjected to a normalization process

ranging from 0 to 1. Normalized values give better results

in ANN [35]. Cutting speed, feed rate, and tool length to

diameter ratio were determined as input variables. In

determining the hidden layers, models were created sepa-

rately according to one hidden layer (figure 9a) and two

hidden layers (figure 9b), and the models with the highest

R2 rating were determined to be the final model. Combi-

nations from 1 to 60 for a single hidden layer and from 1 to

20 for each layer of two hidden layers were examined in

order to determine the appropriate model for a single output

response. In other words, 60 models were scanned for one

hidden layer, and 20 x 20 = 400 models were scanned for

Figure 7. Comparison of observed chips.
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two hidden layers. For a total of one output response, a total

of 920 models were scanned, with 460 models according to

experimental results and 460 models according to SN

ratios. The experimental results of the three output

responses (Fz, Mz, and Ra) and the SN ratios of 460 x 6 =

2760 models were examined. ANN models are limited to

between one and two hidden layers. The experimental

results of the three output responses (Fz, Mz, and Ra) and

the SN ratios of the 460 x 6 = 2760 models were examined.

ANN models are limited to between one and two hidden

layers. Because as the number of hidden layers increases,

the models become more complex, and the model memo-

rizes the training data (overfitting) [18]. Simpler models

perform better in terms of prediction [36]. Only one

response (Fz, Mz, or Ra) was used as the output layer.

Different hidden layers and numbers of neurons were

determined for all output responses. The obtained ANN

models with optimum accuracy according to the output

responses are given in table 9. For all output responses, the

results obtained with two hidden layers were found to have

Table 8. Experimental and SN ratios error values for Taguchi model.

Test No.

Fz Mz Ra

Exp. SN ratios Exp. SN ratios Exp. SN ratios

Pred. APE Pred. APE Pred. APE Pred. APE Pred. Er. Pred. APE

N % dB % Ncm % dB % lm % dB %

1 359 3 - 51.06 0 350 5 - 50.81 1 2.669 6 - 9.05 0

2 470 2 - 53.40 0 488 3 - 53.70 1 5.342 3 - 14.26 0

3 388 11 - 51.78 2 380 11 - 51.64 2 2.832 5 - 8.98 5

4 487 10 - 53.86 2 492 11 - 53.93 2 4.812 3 - 13.88 4

5 350 11 - 50.68 1 350 10 - 50.70 1 2.892 12 - 8.73 6

6 432 7 - 52.66 1 451 7 - 53.03 1 3.843 7 - 11.88 4

7 385 3 - 51.70 1 354 4 - 50.99 1 5.337 17 - 14.04 7

8 557 3 - 55.02 1 569 3 - 55.21 1 8.535 8 - 18.52 4

9 380 14 - 51.40 2 373 14 - 51.18 2 3.181 15 - 10.75 6

10 541 8 - 54.45 2 561 7 - 54.80 2 5.686 11 - 14.90 5

11 320 9 - 50.35 1 306 9 - 50.01 1 3.577 6 - 11.43 1

12 464 7 - 53.30 1 484 6 - 53.67 1 5.054 5 - 13.85 1

13 354 1 - 51.00 0 343 0 - 50.74 0 3.706 14 - 11.83 7

14 500 0 - 53.95 0 515 0 - 54.22 0 4.596 16 - 12.89 7

15 357 0 - 51.10 0 353 1 - 51.00 0 4.356 19 - 12.46 11

16 492 0 - 53.79 0 499 1 - 53.88 0 4.552 13 - 13.21 8

17 358 0 - 51.02 0 366 1 - 51.19 0 5.789 1 - 15.07 2

18 476 0 - 53.61 0 501 1 - 54.10 0 4.957 2 - 14.07 2

MAPE (%) 5.07 0.84 5.25 0.86 9.07 4.55

5.07

0.84

5.25

0.86

9.07

4.55
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Figure 8. MAPE values obtained for Taguchi prediction models. Figure 9. (a) Single hidden layer structure and (b) Two hidden

layer structure.

Table 9. Optimally determined ANN hidden layer numbers.

Fz Mz Ra

Exp. SN ratios Exp. SN ratios Exp. SN Ratios

12 - 9 18 - 8 19 - 18 9 - 10 14 - 9 20 - 14
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higher accuracy. Estimation values and estimation errors

obtained according to the created ANN model are given in

table 10. According to the experimental results, the mean

error (MAPE) was calculated as 0.57%, 1.12%, and 2.8%

for Fz, Mz, and Ra, respectively. MAPE, according to the

SN ratios, was found to be 0.18%, 0.17%, and 1.79% for

Fz, Mz, and Ra, respectively. Using the experimental

results by converting them to SN ratios instead of using

them directly in ANN prediction models has resulted in

values that are closer to the output responses of the model.

The predictive ability of the model increased significantly,

as shown in figure 10. Using the SN ratio instead of the

experimental result reduced MAPE by 68.4% for Fz, 84.8%

for Mz, and 36.1% for Ra.

4.3 ANFIS based estimation method

Jang [37] first proposed adaptive network-based fuzzy

inference systems (ANFIS) in 1993 as an optimization

method for elucidating the complicated and nonlinear

relationship between input and output variables. It is

helpful for calculating complex problems with high levels

of uncertainty because it combines the learning capabilities

of neural networks with the inference capabilities of fuzzy

logic [38]. Sugeno was determined to be the FIS. The

ANFIS structure consists of five layers: fuzzification,

product, normalization, defuzzification, and output layer.

For the training data set, 70% of the experimental data were

chosen at random, and for the test data set, the remaining

30%. 13 of the 18 experiments were found for the training

data set and 5 for the test data set in the estimation of each

output response. The ANFIS model was created using the

MATLAB program’s fuzzy logic toolbox. The model’s

input variables included the tool length to diameter ratio,

cutting speed, and feed rate. Fz, Mz, and Ra were consid-

ered output parameters. The modeled ANFIS structure for a

single output response is shown in figure 11. ANFIS per-

forms the optimum estimation for an output response by

creating 13 rules in the IF-THEN structure according to the

experimental result, or SN ratio.

Table 10. Experimental and SN ratios error values for ANN model.

Test No.

Fz Mz Ra

Exp. SN Ratios Exp. SN Ratios Exp. SN Ratios

Pred. APE Pred. APE Pred. APE Pred. APE Pred. APE Pred. APE

N % dB % Ncm % dB % lm % dB %

1 347 0 - 50.81 0 334 0 - 50.46 0 2.825 0 - 9.01 0

2 481 0 - 53.86 0 504 0 - 54.05 0 5.186 0 - 14.52 2

3 433 0 - 52.74 0 408 5 - 52.65 0 2.660 11 - 9.52 0

4 442 0 - 52.90 0 443 0 - 53.99 2 4.658 0 - 13.53 1

5 316 0 - 49.98 0 318 0 - 50.04 0 3.088 19 - 8.23 0

6 465 0 - 53.37 0 484 0 - 53.71 0 4.818 16 - 11.50 7

7 400 0 - 52.03 0 370 0 - 51.44 0 4.560 0 - 13.42 2

8 543 0 - 54.70 0 553 0 - 54.85 0 9.311 0 - 19.62 1

9 344 3 - 50.45 0 320 2 - 50.34 0 3.733 0 - 11.49 0

10 587 0 - 55.37 0 607 0 - 55.64 0 5.134 0 - 14.15 0

11 353 0 - 51.53 1 336 0 - 50.51 0 3.802 0 - 12.63 9

12 432 0 - 52.70 0 456 0 - 53.19 0 4.829 0 - 13.97 2

13 352 0 - 51.52 1 344 0 - 50.74 0 4.326 0 - 13.08 3

14 502 0 - 54.02 0 522 1 - 54.55 1 3.976 0 - 11.96 0

15 366 2 - 50.79 1 381 9 - 50.85 0 3.653 0 - 11.27 0

16 471 4 - 53.82 0 502 0 - 54.03 0 5.461 4 - 14.73 2

17 360 0 - 51.13 0 370 0 - 51.36 0 5.871 0 - 15.42 0

18 474 0 - 53.51 0 501 1 - 54.00 0 4.875 0 - 13.58 1

MAPE (%) 0.57 0.18 1.12 1.12 2.80 1.79

0.57

0.18

1.12

0.17

2.8

1.79

0

1

2

3
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Figure 10. MAPE values obtained for ANN prediction models.
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The selection of the FIS, epoch number, training data set,

and test data set was determined by trial and error. The

‘‘sub-clustering FIS system’’ was used for the efficiency of

the ANFIS model. The epoch was set to 100. Table 11

shows the estimation results, estimation errors, and mean

errors of Fz, Mz, and Ra output responses obtained with the

Figure 11. Proposed ANFIS architecture.

Table 11. Experimental and SN ratios error values for ANFIS model.

Test No.

Fz Mz Ra

Exp. SN ratios Exp. SN ratios Exp. SN ratios

Pred. APE Pred. APE Pred. APE Pred. APE Pred. APE Pred. APE

N % dB % Ncm % dB % lm % dB %

1 347 0 - 50.81 0 333 0 - 50.46 0 2.825 0 - 9.02 0

2 481 0 - 48.62 9 504 0 - 54.04 0 5.185 0 - 14.30 0

3 343 21 - 52.74 0 341 21 - 52.65 0 3.614 21 - 9.49 0

4 442 0 - 52.90 0 443 0 - 55.98 6 5.747 23 - 17.75 33

5 316 0 - 49.98 0 318 0 - 56.68 13 3.763 46 - 8.25 0

6 477 2 - 53.37 0 484 0 - 53.69 0 4.828 16 - 13.67 11

7 399 0 - 52.03 0 369 0 - 45.41 12 4.560 0 - 13.18 0

8 487 10 - 54.70 0 553 0 - 54.85 0 9.311 0 - 19.38 0

9 334 0 - 58.64 16 371 13 - 50.33 0 3.733 0 - 11.44 0

10 587 0 - 55.37 0 606 0 - 55.65 0 5.135 0 - 17.87 26

11 353 0 - 50.55 1 335 0 - 50.51 0 3.802 0 - 12.42 7

12 431 0 - 52.70 0 456 0 - 53.17 0 4.829 0 - 13.68 0

13 352 0 - 52.05 2 344 0 - 40.80 20 4.326 0 - 12.72 0

14 502 0 - 54.02 0 477 7 - 49.16 9 3.976 0 - 11.99 0

15 385 8 - 43.01 16 369 6 - 50.85 0 3.653 0 - 11.25 0

16 491 0 - 53.82 0 503 0 - 54.03 0 4.685 11 - 13.23 8

17 353 2 - 51.13 0 370 0 - 51.36 0 5.871 0 - 15.37 0

18 474 0 - 53.51 0 526 6 - 53.93 0 4.874 0 - 13.76 0

MAPE (%) 2.40 2.46 2.90 3.31 6.52 4.69
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ANFIS model. According to the experimental results,

MAPE was calculated as 2.4%, 2.9%, and 6.52% for Fz,

Mz, and Ra, respectively. MAPE according to SN ratios

was found to be 2.46%, 3.31%, and 4.69% for Fz, Mz, and

Ra, respectively. The use of experimental results by con-

verting them to SN ratios instead of using them directly in

ANFIS prediction models resulted in values closer to the

output responses of the Ra model, whereas the opposite

situation occurred for Fz and Mz. While the predictive

ability of the model increased for Ra, as shown in figure 12,

the opposite result was obtained for Fz and Mz. Using the

SN ratio instead of the experimental result increased the

MAPE by 2.5% for Fz and 14.1% for Mz, while decreasing

Ra by 28.1%.

4.4 Comparison of estimation methods

In order to reach the desired thrust force, torque, and sur-

face roughness values in the industry, optimization of the

input parameters is required. For this, modeling methods

such as Taguchi, ANN, and ANFIS are used. In this study,

cutting speed, feed rate, and length-to-diameter ratio were

determined as input parameters. The effects of input

parameters on thrust force, torque, and surface roughness

were investigated and modeled. Experimental results of

output response values and accuracies of the models created

according to SN ratios were calculated with equation (3).

Accuracy ¼ 1

n

Xn

i¼1

1� Exp ið Þ � Pre ið Þj j
Exp ið Þ

� �
� 100 ð3Þ

The accuracy values of the models created are given in

table 12. When the table is studied, it is evident that the

models developed in accordance with the ANN and SN

ratios have the highest accuracy of all those produced. It

can be said that constructing the models by converting the

experimental results into SN ratios will result in higher

prediction accuracy. The ANN model estimated the data

with an accuracy of 99.8% in the prediction of Fz and Mz

and 98.2% in the prediction of Ra.

When tables 13, 14, 15 were examined, the MAD,

MSE, RMSE, and R2 values of the performance outputs

were calculated. It is evident that the developed models

are highly accurate and reliable predictors. Models based

on ANN and SN ratios produced the most precise

predictions.

MAD ¼ 1

n

Xn

i¼1

Exp ið Þ � Pre ið Þj j ð4Þ

MSE ¼ 1

n

Xn

i¼1

Exp ið Þ � Pre ið Þð Þ2 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Exp ið Þ � Pre ið Þ½ �2
s

ð6Þ

2.4 2.46
2.9 3.31

6.52

4.69
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Figure 12. MAPE values obtained for ANFIS prediction models.

Table 12. Accuracy estimation of Taguchi, ANN and ANFIS

models.

Models

Fz (N) Mz (Ncm) Ra (lm)

Exp. SN ratios Exp. SN ratios Exp. SN ratios

Taguchi 94.9% 99.2% 94.7% 99.1% 90.9% 95.4%

ANN 99.4% 99.8% 98.9% 99.8% 97.2% 98.2%
ANFIS 97.6% 97.5% 97.1% 96.7% 93.5% 95.3%

Table 13. Comparison of estimation methods for Fz.

Fz
Experimental SN ratios

Error Taguchi ANN ANFIS Taguchi ANN ANFIS

MAD 20.922 2.368 10.678 0.440 0.094 1.266

MSE 750.588 31.721 683.455 0.312 0.045 8.801

RMSE 27.397 5.632 26.143 0.558 0.212 2.967

R2 0.99599 0.99983 0.99635 0.99989 0.99998 0.9968

Table 14. Comparison of estimation methods for Mz.

Mz
Experimental SN ratios

Error Taguchi ANN ANFIS Taguchi ANN ANFIS

MAD 21.695 4.356 12.049 0.450 0.090 1.703

MSE 754.377 90.018 676.969 0.302 0.070 11.843

RMSE 27.466 9.488 26.019 0.550 0.265 3.441

R2 0.99607 0.99953 0.99648 0.99989 0.99997 0.99571

Table 15. Comparison of estimation methods for Ra.

Ra
Experimental SN ratios

Error Taguchi ANN ANFIS Taguchi ANN ANFIS

MAD 0.397 0.095 0.230 0.573 0.231 0.631

MSE 0.220 0.047 0.208 0.456 0.130 2.023

RMSE 0.469 0.217 0.457 0.675 0.361 1.422

R2 0.99029 0.99793 0.99082 0.99731 0.99923 0.98804
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R2 ¼ 1�
Pn

i¼1 Exp ið Þ � Pre ið Þð Þ2
Pn

i¼1 Exp ið Þ � AverageExpð Þ2
ð7Þ

Here n is the number of test vector. Exp ið Þ is the i th
experimental result. Pre ið Þ is the i th value predicted by the

model. AverageExp is the average of experimental data set.

Experimental results and graphs of SN ratios Taguchi,

ANN, ANFIS estimation results can be seen in figure 13 for

Fz, figure 14 for Mz, and figure 15 for Ra. When the graphs

for Fz are examined, the maximum APE for the models

created with the experimental results is 14% with Taguchi,

4% with ANN, and 21% for ANFIS. The maximum APE

for models created with SN ratios is 2% with Taguchi, 1%

with ANN, and 16% with ANFIS. When the graphs for Mz

are examined, the maximum APE for the models created

with the experimental results is 14% with Taguchi, 9% with

ANN, and 21% for ANFIS. The maximum APE for models

created with SN ratios is 2% with Taguchi, 2% with ANN,

and 20% for ANFIS. When the graphs for Ra are examined,

the maximum APE for the models created with the exper-

imental results is 19% with Taguchi, 19% with ANN, and

46% for ANFIS. The maximum APE for models created

with SN ratios is 11% with Taguchi, 9% with ANN, and

33% with ANFIS. The models constructed with the SN

ratios for Fz, Mz, and Ra significantly decreased compared

to the maximum APE obtained with the experimental

results. However, the reduction in this maximum APE

occurred to a lesser extent for ANFIS. The most accurate
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Figure 13. Predictions for Fz. (a) Experimental results and (b) SN ratios.
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Figure 14. Predictions for Mz. (a) Experimental results and (b) SN ratios.
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predictions for all output responses were obtained with the

ANN model. While the MAD, MSE, RMSE values of the

models established with ANN were minimum compared to

other estimation methods, R2 was maximum. This is an

indication of the reliability coefficient and predictive ability

of ANN models.

5. Conclusion

In this study, the effects of feed rate, cutting speed, and

length-to-diameter input parameters on the outcomes of

thrust force, torque, and surface roughness were investigated.

To achieve this, the best input parameters on the output

responses were identified by first employing the Taguchi

method to analyze the major effect plots and performance

replies. Using an experimental data set with Taguchi, ANN,

and ANFIS, models were constructed for both experimental

results and SN ratios. The predictive ability of the created

modelswas comparedwith each other. The primary objective

of this investigation is to determine which of the prediction

models obtained using experimental results and SN ratios

contributes to creating models with higher precision. The

results obtained with this research are listed below.

i. According to Taguchi response tables andmain effect

plots, the f valuewas determined as themost effective

input parameter on Fz and Mz. The optimum input

parameters were 300 m/min Vc, 0.06 mm/rev f, and

3D U drill for Fz and Mz, and 250 m/min Vc, 0.06

mm/rev f, and 3D U drill for Ra.

ii. When the models created with the Taguchi-based

estimation method are compared, using the SN ratio

reduced MAPE by 83.4% for Fz, 83.6% for Mz, and

49.8% for Ra.

iii. When the models created with the ANN-based

estimation method are compared, using the SN ratio

reduced MAPE by 68.4% for Fz, 84.8% for Mz, and

36.1% for Ra.

iv. Considering all estimation methods, the models with

the highest accuracy were obtained by the ANN

estimation method.

v. When the models created with the ANFIS-based

estimation method were compared, using the SN

ratio increased MAPE by 2.5% for Fz and 14.1% for

Mz, while decreasing Ra by 28.1%.

vi. For the ANN model created according to the SN

ratios, the maximum APE is 1% for Fz, 2% for Mz,

and 9% for Ra.

vii. When the prediction models created were compared,

the highest precision values were obtained with the

ANN model. These values were calculated as 99.8%

for Fz and Mz, and 98.2% for Ra.

viii. When the R2 values of the models created according

to the experimental results and SN ratios were

examined, models with very high reliability were

obtained.
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