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Abstract. The importance of the quality of life of rotating machinery increases the Bearing fault diagnosis.

Deep learning models (DL)-based databases become increasingly smart in the field of fault diagnostics, the latest

research has widely used CNNs (convolutional neural networks). This paper proposes a new way to diagnose

bearing failures with CNN with Bilinear LSTM. Traditional CNNs are however not easy to detect defects due to

the fixed geometry of complex fault diagnosis with different working conditions. Our primary and secondary

classifiers at specified layers replace primitive shape convolutions with reconfigurable convolutions, resulting in

classification results with stringent feature time-frequency incompatibility and a larger receptive field. To

acquire more adaptive knowledge and insight into the proposed approach, we employ the CWRU (Case Western

Reserve University) opensource dataset to compare classification accuracy. The bearing dataset has been sub-

jected to comprehensive experiments and evaluations in order to confirm the efficacy of the suggested tech-

nique’s diagnostic performance in a variety of settings. By comparing multiple perspectives on the same dataset

with related tasks, the proposed method’s superiority is proved. To limit the effect of noise and avoid temporal

oscillations, degraded index sequences are matched with a CNN. Current and previous inspection data are fed

into a new CNN-BiLSTM model, which is then used to predict the useful time and compatible power values of

bearing RULs. When it comes to output, go with the lifetime percentage. The proposed method has been tested

by accelerating bearing operation to failure, and the results show that the method has advantages in predicting

RUL more accurately. The results of the experiments suggest that the proposed core distance measurement

method is a viable new tool for intelligent rolling bearing diagnosis. The BiLSTM technique is more diagnostic

than some generic models, according to experimental results using the 48 K and 12 K CWRU datasets, with

overall accuracy of 99.80% and 98.3%, respectively.

Keywords. Deep learning models (DL); CNNs (convolutional neural networks); CWRU (Case Western

Reserve University); CNN-BiLSTM model; RUL.

1. Introduction

Bearings play a crucial role in rotating machinery. One of

the most common causes of motor failure is bearing prob-

lems, and discovering failures early on can save time and

money in the long run [1]. Many scientific domains have

greatly boosted their use of ML or DL in recent years. One

of the most fascinating and widely used fields in the real

world is intelligent defect detection.

Developing a network design that can give good diag-

nostic performance in a reasonably short amount of time is

a fundamental issue in applying machine learning approa-

ches to bearing fault diagnosis [2]. Signal processing

techniques are used to accomplish data-driven intelligent

bearing defect detection first. These are ‘‘vibration signals’’

or ‘‘motor current signals,’’ respectively, as recorded by an

accelerometer or a frequency converter [3]. Vibration sig-

nals have been shown in the literature to be more useful for

obtaining more precise findings [4].

Features must be extracted and used from learning

algorithms developed to achieve maximum accuracy to use
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ML or DL techniques for bearing failure detection. The

function has three domains: time [5], frequency [6], and

time [7].

The focus of this publication is on rolling bearing fault

diagnostics. The performance, stability, and life cycle of

rotating machinery are all affected by bearing condition

assessments. Because the working environment of rolling

bearings is typically sealed and variable, complicated and

effective defect diagnosis procedures are difficult to

develop [8]. To check the state of rolling bearings that are

inaccessible without disassembly, however, external rele-

vant information must be analysed. Because the vibration

signal’s immediate value is continually changing, the roll-

ing bearing signal’s properties alter with time. As a result,

developing a fault diagnosis system with a self-learning

feature that can learn signal properties on a continual basis

is critical [9].

Rolling-element bearings are a common rotary machin-

ery component, and rolling bearings defects affect the

operation of normal rotary machinery which causes serious

equipment damage, economic costs, and sometimes life-

threatening damage. For mechanical and intelligent inte-

gration systems, safety and reliability have become

increasingly important in light of the rapid development of

modern industries [10]. Reliability of a rotating machine is

directly related to the performance of its main supporting

component, the roller bearing. As a result, developing an

intelligent diagnostic approach to discover and diagnose

faults as soon as feasible is critical [11].

1.1 Contribution of the paper

1. This work shows how to use the CNN-BiLSTM

approach to diagnose motor bearing faults without the

requirement for sophisticated data pretreatment or signal

processing.

2. Signal feature extraction is needed by the fault diagnos-

tic method. This research proposes a convolutional

neural network-based fault identification approach. It is

a full-featured diagnostic procedure that eliminates the

need for manual feature extraction and problem

detection.

3. Explore the model’s unique process for learning and

classifying mechanical functions by using CNN-

BiLSTM to show the learned function.

4. The results of the experiments show that the method can

extract appropriate fault features from raw bearing

vibration data and classify defects with good accuracy

and stability.

5. A CNN-BiLSTM neural network and adaptively learnt

deep features are used to develop a unique RUL

prediction algorithm in two healthy states. This method

takes advantage of not only the bearing faults’ good

representation ability, but also the deterioration process’

temporal information.

This paper is structured as follows. The literature survey is

in section 2. The network architecture employed in this

study, CNN-BiLSTM, is briefly discussed in section 3.

Section 4 describes experiments, data sets, defect classifi-

cation and hyperparameter selection of the proposed CNN-

BiLSTM architecture. Section 5 discusses and compares

our method to other methods and section 6 finally provides

the conclusions and future work.

2. Literature survey

Various ‘‘shallow’’ machine learning and data mining

algorithms, as well as artificial neural networks (ANNs),

were utilised more recently, prior to the deep learning

boom. Using these algorithms necessitates a high level of

knowledge as well as intricate feature engineering [12].

Principal component analysis (PCA) for obtaining the next

feature from the first dataset is an example of detailed data

analysis that leads to dimensionality reduction. Last but not

least, the ML algorithm is a common feature.

One of the very first analyses could be found on the use

of artificial intelligence (AI) technology to diagnose engine

failures [13]. This is a systematic summary of the error

frequencies of different types of motor defects and associ-

ated ANN-using papers.

In the last 30 years, ANN has been used to diagnose

problems as one of the first artificial intelligence mod-

elling techniques [14]. The motor bearings are reflected

in the damping coefficient B based on the nonlinear stator

current map ‘‘I’’ and the rotor speed ‘‘R.’’ By creating a

mapping neural network using the stator current and

motor speed as inputs and the anticipated bearing as

output, you can prevent this nonlinear mapping. Under

various operating conditions, the Dayton 6K bearing lab

test rig recorded 35 training models and 70 test data

models. An existing neural network with two input nodes

achieves 94.7% maximum accuracy in the carrying

defect detection [15].

One of the initial PCA adoptions for the diagnosis of

failure can be found in [16]. The experiment demonstrated

that it is significant to improve the accuracy of a failure

diagnosis from 88% to 98% with the use of only the PCA

identification feature instead of 13 unique features. During

this study, we have clearly shown that the PCA method is

the most accurate and least efficient of all features in defect

classification. Other PCA works [17–19] also use data

mining to expedite manual classification and create more

representative features.

The k-NN algorithm output is a class of objects in the

k-NN classification, identified by the majority votes of k’s

closest neighbors.An early implementation of the k-NN

classification is available in [20]. In this respect, k-NN

emerges as an essential algorithm for identifying ceramic

bearing defects for audio-based data mining. In addition,
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k-NN [21] other research studies use k-NN to evaluate each

new data sample from a certain class of defects.

SVM is a model map learning which analyses data used

for the analysis of non-stochastic grading or regression.The

classic work you did to identify room defects by using

SVMs is shown in [22]. The classification results generated

by SVM are generally better than ANN’s performance and

in all cases are optimal.Similar papers from SVM also

described the efficiency and effectiveness of the use of

SVMs by defect categorizers.

Many auto-encoder studies that apply to failure-diagno-

sis [23] can find early attempts to make an adaptive failure

of five-layer auto-encoder-based DNN. Frequency Spec-

trum Characteristics understanding and effective classifi-

cation for backpropagation neural networks, classification

accuracy is 99.6%.

For the detection of faults in inner and outer rings, as well

as rotating elements of aviation engine shafts, vibration

measurements are included in the dataset [24]. A Gaussian

radial kernel function is used to create the new AE. Stacking

AEs will be created with this new AE and certain existing

AEs. The average accuracy is 86.75%, which is significantly

better than SAE (44.90%) and DBN (19.65%).

A 4-layer DNN has been implemented because of the

large data volume required for training deep neural net-

works with a 70% compression stacked sparse autoencoder

[25], on the basis of our proposed training. Only 30% of the

data shows it is necessary.In order to compress vibration

data in the deformed space and extract adaptive functions

from it, the nonlinear projection is carried out, and the

proposed method’s accuracy is 97.47%, 8% higher than

SVM and 60% higher than 3-layer ANN. Multilayer arti-

ficial neural networks are 46 percent more expensive.

In the output layer, a clustering technique is used to

determine the likelihood that a sample belongs to Fusel

Maximum Likelihood Optimization (FMLE) [26], in addi-

tion to the most common Softmax classifier. The SDAE

8-layer still extracts useful features in vibration signals,

while GG identifies different types of defects. The classi-

fication accuracy in the worst case is 93.3%, nearly 10%

higher than the current EMD-based method of extraction.

A DL-based model for error diagnostics by using an

autoencoder [27]. A smooth voting approach that adds the

predictions for each signal segment clipped by a sliding

window has been devised to increase classification accu-

racy and stability. Adding white Gaussian noise to the

original CWRU dataset to generate a custom dataset for

diagnosing performance in a bright environment [28].

Two-dimensional image recognition and diagnosis have

been revolutionised by convolutional neural networks [6].

The synthetic product neural network is a ‘‘end-to-end’’

network structure that uses a neural network to finish the

entire process of feature extraction, feature dimensionality

reduction, and classifier classification.These properties

of convolutional neural networks can undoubtedly

compensate for the deficiencies of present defect detection

methods, provide new ideas for existing defect detection

algorithms, and improve the diagnostic performance of

existing defect detection algorithms [29].

In practise, intelligent algorithms-based defect diagnosis

methods may successfully overcome the limitations of

signal analysis methods and have a higher recognition rate

than traditional approaches. In rolling bearing fault detec-

tion, however, the most intelligent algorithmic methods still

exist. This is because to the network model’s depth, which

allows it to extract information accurately enough for

diagnostic purposes. The use of temporal data on defect

features is predicted to increase the accuracy of bearing

RUL predictions over time as bearings deteriorate.

2.1 Objective

The focus of this study is on the intelligent detection of

rotating electrical machine defects, with reference to deep

learning research development. The advantages of the

proposed technique include:

1. Real-time bearing condition detection using a dense

network structure and raw data input.

2. Learn functions automatically from raw signals without

any preprocessing (EMD, HHT, etc.).

3. Utilizes minimal datasets to provide effective training

and classification methods.

4. Cut maintenance expenses by eliminating unnecessary

interventions and inspections.

Experiments show that the suggested model outperforms

various modern intelligent fault identification methods in

noisy situations.

2.2 Rolling bearing fault signature

A typical roller bearing construction consists of an outer

ring and an inner ring mounted on a bearing housing.It can

be attached to rotating shafts, rolling elements and support

cages. Roller bearings are the most fragile parts of rotating

machines.If damaged, the wear of the internal balls can

cause the bearing to drop dramatically. Various root causes

of bearing failure, such as improper sizing, leakage and

excessive loads.When a bearing is defective, it causes

periodic abnormal vibrations, the magnitude of which

depends on the type of defect. The magnitude of the defect,

the shaft speed, the load, and the position of the defect all

influence the failure vibration frequency characteristics, as

do several common vibration frequencies for different

mechanical defect features, such as:

f c ¼
f r
2
ð1� d

Dm
cosa

� �
Þ ¼ f bi

Nb
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where Dm is the pitch diameter; d is the roller diameter; Nb
is the number of rollers; a is the ball contact angle; and fc,
fbi, fbe, and fb are the cage, inner race, outer race and roller

fault frequencies, respectively.

3. Convolutional neural network (CNN)

A CNN is made up of many convolutional layers, nor-

malisation (BN) layers, activity layers, pooling layers, and

classification layers as a multi-level neural network. Cool-

ing layers create input and output features whereas con-

volutional layers mix the data with a collection of unknown

filters known as kernels. During training, each kernel is a

vertical matrix of dimensions in which the elements (or

hyperparameters) are taught. To extract local input features,

the kernel is employed. Because the same kernels are used

to alter the input units of each layer, CNNs tend to have

significantly smaller hyperparameters during training than

ANNs, reducing the risk of consensus overload.

The study uses one-dimensional convolution since the

vibration signal is a one-dimensional time series.

ylþ1
i ¼ Kl

i � xl jð Þ þ bli ð2Þ

where k and b represent the weights and biases of the ith

filter and the lth layer, respectively, and x represents the jth

local input of the lth layer.

The collected features are selected and filtered using a

pooling layer after hierarchical synthesis. To get local

properties of the region and limit the number of parameters,

max pooling chooses the maximum statistics for the most

common pooling processes. Following is an interpretation

of the (l?1)th layer of the ith channel after pooling.

Plþ1
i ¼ max

j�1ð ÞWþ1� t� jW
fqliðtÞg ð3Þ

where q represents the tth neuron in the lth layer of the ith

channel and w is the width of the pooling kernel.

As shown in figure 1, the proposed CNN approach

comprises two main steps. The first step is to filter the raw

input signal into the frequency domain. The second phase

feeds the input signal to the CNN.The following are

explained in more detail in these two steps. The first step is

to construct a frequency/frequency resolution level based

on a quick curtogram analysis. The highest kurtosis signal

is then chosen as the filtered signal. This is essential to the

proposed error diagnostic approach, as the raw input signal

has a signal that is generally uncontrollable at a high noise

ratio. This signal preprocessing can minimize the noise

components of the input signal in the proposed CNN

scheme. The filtered signal is then demodulated to remove

carrier frequencies independent of its characteristic fre-

quency. Time serial signals pre-processed before the CNN

multichannel model is input are converted into the fre-

quency domain. The CNN considers multiple sensor data

channels as inputs for the multi-channel CNN model to be

essential. These various sensor signals are a time series that

is not fully synchronized (that is, not collected at exactly

the same time). This means that there is an unknown delay

between measuring samples on one channel and samples on

other channels (in milliseconds). Because of the unique

asynchronous structure of time series data, feeding raw

time series data directly to a CNN risks losing information.

3.1 Long short term memory (LSTM)

In RNN trainings where input and output gate functions are

introduced, LSTM forgetting doors can avoid gradient

explosions and gradient disappearances. The RNN training

problem can be solved with three gate functions. An LSTM

cell is shown in figure 2.

The following is an example of an LSTM different cells

equation:

it ¼ rðWxixt þWhiht�1 þ biÞ ð4Þ

f t ¼ r Wxf xt þWhf ht�1 þ bf
� �

ð5Þ

ot ¼ rðWxoxt þWhoht�1 þ boÞ ð6Þ

ct0 ¼ tanhðWxcxt þWhcht�1 þ bcÞ ð7Þ

ct ¼ f tect�1 þ itect0 ð8Þ

ht ¼ otetanhðctÞ ð9Þ

Xt indicates the value of the tth time series given to the

LSTM. ct represents the LSTM core memory cell. The

storage unit can be used to regulate the conversion of

various types of temporal data. The gate is responsible for

determining what information will be presented next. The

memory gate displays the amount of data that has been

Figure 1. CNN structure.
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retained since the last time you used it. The process output

from the current state to the next state is determined by the

output gate.

Finally, the softmax function transforms the neuron

output into a probability distribution for each of the 10

roller bearing states. Where z denotes the output of the jth

neuron, the softmax function is expressed as follows:

q zj
� �

¼ softmax zj
� �

¼ ezjP10
k¼1e

zk
ð10Þ

3.2 Bidirectional LSTM (BiLSTM)

BiLSTM (Bidirectional Long Short Term Memory) is a

forward and reverse LSTM that can link predictions based

on both forward and reverse data. Only time-related data

can match LSTMs in one direction. BiLSTM has added an

inverse LSTM to capture LSTM drop patterns for BiLSTM.

Figure 3 shows the structure of BiLSTM. Li is the LSTM

forward, L
0

i is the LSTM opposite, s is the LSTM time

series.

The vibration signal data is fed into the network using

CNN, which uses its convolutional layer and grouping layer

to minimise data dimension and analyse fault features. The

attention hierarchy computes feature weighting factors in

an adaptable manner. The features that are kept to be

learned in the CNN are listed in the first row, and the

adaptive weight matrix is found after Softmax in the second

row. Divide the two rows’ results by two. To put it another

way, to get the weight attribute matrix, you must first

weight the features. Effective features generally affect

classification results significantly, while ineffective or

inefficient characteristics have less impact on classification

results.

Weighing characteristics can improve efficiency and

decrease ineffective or inefficient characteristics. Weighted

Hierarchical Networks (WHNs) and CNN Attention to

learn more about feature temporal correlation, hierarchical

features are delivered to LSTM networks.The training

results are then sent over a fully connected network to the

Softmax layer in order to finally get the rating results. With

regard to defect characteristics as well as time features of

the original signal, the BiLSTM model emphasizes how

important it is to consider each attribute separately. This

method can increase the accuracy of failure diagnosis by

learning from high-dimensional raw data more efficiently.

Figure 4 depicts the proposed BiLSTM structure, which

has five layers: input, convolutional, full, LSTM, and out-

put. The convolutional layer and pooling layer in the above

layers have been applied to the CNN model and has proved

effective for image recognition.Through the kernel, the

convolution procedure reduces the input data to a smaller

function map. Because the CNN input is a two-dimensional

number, convolution kernels and maps are typically two-

dimensional. To meet the one-dimensional characteristics

of mechanical signals, we build in this paper a single-di-

mensional neural network of convolution, and all feature

kernels and maps are one-dimensional.

Data is stored in the time domain and can be sorted

chronologically, as indicated in the previous section. In

order for the model to be particularly precise in time series

processing, it must account both regional and global

capabilities. A one-dimensional structure exists in time

series. High correlation exists between variables (or pixels)

that are near in time. The advantage of extracting and

integrating regional features before recognising them is due

to regional correlation. For local feature extraction, con-

volutional networks restrict the receptive field of hidden

units. To handle global characteristics, LSTMs, on the other

hand, can learn long-term dependencies between two enti-

ties. To handle global characteristics, LSTMs, on the other

hand, can learn long-term dependencies between two enti-

ties.As a result, combining these two networks allows for

reliable data processing. In general, compared to other

temporal prediction algorithms, CNNs offer denoising

qualities that lessen the impact of noise during training

(LSTMs are noise sensitive) and require less preprocessing.

Furthermore, compared to previous DNN models, the

CNN-BiLSTM model successfully minimises overfitting.Figure 3. Bi-LSTM structure.

Figure 2. LSTM model.
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The upgraded CNN-BiLSTM model is chosen for bearing

problem diagnosis based on the following benefits and

thorough experimentation to identify the optimum model to

obtain the best accuracy in the shortest time period.

The CNN-BiLSTM architecture is depicted in figure 4.

By minimising the cost function, model hyperparameters

can be found (average loss function over the entire

training set). CNN and BiLSTM layers make up the

suggested architecture. The proposed network evaluates

the CWRU bearing dataset in order to identify the

appropriate hyperparameters for minimising the cost

function. Using an 84 9 84-dimensional CNN and a

24-neuron LSTM, we were able to attain satisfactory

accuracy across the tests. A dropout layer follows each

main layer, thereby minimising overfitting by reducing

the correlation between neurons.

Figure 4. CNN with Bi LSTM Architecture.
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Algorithm:

Default data sets based on defect classification can

generally be trained in smart fault diagnostic models.

However, the model is inefficient or rather ineffective due

to multiple part interactions or the effects of strong back-

ground noise when used for the initial weak diagnosis of

composite parts and gearboxes. In addition, in real indus-

trial applications, training data is generally limited on the

state of other machines, especially in defective states. For

example, it works under normal circumstances in the case

of a gearbox. Therefore, training data is relatively difficult

to accurately diagnose failures with millions of parameters,

particularly as defect data is limited. The proposed solution

is the same as in figure 5, and defects can be found by

following these steps:

(1) Vibration signals from the rolling bearing are collected

by the capture device. Resampling is used to split the raw

vibration data into training and testing samples. Trans-

form wavelets are used to transform the raw vibration

signals recorded by the gearbox into TF pictures.

(2) Suggested extraction method for multi-scale features

based on multi-scale units Get additional deep features

through multiple layers of convolution and pooling

layers.

(3) The acquired deep characteristics are fed into the global

mean complex hierarchy to achieve channel tuning.

Then define the output with the softmax classifier, and

train the source domain model with the BP algorithm.

(4) Move the pre-trained model to different parts of the

source area. Use a small sample of target fields with

consistent weights in several units of measure to fine-

tune the parameters of the delivery model. The CNN-

BiLSTM model is trained using both the generated and

original training picture samples.

(5) The test image set is entered in a proposed model

trained to detect rotary machine failure. Output is the

result of failure detection.

3.3 Training process

Figure 6 depicts the training process, in which the output

classes are compared to the actual sample labels, and the

parameters are changed using the BP algorithm. After

numerous repetitions, the value of the loss function

drops, suggesting that the parameter matches the sample

characteristics. For determining the batch size of training

data for iteration, the mini-batch slope-descent method is

employed to speed up training and avoid region-optimal

situations.

3.4 Testing process

The test dataset is added to the trained model after training

is completed, as shown in figure 7. Use the modified datasetFigure 5. The flow diagram of the proposed method.
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settings from the previous training iteration. This is the flow

chart for the whole model presented in Figure 7, where N

represents the maximum iteration epoch. The vibration

signal from the test bench is first collected and separated

into motion and test datasets. Then, using the training

dataset, we train the model several times to find the best

parameters. Third, we feed the test data set into the trained

model to obtain the predicted class, allowing us to calculate

the accuracy using the formula.

Accuracy ¼ No: of predicted samples

No: of total samples
ð11Þ

4. Experimental results

The experimental dataset is based on the open source data

of the data centre bearing the Case West Reserve Univer-

sity (CWRU). A standard database should be used to

evaluate the performance of the proposed approach to that

of existing methods. The CNN-BiLSTM is implemented

using a Neural Network Toolbox in MATLAB 2018a, a

CPU with Ryzen 5 1600, 16GB memory and GPU on the

GTX 1060 computer.

4.1 Data description

Signals from driving stage bearings and EDM-created

bearing problems are collected in this test (Electrical Dis-

charge Machining). A mechanical motor drive system with

sampling frequencies of 12 kHz and 48 kHz was used to

obtain raw vibration data. Under varied loads, the testbench

replicates four types of problems. Under various loads, the

testbench mimics four fault categories. Stable, ball, inner

ring, and outer ring faults are the four different varieties.

Figure 8 shows the platform for the collection, mainly

made up of engines, torque sensors, power metres and

electronic controls. With loads of 0, 1, 2, and 3 HP, the

engines run at 1797, 1772, 1750, and 1730 rpm. 7 mil, 14

mil, 21 mil, and 28 mil are among the wear flaws. The

vibration signal has sampling frequencies of 12K and 48 K

when manually set.

4.2 12K CWRU dataset

In this study, we have used a 12 K sampling frequency, a

1797 rpm bearing speed and 0 HP drive termination signal.

The conditions of bearings included normal orbital internal

defects, external orbital defects and ball defects, with

Figure 6. Training Process.

Figure 7. Testing Process.
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normal (14-mile) and severe (11-mils) wear being small (7-

mils). Therefore, there are 10 types of bearing conditions:

normal condition (Normal), slight defect on the internal

raceway surface (IR007), intermediate defect on the inter-

nal raceway surface (IR014), and serious defect on the

internal raceway surface (IR021). Slight defect in external

trajectory (OR007), intermediate defect in external trajec-

tory (OR014), serious defect in external trajectory

(OR021), slight defect in ball (B007), serious defect sphere

with intermediate defect in ball (B014) At (B021). The size

of the converted image is 160 * 160, 374, and is transported

from a sample signal to a screen at 25,600 sample points.

4.3 48K CWRU dataset

The rolling element fault signal, inner and outer rings, and

normal signal are all displayed from top to bottom using the

48 KHZ drive termination signal. The driver must be car-

ried during this test. The bearing to be diagnosed has a

model number of SKF6205, and the sample frequency is 48

kHz. The balls, inner ring, and outer ring of the bearing are

all susceptible to failure. 0.007, 0.014, and 0.021 inches,

respectively, are the defect diameters. There are a total of

ten different damage instances.

4.4 Data preprocessing

The drive bearing faults at the 48 K and 12 K ends of the

CWRU data were preprocessed as shown in figures 9 and

10. The BiLSTM model’s input layer is made up of 400

20 9 20-shaped neurons. For 2D convolution, the input

data is first passed through the CNN network. The sliding

stride is 2 9 2, and the convolution kernel is 2 9 2.

External padding can contaminate the distribution of the

data, but neither convolutional layers nor pooling layers

contain embeddings to prevent this. Assume that the input

data has a volume of H1L1D1 and that the convolutional

layer has a size of H2L2D2. The CNN findings are then

reproduced and processed by hierarchical attention layers in

order to acquire weighted resources while keeping the

8 9 8 9 32 data dimension intact.The LSTM network’s

output can be combined with an entire connection layer to

produce ten separate fault diagnosis results that softmax

must alter.

For the CWRU 48 K and 12 K datasets, the accuracy of

the proposed CNN-BiLSTM is compared to traditional

approaches, with the best results listed in table 1. The

results are shownthat the efficacy of the proposed method,

which by its density prediction function overcomes the

comparative DL method. For all DL models in this study,

CNN-BiLSTM achieved the highest precision of 99.80%

for 48 K dataset. For 48 K dataset, CLSTM achieved

accuracy of 98.33% and LSTM showed its accuracy per-

formance of 95.44%. For CNN-BiLSTM achieved the

highest accuracy of 98.30% for 12 K dataset. Similarly for

12 K dataset, CLSTM achieved accuracy of 95.7% and

LSTM accuracy performance of 93.3%. Conversely, the

CNN-BiLSTM model uses hierarchical network architec-

ture to store useful vibration images information to improve

performance than comparative models. CNN-BiLSTM

achieved the highest sensitivity of 96.78% for 48 K dataset

and 95.53% for 12 K dataset and also achieved the best

specificity of 98.18% for 48 K dataset and 98.30% for 12 K

dataset.

The accuracy of classification is 99.80%, much higher

than the other 6 methods. The results of the experiments

can draw the following conclusions: (1) Auxiliary data sets

help improve the accuracy of classification and provide an

effective way to diagnose missing labels error. (2) The

proposed method has better stability for recognition of

defects.

The simulation result of 48 K classification accuracy

depicted in figure 11. Figure 12 depicts the test’s CWRU 48

K dataset confusion matrix. Except for classes 2 and 8, the

classifier accurately predicted almost all of the ten

classifications.

The simulation result of 48 K classification accuracy

depicts in figure 13. The CWRU 12 K dataset confusion

matrix for the test is displayed in figure 14. Almost all 10

classes were correctly predicted by the classifier except

class number 9.

The training accuracy and loss function of the DL

model. This model has been trained to stop the training in

Figure 8. CWRU bearing fault test-bed.

Figure 9. CWRU data preprocessing process.
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an early stop callback when the DL model achieves the

highest precision without overfitting. The number of

epochs therefore depends on each DL model. The

BiLSTM model’s accuracy tends to remain stable fol-

lowing the 30th epoch, achieving an accuracy of 99.8%,

and improving the loss function value after the 25th

epoch.The CLSTM model achieves 98.33% accuracy, but

the model response continues to vary. Similarly, the

LSTM, provides 95.44% accuracy in response to fluctu-

ations in both accuracy and loss. The conventional KNN

accuracy is approximately 92.71%, improving accuracy

and loss.

Figure 10. Data preprocessing of vibration signal.

Table 1. Fault diagnosis accuracy of different algorithms on CWRU 48 K and 12 K data set.

Methods

Accuracy (%) Sensitivity (%) Specificity (%)

48K 12K 48K 12K 48K 12K

FCN 77.78% 75.6% 74.56% 74.14% 76.68% 78.20%

SVM 59.44% 78.4% 60.43% 76.83% 64.32% 81.49%

Decision Tree 68.89% 77.6% 67.90% 77.95% 70.58% 84.19%

KNN 92.67% 85.8% 90.13% 83.58% 95.93% 87.72%

LSTM 95.44% 93.3% 92.45% 91.17% 98.32% 94.89%

CLSTM 98.33% 95.7% 93.29% 95.70% 97.48% 96.54%

Proposed 99.80% 98.3% 96.78% 95.53% 98.18% 98.30%

  131 Page 10 of 15 Sådhanå          (2023) 48:131 



Randomly select 100 test samples and drawn the pre-

dicted life curves of baseline, 48 K and 12 K dateset are as

shown in figures 15, 16 and 17. The result is basically the

same as the final result obtained repeatedly in the previous

training. The results of the distribution graph are basically

kept within a small error range. Therefore, the proposed

CNN-BiLSTMbased bearing remaining life prediction

method is effective, and the bearing life can be highly

estimated. The predicted values are nearly identical at each

selected location. Data points representing good RUL per-

formance neural network.

Figures 18 and 19 show the results of RUL predictions

using 48 K and 12 K dataset. Related errors are also shown in

the chart. The technique satisfies the researched bearing

deterioration trend with minor error when comparing the

anticipated RUL trend to the actual situation. To display RUL

estimated from real bearing life, the indexed CNN-BiLSTM

supervised model is utilized as a prediction tool. Experiment

one uses CNN-BiLSTM depth features extracted from

BiLSTM to perform RUL prediction. There is less histogram

error in figure 18 when using the depth feature than when

using the traditional statistical feature, which is shown to be

closer to real-time. These comparisons show that CNN-

BiLSTM is more obvious to the degradation process and can

extract complete features. The initial trend in the forecast

indicates that the actual value was initially approximated.

Since BiLSTM uses randomly initialized neurons, as the

sample size decreases, the randomness of prediction is

inevitable. Repeat each model selection method 160 times to

eliminate the negative effects of randomness. Bearings for

offline training and testing were selected from a set of six.

However, at the end of the bearing life, the predicted value

will deviate from the actual value.

5. The effectiveness of CNN-BiLSTMclassifier

The present CNN approach and the rolling bearing problem

diagnosis method are compared and tested in the same

settings in order to verify the effect of the method sug-

gested in this study. Each approach was 300 times trained

during the trial. Each time, 20 sites from 1260 training

samples are chosen at random. That is, your network is

trained using 640 samples. Following each training session,

32 samples were picked at random from the 420 test sam-

ples for network testing, and the recognition rate was cal-

culated. The CNN-BiLSTM method has a greater and more

consistent recognition rate than the conventional CNN

method. This is due to the fact that standard CNNs are

Figure 11. Simulation Result of Proposed Accuracy of CWRU 48 K Dataset.

Figure 12. Confusion matrix of CWRU 48K dataset.
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Figure 13. Simulation Result of Proposed Accuracy of CWRU 12K Dataset.

Figure 14. Confusion matrix of CWRU 12K dataset.

Figure 15. Remaining useful life (RUL) results of baseline

dataset.

Figure 16. RUL results of 48 K dataset.

Figure 17. RUL results of 48 K dataset.
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constrained by fixed kernel shapes and lack adaptive

mechanisms for converting geometry into complex pictures

in real-time training.

By comparing them with LSTMs, CNN-BiLSTM gen-

erates random forests, SVMs, KNNs, FCNs, decision trees,

and a variety of auxiliary datasets. To demonstrate the

efficacy of CNN-BiLSTM as a classifier, the following

conclusions may be taken from the experimental findings.

(1) The auxiliary dataset enhances classification accuracy

and makes diagnosing missing label errors more efficient.

(2) For flaw detection, the proposed approach is very stable.

5.1 State-of-the-art techniques

For the CWRU 48 K dataset, table 2 demonstrates enhanced

SVM schemes, commonly used UNET and DBN schemes,

and signal processing and machine learning combinations like

CNN-SDAE, CNN-LSTM, and multi-scale CNN-LSTM. This

paper’s proposed CNN-BiLSTM technique outperforms cur-

rent methods in terms of diagnostic performance and offers a

lot of room for improvement.

For the CWRU 12 K dataset, table 3 offers improved

SVM approaches, commonly used DBN and SAE methods,

and signal processing and machine learning combinations

such as EEMD?AR?SVM, EMD?BP?LSFLA.The pro-

posed CNN ? BiLSTM method achieved highest accuracy

as 98.3% among all the conventional methods.

6. Conclusion

Bearing failure can be diagnosed using CNN-BiLSTM in

this article. Harmonics in the signal are first removed using

a Fourier basis, while the impact and noise are preserved.

Figure 18. (a) RUL results of 48 K dataset and (b) Loss Model.

Figure 19. (a) RUL results of 12K dataset and (b) Loss Model.
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DWT is used to analyze the signal with shock and noise

components to obtain a time-frequency map. Finally, the

10-layer CNN has a deformable convolutional kernel to

diagnose bearing errors. Experimental results show that the

vibration signal time frequency diagram after harmonic

removal shows that the vibration signal characteristics are

clear and can be used as a CNN input to achieve satisfac-

tory classification results. By adding a layer of hierarchy to

each neural network sample, this method improves the

CNN-BiLSTM method. These improvements improve the

model’s performance and achieve 99.95% of 48 K and

98.3% of 12 K accuracy. We have shown that CNN may

successfully increase roller-bearing failure recognition rate

and stability by comparing Random Forest, SVM, KNN,

FCN, Decision Tree, and LSTM on the same data set.

In the real world and industry, the implementation of the

proposed method has the following advantages over other

methods:

• Models are far too strong to keep track of massive

volumes of information. In comparison to other

literatures, you can create more accurate forecasts in

a shorter amount of time.

• Data preprocessing does not require any transforma-

tion, modification, feature extraction, or feature

selection because real-time vibration data can be

delivered immediately.

• In comparison with some solutions, computations are

cost effective, including preprocessing data and the

complex, profound architectures described in the

literature.

• The best accuracy achieved as 98.3% for 12 K and

99.8% for CWRU 48 K bearing data sets.

• According to the results, predicting RUL bearings

using the proposed method is more accurate than using

a traditional method.

6.1 Future work

The proposed CNN-BiLSTM neural network topology in

this paper does not solve the RNN parallel computing

problem fundamentally. Furthermore, several flaws are not

processed simultaneously. These are the positions that we

shall have in the future. Furthermore, several flaws are not

processed simultaneously. Because cloud-based data has a

simple logical structure and no grammatical logical rela-

tionship between data, this is the case. As a result, identi-

fying defects or extracting crucial data from nearby data

points is impossible.

Abbreviations
DL Deep learning

CNN Convolutional neural networks

CWRU Case Western Reserve University

ANN Artificial neural networks

PCA Principal component analysis

AI Artificial intelligence

FMLE Fusel maximum likelihood optimization

LSTM Long short term memory

BiLSTM Bidirectional LSTM

WHN Weighted hierarchical networks
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