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Abstract. Adaptive interface-Mesh un-Refinement (AiMuR) based Sharp-Interface Level-Set-Method (SI-

LSM) is proposed for both uniform and non-uniform Cartesian-Grid. The AiMuR involves interface location

based dynamic un-refinement (with merging of the four control volumes) of the Cartesian grid away from the

interface. The un-refinement is proposed for the interface solver only. A detailed numerical methodology is

presented for the AiMuR and ghost-fluid method based SI-LSM. Advantage of the novel as compared to the

traditional SI-LSM is demonstrated with a detailed qualitative as well as quantitative performance study,

involving the SI-LSMs on both coarse grid and fine grid, for three sufficiently different two-phase flow prob-

lems: dam break, breakup of a liquid jet and drop coalescence. A superior performance of AiMuR based SI-LSM

is demonstrated - the AiMuR on a coarser non-uniform grid (NUAiMuR
c ) is almost as accurate as the traditional SI-

LSM on a uniform fine grid (Uf ) and takes a computational time almost same as that by the traditional SI-LSM

on a uniform coarse grid (Uc). The AMuR is different from the existing Adaptive Mesh Refinement (AMR) as

the former involves only mesh un-refinement while the later involves both refinement and un-refinement of the

mesh. Moreover, the proposed computational development is significant since the present adaptive un-refine-

ment strategy is much simpler to implement as compared to that for the commonly used adaptive refinement

strategies. The proposed numerical development can be extended to various other multi-physics, multi-disci-

plinary and multi-scale problems involving interfaces.

Keywords. Level-set method; ghost fluid method; adaptive mesh; dam-break; jet break-up; drop coalescence.

1. Introduction

Computational Fluid Dynamics (CFD) is a theoretical-

method of scientific and engineering investigation, con-

cerned with the development and application of a virtual

video-camera like tool (a software) which is used for a

unified cause-and-effect based analysis of a fluid-dynamics

as well as heat and mass transfer problem; presented in a

recently published book on CFD by Sharma [1]. He pre-

sented an analogy between an unsteady simulation-based

fluid dynamics movies (for flow properties) generated by a

CFD software with that by a commonly used video camera.

The CFD for a multi-fluid flow is commonly called as

Computational Multi-Fluid Dynamics (CMFD) that

involves the application of the conservation laws to each of

the fluids in the multi-fluid system. A key difference

between CFD and CMFD is the lower dimensional inter-

face that separates different fluids (i.e., multi-component)

or different phases of the same matter (i.e., multi-phase). In

literature, the words multi-component and multi-phase are

often used interchangeably. In order to track/capture the

interface, various CMFD methodologies are available in the

literature. Reliability of any CMFD methodology depends

upon its ability to handle (a) the jump in thermo-physical

properties across the interface and (b) the severe changes in

the topology of the interface. Thus, a CMFD methodology

demands a high level of grid resolution - especially near

the interface - to achieve desired numerical accuracy.

However, there must be a trade-off between the selection of

a grid strategy (for better numerical accuracy) and the

associated computational cost/time.

Front Tracking Method (FTM) (Juric and Tryggvason

[2]) is a CMFD method that belongs to the class of

Lagrangian framework, wherein the interface is tracked

explicitly by the means of markers. However, it demands

some additional modeling in order to simulate the merger/

breakup of interfaces. Other CMFD methodologies like

Volume of Fluid (VOF) and level-set Method (LSM) fol-

low the Eulerian framework. In VOF and LSM, an addi-

tional scalar field is defined which helps in capturing
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interface implicitly. Volume of Fluid (Hirt and Nicholas

[3]) is one of the widely adopted multi-fluid methodologies

where an interface is defined by a scalar field based on a

volume fraction. Level-set method (Osher and Sethian [4],

Sussman et al. [5]) is another interface capturing technique

wherein an interface is represented by a level-set function

/ ¼ 0, where / is a scalar field defined as a signed normal

distance. Implementation of surface tension is very

straightforward in LSM as the geometrical parameters can

be obtained directly with the help of the normal distance

function field for /. Detailed literature survey on level-set

method based developments and applications can be found

in recent review-papers (Sharma [6], Gibou et al. [7]).

Broadly, there are two types of LSMs: Diffuse Interface

level-set Method (DI-LSM) [5] and ghost fluid method

based Sharp Interface Level Set method (SI-LSM) [8]. The

interfacial force due to surface tension is modeled as a

body-force in the DI-LSM while the SI-LSM considers the

force as the more realistic surface-force acting at the

interface (implemented as an interfacial boundary condition

for pressure-jump across the interface) [9]. The SI-LSM as

compared to the DI-LSM leads to a substantial reduction in

mass error [9] - the biggest disadvantage of a LSM. Det-

rixhe and Aslam [10] introduced an algorithm to obtain a

volume fraction field from a level-set function, or vice

versa, with the second-order accuracy for interface location

and first-order accuracy for interface normal. This algo-

rithm can be employed to combine the respective advan-

tages of VOF and LSM.

For most of the multi-fluid flow problems, the fluid-dy-

namics actions are concentrated in the vicinity of the lower

dimensional fluid-fluid interface. The interfacial physics

demands sufficiently large grid resolution near the interface

for an accurate numerical solution. An efficient grid strat-

egy in CMFD should generate large grid resolution near the

interfacial region as compared to far-away from the inter-

face. Based on this consideration, CMFD researchers have

worked on the development and implementation of com-

putationally effective grid strategies such as

stretched/clustered non-uniform grid, nested block grid, and

adaptive mesh.

Using the non-uniform grid for FTM, Thomas et al. [11]
studied thin-film flows during the impact of droplets in an

inclined channel. Furthermore, using the non-uniform grid,

VOF-based multi-fluid computations were presented by

several researchers: Richards et al. [12] studied a jet-

breakup problem, Kobayashi et al. [13] studied formation

of emulsion droplet in micro-channels, Yanke et al. [14]
studied an electroslag remelting problem, Koukouvinis

et al. [15] studied bubble collapse and expansion near the

free surface, Waters et al [16] studied breakup of turbulent

sprays, and Sultana et al. [17] incorporated phase change

process to study droplet dynamics. Application of the non-

uniform grid for LSM was presented by a few researchers:

Jarrahbashi and Sirignano [18] for simulation of liquid-in-

jection at high pressure, Montazeri & Ward [19] for

proposing a numerical methodology for generalized body

force, and Vilegas et al. [20, 21] for simulating leidenfrost

effect. Finally, application of the non-uniform grid for a

Coupled level-set and Volume of Fluid (CLSVOF) method

was presented by Ferrari et al. [22] for simulation of micro-

scale multi-phase flows.

Another class of efficient grid strategy based numerical

method is Adaptive Mesh Refinement (AMR) [23] which

involves dynamic refinement as well as un-refinement of

the grid that is based on certain predefined criteria. The

AMR based VOF method was presented by Popinet [24]

and AMR based LSM was presented by Sussman et al. [25]
for incompressible multi-phase flows. Whereas, for com-

pressible multi-phase flows, AMR based LSM was pre-

sented by Nourgaliev and Theofanous [26]. Implementation

of AMR can be done using Quadtree and Octree data

structures (Samet [27, 28]) for 2D and 3D problems,

respectively. Brun et al. [29] used Hash table instead of

Quadtree data structure with a local LSM [30, 31]. In VOF

framework, Theodorakakos and Bergeles [32] proposed

adaptive mesh refinement of the interfacial cartesian grid

by treating it as an unstructured mesh (i.e. a computational

cell can possess an arbitrary number of faces and neigh-

boring cells). Recently, Antepara et al. [33] studied the path
instability of rising bubbles at high Reynolds number by

integrating the conservative level-set method with their

earlier AMR framework [34] for single-phase turbulent

flows. Using separate grids for flow solver and interface

solver, Herrmann [35] proposed a Refined level-set Grid

(RLSG) Method with the purpose of simulating two-phase

flows with a high-density ratio. Using twice the number of

grid for the interface as compared to the grid for flow

solver, a dual-grid approach was proposed in our research

group for DI-LSM [36] that was recently extended for the

SI-LSM by Shaikh et al. [37].
Summary of the literature review, based on the various

types of grid structure and CMFD methodology, are pre-

sented in table 1. The table shows that although there is

some work on adaptive mesh refinement (AMR) for VOF

method and LSM, no such work is found for Adaptive

Mesh un-Refinement (AMuR) which is proposed in the

present work. Our AMuR can be considered as a variant of

the AMR, with only mesh un-refinement in the AMuR and

both refinement and un-refinement of the mesh in the AMR.

The motivation for the proposition of the AMuR as com-

pared to the already existing AMR is the ease in the

implementation of the AMuR since it allows the usage of

commonly used matrix as the structured data structure

(with in-built neighboring information) as compared to the

AMR that requires tree-based unstructured data structure.

Moreover, direct access to grid points (of coarse and fine

mesh) in the present AMuR allows the integration of

commonly employed domain decomposition techniques

[38] for multi-processor simulations.

As compared to the AMR presented in the table 1 which

uses adaptive refinement for both flow solver and interface
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solver, the AMuR proposed here considers adaptive un-

refinement (of the first level) only for the interface solver -

called as Adaptive interface Mesh un-Refinement (AiMuR).

Since the value of the level-set function (representing the

interface) is numerically relevant only up to certain dis-

tance away from the interface, the un-refinement is pro-

posed away from the interface as merging of the four

Cartesian control volumes for level-set function. The

motivation is to obtain almost the same accuracy, with a

substantial reduction in the computational time for the

solution of level-set equations based interface solver by the

AiMuR as compared to uniform/non-uniform Cartesian

grid. The objective of this work is to present a detailed

CMFD methodology for AiMuR based SI-LSM (section 3

and 4) (on both uniform as well as non-uniform Cartesian

grid) and performance study for the AiMuR (section 6) (as

compared to the results obtained without the un-refinement)

on three different two-fluid flow problems: dam break

simulation, breakup of a liquid jet and drop coalescence.

2. Ghost fluid method based sharp-interface level-
set method

In two-phase flows, the interface C is considered as sharp

curve separating the two disjoints X � X1 [ X2ð Þ as shown
in figure 1, with /[ 0 in fluid-1 and /\0 in fluid-2. For

the SI-LSM based simulation of two-phase flow, the

incompressible Navier-Stokes (continuity and momentum)

equations (for both the fluids) are solved for the spatial and

temporal variation of the flow field - with an interfacial

boundary condition, implemented using Ghost Fluid

method [8]. The unsteady flow field is used to obtain the

temporal variation of the interface.

2.1 Single fluid formulation

For obtaining a single velocity and pressure field for both

the fluids in a two-fluid flow, a single field formulation

based governing equations and interfacial boundary con-

ditions for SI-LSM are presented in a recent work from our

research group; separately for two-phase flows without [9]

and with [37] phase change. For two-phase flow without

phase change considered here, the various functions used in

a LSM and the formulation for sharp as well as diffuse

interface LSM are presented in-detail by Shaikh et al. [9];
thus, the formulation is presented concisely in separate

subsections below.

For the mathematical formulation, it is assumed that the

interface is massless with zero-thickness, and no-slip in

tangential velocity. Furthermore, the bulk fluids are

incompressible with a change in the constant fluid proper-

ties (density and viscosity) across the interface. The surface

tension coefficient is assumed to be constant, and its tan-

gential variation along the interface is neglected. The

effects of radiation, viscous dissipation, and energy con-

tribution due to interface stretching are neglected.

2.1.1 Governing equations for two-fluid flow
properties Non-dimensional form of the conservation

equations for the two-fluid flow (Navier-Stokes equations)

are given as

Volume-conservation (continuity) equation:

r � U ¼ 0; ð1Þ

Momentum-conservation equation:

oU

os
þr � UUð Þ ¼ �rP

vi
þ 1

viRe
r � 2giDð Þ � 1

Fr2
ĵ; ð2Þ

where rate of deformation tensor, D ¼ 0:5 rUþ rUð ÞT
� �

.

Furthermore, vi and gi are the non-dimensional density and

viscosity; calculated using a sharp Heaviside function [9].

Also ĵ is the unit vector for gravity (ĵ ¼ \0;�1[ ). Using

characteristic scales as lc for length and uc for velocity, the
non-dimensional spatial as well as temporal coordinates,

non-dimensional flow properties, and non-dimensional

governing parameters (Reynolds number Re and Froude

number Fr), the non-dimensional variables in the above

equations are defined as

Table 1. Summary of literature review and the present work

based on the mesh type/algorithm and computational multi-fluid

dynamics (CMFD) methodology.

Published Work

Mesh CMFD

Type/

Algorithm Methodology

Thomas et al. [11] Non-uniform grid VOF

Richards et al. [12]
Kobayashi et al. [13]
Yanke et al. [14]
Koukouvinis et al. [15]
Waters et al. [16]
Sultana et al. [17]
Jarrahbashi and Sirignano [18] LSM

Montazeri and Ward [19]

Vilegas et al. [20, 21]
Ferrai et al. [22] CLSVOF

Popinet [24] AMR VOF

Theodorakakos and Bergeles

[32]

Sussman et al. [25] LSM

Nourgaliev and Theofanous [26]

Antepara et al. [33]
Hermann [35] RLSG

Gada and Sharma [36] and

Shaikh et al. [37]
DGLSM

Present work AiMuR
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X ¼ x

lc
; U ¼ u

uc
; s ¼ tuc

lc
; P ¼ p

q1u2c
;

Re ¼ q1uclc
l1

and Fr ¼ ucffiffiffiffiffiffi
glc

p :

For the two-phase as compared to most of the single-phase

flow, note that the above momentum equations consist of

gravity force as the additional force while the force due to

surface tension which also appears for a two-phase flow is

incorporated in the SI-LSM as an interfacial boundary

condition during the solution of pressure Poisson equation

(obtained from the above volume conservation equation);

presented below. Also note that the force due to surface

tension is considered as a sharp surface force in the SI-LSM

[9] while it is modeled as a volumetric force term (within

the thickness of the diffused interface) in the above

momentum equation for the DI-LSM [36].

2.1.2 Governing equations for two-fluid
interface Physically, the two-fluid interface is advected

by the fluid-flow; obtained by solving the governing

equations in the previous subsection. Mathematically, in a

LSM, the unsteady interface advection is represented by an

advection equation for a signed normal distance function

representing the interface, i.e., level-set function /.
However, after the advection, the interface representing /
no more remains as a normal distance function and another

equation called as reinitialization equations is solved using

the pseudo transient approach. The reinitialization is

essential for an accurate calculation of surface tension,

jump terms, and thermophysical properties. Thus, the

governing equations for the two-fluid interface are given as

Level-set advection (Mass-Conservation) equation:

o/
os

þ Ua � r/ ¼ 0; ð3Þ

where Ua is the advection velocity which is equal to the

bulk-velocity U (obtained from the solution of the above

volume and momentum conservation equations). The above

equation was derived from a mass conservation equation by

Gada and Sharma [39].

Reinitialization equation:

o/
oss

þ S /oð Þn̂ � r/� S /oð Þ ¼ 0; ð4Þ

where ss, S /oð Þ, and n̂ represent the pseudo time step, sign

function, and normal unit vector, respectively. After getting

the converged solution of Eq. (4), level-set field will again

become signed normal distance with respect to zero level-

set value. Here, partial differential equation based reini-

tialization (Sussman et al. [5]) is used.

2.1.3 Interfacial boundary conditions In

computational fluid dynamics (CFD), the unsteady

velocity field is obtained from the momentum

conservation equation (Eq. (2)) and the pressure field is

left with the volume conservation equation (Eq. (1)) which

does not consist of any pressure term [1]; thus, a predictor-

corrector method is used to convert the volume

Figure 1. (a) A representative computational domain along with two-fluid interface and non-uniform grid distribution and of different

types of pressure grid points for the two-fluid sub-domains (X1 and X2). Mixing of pressure grid point (from another fluid sub-domain)

during the solution of pressure Poisson equation for interfacial pressure grid points is shown for X1 in (b) and for X2 in (c).
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conservation equation into a pressure Poisson equation in a

pressure projection method. While solving the pressure

Poisson equation and the momentum equation for a two-

phase flow in a single field formulation based SI-LSM,

interfacial boundary conditions along with the boundary

conditions for the flow properties at the boundary of the

domain are required. The interfacial BCs involve jump

boundary conditions for pressure and velocity at the

interface C; given as

P½ �C¼
2

Re
g½ �n̂ � rU � n̂ð Þ � r � n̂

We

½U�C ¼0

ð5Þ

where the above equation for pressure is obtained by

applying Newton’s II law of motion at the interface C and a

detailed derivation of the pressure-jump BC was presented

by Shaikh et al. [9]. The interfacial force balance considers
the force due to surface tension as the sharp surface-force
which is balanced with both pressure force and normal

viscous force in viscous flow across the interface [40]. The

Weber number We in the above jump boundary condition

for pressure is defined as We ¼ q1lcu
2
c=c, where c is the

surface tension coefficient.

The interfacial boundary condition across the interface is

shown in figure 1. As shown in the figure, for pressure, the

jump condition notation across the interface is expressed as

½��C ¼ �ð Þ1;C� �ð Þ2;C; �ð Þ1;C and �ð Þ2;C are the value of the

flow properties at the interface C from the heavier and

lighter phase in the X1 and X2 region, respectively.

3. Adaptive interface-mesh un-refinement

For the staggered grid used here, the grid points for

pressure, velocity and level-set function are shown in fig-

ure 2. For the implementation of the interface-mesh un-

refinement, all level set grid points are tagged as a parent or

a child grid point. All parent level-set grid points are further

tagged as interfacial or interior grid points. Finally, each

parent and child grid point is tagged as a real or ghost grid

point. Here, ghost grid points are those grid points on which

the level-set equations are not solved and only flow equa-

tions are solved. The various types of level-set grid points

are shown in figure 3. The figure also shows an interface

representing the two-fluid. A representative 2D Cartesian

grid is shown in figure 3(a) as a uniform mesh for solving

the Navier-Stokes equations (Eqs. (1) and (2)) along with

the interfacial boundary conditions (Eq. (5)); and fig-

ure 3(b) as the adaptive unrefined interface mesh for solv-

ing the level-set equations (Eqs. (3) and (4)). The solution

of the respective set of equations results in unsteady flow

properties (U,V, and P) and level-set function /. Fig-

ure 3(b) shows a merging of the four finer control volumes

(CVs) in figure 3(a) to a coarser control volume, for those

CVs which are slightly away from the interface. This

results in the un-refinement of the interface mesh which is

away from the interface and the un-refinement is time-wise

adaptive to the position of the interface which evolves with

time - called here as Adaptive interface-Mesh un-Refine-

ment (AiMuR).

The implementation and algorithmic details for the

adaptive un-refinement of the interface mesh (figure 3(b))
- from the fixed flow-properties mesh (figure 3(a)) - are

presented with the help of figure 3(c) and 3(d). Fig-

ure 3(c) shows a tagging of each level-set grid point as

parent or child, interfacial or interior, and real or ghost grid

points; and figure 3(d) shows only real (not the ghost) grid

points that lead to the AiMuR. The three types of tagging

for each level-set function grid point are as follows:

1. Tag as parent or child grid point: parent if both the

running indices i and j are even; otherwise, child.

2. Tag parent grid points as interfacial or interior: all
parent level-set grid points with at least one adjoining

neighbor (east/west/north/south) parent level-set grid point

in another fluid are tagged as an interfacial parent grid

point. Identification of the interfacial and non-interfacial

parent grid points are done by considering change in the

sign of level-set function - interfacial parent grid point if

the product of level-set function at parent grid point /P and

at any of the adjoining parent neighbor /NB is negative

(/P/NB¼W ;E;S;N\0); otherwise, consider the grid point as

interior parent grid point.

3. Tag as ghost or real: interior as ghost and interfacial

as real, for the parent grid points; whereas, for the child grid

points, the adjoining neighbor (north, south, east, and west)

child grid points of a ghost interior parent grid point are

Figure 2. A representative 2D Cartesian grid along with the

staggered grid points for flow-properties and level-set function /
in a two-fluid problem.
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considered as ghost and all the other child nodes in the

domain are considered as real. Note that the common

adjoining child neighbors of ghost interior parent grid

points and real interfacial parent grid points are considered

as real child grid points.

Based on the proposed definition of parent and child

level-set grid points and interface configuration shown in

figure 3(c), level-set function grid points at the intersection

of the horizontal strips and vertical strips (marked in the

figure) are the parent level-set grid points. This classifica-

tion of parent and child level-set grid points into real and

ghost grid points generates level-set grid point distribution

as finer in the interfacial region and coarser in the non-

interfacial region. Implementing the tagging procedure

(a) (b)

(c) (d)

Figure 3. A representative Cartesian grid for a two-fluid system with an interface: (a, c) initial uniform grid at s ¼ 0 for the interface

and at all time instants for the flow and (b, d) dynamically unrefined grid. Here, (c) and (d) show the various types of grid points

considered to implement the instantaneous interface based dynamic mesh un-refinement. The unrefined interface grid in (d) is obtained
from the uniform grid for the flow-properties in (c) after eliminating ghost-parent and ghost-child level-set grid points. Note that a narrow

band of the fine grid (at the interface) is shown in (b) for representative purpose only and a much wider band is used in the present

method for accurate computations.
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(discussed above) for level-set grid point distribution

shown in figure 3(c) and then eliminating the ghost parent

and child nodes results in real grid points distribution as

shown in figure 3(d).
The above-discussed implementation results in a single

level adaptive interface mesh un-refinement. However, the

present unstructured adaptive grid-like distribution is

implicitly achieved by the un-refinement using tagging and

without involving any tree data structure. Once the un-re-

finement is done, the level-set grid will have the same

resolution as that of flow grid in the interfacial region while

the level-set grid away from interface will be coarser by the

single-level. Limiting the refined grid close to the interface

is justified since the value of the level-set function / close

to the physically relevant interface / ¼ 0 is only numeri-

cally relevant - / values close to the interface are only

involved in the calculation of interfacial parameters such as

fluid properties, curvature, and jump in the flow properties.

Although the above implementation details for AiMuR

are presented in figure 3 for one interfacial cell on each side

of the interface, note that every interfacial parent level-set

grid point and its three neighbor parent level-set grid points

in all the four directions (east/west/north/south) are con-

sidered in the present work for a more accurate CMFD

computations. Thus, the wider interfacial band is consid-

ered in the proposed AiMuR since the one interfacial cell-

based AiMuR shown in figure 3(b) leads to an inaccurate

solution. Unlike AMR [24], the present AiMuR does not

need to take into account the flow field while performing

the un-refinement operation since we are already using a

finer fixed grid for flow variables. Moreover, as commonly

used in AMR [24, 32] and used here for a more efficient

AiMuR, the adaption of the grid is done after certain

number of time steps (instead of after every Ds); 50Ds,
150Ds, and 15Ds are considered for the dam break simu-

lation, liquid jet breakup, and droplet coalescence problems

(presented below), respectively. These time-periods of the

unrefinment are obtained after an unrefinment time-period

independence study, presented below in subsection 7.1.

The periodic grid un-refinement justifies the need for the

wider interfacial band of the finer grid. Further, it is ensured

that the interface does not enter into unrefined region dur-

ing the above mentioned time interval of the periodic un-

refinement for the three problems considered in the present

work.

4. Numerical methodology

4.1 Solution of volume and momentum
conservation equations

Numerical solution of volume and momentum conservation

equations is obtained by the pressure projection method in

the present study. Here, semi-implicit formulation is

adopted wherein the volume conservation equation is

treated implicitly and all the terms of the momentum con-

servation equation except advection term are treated

implicitly. Temporal discretization of the corresponding

equations (Eqs. (1) and (2)) are given as

r � Unþ1
P ¼ 0; ð6Þ

Unþ1
P � Un

P

Ds
þr � ðUn

PU
n
PÞ

¼ �rPnþ1

vni
þ 1

vni Re
r � ð2gniDnþ1Þ � 1

Fr2
ĵ:

ð7Þ

4.1.1 Semi-implicit pressure projection method In

the pressure projection method, velocity field is predicted

by neglecting the pressure term in Eq. (7); given as

U�
P � Un

P

Ds
þr � ðUn

PU
n
PÞ ¼

1

vni Re
r � ð2gniD�Þ � 1

Fr2
ĵ: ð8Þ

Using the predicted velocity field U�, new time level

pressure field is obtained by solving a pressure Poisson

equation (obtained from Eq. (6) using a predictor-corrector

method); given as

r � rPnþ1

vni

� �
¼ 1

Ds
r � U�: ð9Þ

Finally, by subtracting Eq. (8) from Eq. (7) and neglecting

the velocity correction in the diffusion terms, continuity

satisfying velocity field at the new time level is obtained as

Unþ1
P ¼ U�

P �
rPnþ1

vni
Ds: ð10Þ

While solving the pressure Poisson equation (Eq. (9)), an

interfacial jump boundary condition for pressure is used;

presented in the next subsection.

4.1.2 Implementation of jump boundary condition
for pressure In a two-fluid system, there will be a

lower dimensional mass-less interface separating different

fluids. As shown in figure 1(a), for each fluid, there will be

two types of control volumes: (1) interfacial and (2)

interior. While solving pressure Poisson equation (Eq. (9))

for interfacial control volumes, as depicted by the

computational stencil in figure 1(b)-(c), the resulting

linear algebraic equation involves pressure from the other

fluid that leads to a poor approximation of pressure gradient

term across the interface. This was demonstrated by Liu

et al. [41] using order-of-magnitude analysis.

The poor approximation is avoided by using a pressure

jump as an interfacial boundary condition [41] while

solving the pressure Poisson equation (Eq. (9)). The inter-

facial pressure boundary condition is obtained by incorpo-

rating force balance at the interface [9]; given as

ðp1 � p2Þ � ððn̂ � rÞ1 � ðn̂ � rÞ2Þ � n̂ ¼ �cr � n̂, here, p is

pressure, r is viscous stress tensor, c is surface tension
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coefficient and n̂ is a normal unit vector; and subscripts 1

and 2 denote fluid-1 and fluid-2, respectively. This force

balance at the interface takes care of the discontinuity in

pressure across the two-fluid interface. Here, a finite vol-

ume method based generalized algebraic formulation of

pressure Poisson equation (along with the interfacial jump

boundary condition for pressure), proposed by Shaikh et al.
[9], is used. The generalized formulation involves an

additional source term for the interfacial control volumes

that is zero for the interior control volumes for pressure.

4.1.3 Special treatment for a non-uniform
grid: Although Section 3 and figure 3 presents AiMuR

on a uniform grid, the AiMuR and SI-LSM based in-house

code is developed in the present work for both uniform and

non-uniform Cartesian-grid. In this section, additional

numerical details for non-uniform as compared to a

uniform grid is presented. The essential difference in the

numerical methodology is due to the staggered grid that

results in a non-coinciding or an offset between the centroid

of a velocity control volume and the associated face-center

of the pressure control volume. This offset is shown in

figure 4 for the east face of the non-uniform pressure

control volume along with no such offset for the uniform

grid.

The offset for the non-uniform grid results in a distance-

based linear interpolations to compute the predicted

velocities at the various face centers (U�
e , U

�
w, V

�
n , and V�

s )

of the pressure control volume from the predicted velocities

(Eq. (8)) at the centroid of the adjoining velocity control

volumes (U�
P, U

�
W , V

�
P, and V�

S ); thereafter, the U�
e , U

�
w, V

�
n ,

and V�
s are used to calculate the predicted mass source on

the right-hand side of the pressure Poisson equation

(Eq. (9)). Furthermore, after obtaining the correct velocity

field Unþ1
P from Eq. (10), the cell-center velocities are lin-

early interpolated to compute the velocity at the face-center

of the pressure control volumes (Unþ1
e , Unþ1

w , Vnþ1
n , and

Vnþ1
s ). Finally, the face-center velocity are interpolated to

obtain velocity at the corners of the pressure control vol-

umes that is used to advect the level-set function field.

4.2 Solution of level-set advection (mass-
conservation) equations

The numerical methodology for the solution of the Navier-

Stokes equations (presented above) uses a physical law

based finite volume method based algebraic formulation

[1], while finite difference method is used for the dis-

cretization of the level-set equations (Eq. (3) and (4)).

Spatial (advection) term in the level-set equations is dis-

cretized using a III-order accurate Essentially Non-Oscil-

latory (ENO) scheme (Jiang and Peng [42]). The temporal

discretization of the level-set advection equation is done

using a III-order accurate Runge-Kutta scheme (to maintain

consistency with the III-order discretization of the advec-

tion equation) and using a I-order accurate forward differ-

ence for the reinitialization equation. Pseudo time step Dss
for the temporal term in the reinitialization equation is

taken as 0.1 times of minimum grid size.

Although the formulation for the ENO scheme corre-

sponding to a non-uniform grid is available for the finite

volume method in literature [43], the formulation for finite

difference method is presented here with the help of fig-

ure 5. The figure shows a non-uniform spacing based 7-

point main-stencil, for implementing the ENO scheme on a

non-uniform grid. The figure also shows that the main

stencil is subdivided into two 6-point stencil: left and right

biased stencils (LBS and RBS). These left/right stencils are

further subdivided into three 4-point substencils: left sub-

stencil as LBSS1, LBSS2, and LBSS3; and right substencil

as RBSS1, RBSS2, and RBSS3. Fitting a III-order

Lagrange interpolation polynomial in each of these subs-

tencils results in a finite difference representation of the

first derivative in the level-set advection equation - pre-

sented below for /X (representing o/=oX) at the various

LBSS as

/LBSS1
X;i ¼ /i�3

X2
i � XiXi�1 � XiXi�2 þ Xi�1Xi�2

Xi�3 � Xið Þ Xi�3 � Xi�2ð Þ Xi�3 � Xi�1ð Þ

� �

þ /i�2

X2
i � XiXi�1 � XiXi�3 þ Xi�1Xi�3

Xi�2 � Xi�3ð Þ Xi�2 � Xi�1ð Þ Xi�2 � Xið Þ

� �

þ /i�1

X2
i � XiXi�2 � XiXi�3 þ Xi�2Xi�3

Xi�1 � Xi�3ð Þ Xi�1 � Xi�2ð Þ Xi�1 � Xið Þ

� �

þ /i

1

Xi � Xi�3ð Þ þ
1

Xi � Xi�2ð Þ þ
1

Xi � Xi�1ð Þ

� �
;

ð11Þ
Figure 4. Offset between the centroid of velocity control volume

and the face of pressure control volume.
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/LBSS2
X;i ¼ /i�2

X2
i � XiXi�1 � XiXiþ1 þ Xi�1Xiþ1

Xi�2 � Xi�1ð Þ Xi�2 � Xið Þ Xi�2 � Xiþ1ð Þ

� �

þ /i�1

X2
i � XiXi�2 � XiXiþ1 þ Xi�2Xiþ1

Xi�1 � Xi�2ð Þ Xi�1 � Xið Þ Xi�1 � Xiþ1ð Þ

� �

þ /iþ1

X2
i � XiXi�1 � XiXi�2 þ Xi�1Xi�2

Xiþ1 � Xið Þ Xiþ1 � Xi�2ð Þ Xiþ1 � Xi�1ð Þ

� �

þ /i

1

Xi � Xi�2ð Þ þ
1

Xi � Xi�1ð Þ þ
1

Xi � Xiþ1ð Þ

� �
;

ð12Þ

/LBSS3
X;i ¼ /i�1

X2
i � XiXiþ1 � XiXiþ2 þ Xiþ1Xiþ2

Xi�1 � Xið Þ Xi�1 � Xiþ1ð Þ Xi�1 � Xiþ2ð Þ

� �

þ /iþ1

X2
i � XiXi�1 � XiXiþ2 þ Xi�1Xiþ2

Xiþ1 � Xi�1ð Þ Xiþ1 � Xið Þ Xiþ1 � Xiþ2ð Þ

� �

þ /iþ2

X2
i � XiXi�1 � XiXiþ1 þ Xi�1Xiþ1

Xiþ2 � Xið Þ Xiþ2 � Xiþ1ð Þ Xiþ2 � Xi�1ð Þ

� �

þ /i

1

Xi � Xi�1ð Þ þ
1

Xi � Xiþ1ð Þ þ
1

Xi � Xiþ2ð Þ

� �
;

ð13Þ

From the above values, the /LBSS
X;i is chosen as

/LBSS
X;i

¼
/LBSS1
X;i if j B j \ j C j & j A� B j \ j B� C j

/LBSS3
X;i if j B j [ j C j & j B� C j [ j C � D j

/LBSS2
X;i otherwise;

8
>><

>>:

ð14Þ

where

A¼/i�3�/i�2

Xi�2�Xi�3

þ/i�1�/i�2

Xi�1�Xi�2

; B¼/i�2�/i�1

Xi�1�Xi�2

þ/i�/i�1

Xi�Xi�1

C¼/i�1�/i

Xi�Xi�1

þ/iþ1�/i

Xiþ1�Xi
; andD¼/i�/iþ1

Xiþ1�Xi
þ/iþ2�/iþ1

Xiþ2�Xiþ1

:

Similarly, the expression for /RBSS
X;i can be obtained and the

ENO scheme based discretized form of /X;i in the level set

advection equation (Eq. (3)) is given as

U
o/
oX

¼ maxðU; 0Þ/LBSS
X;i þminðU; 0Þ/RBSS

X;i : ð15Þ

For the AiMuR on a uniform or non-uniform Cartesian-

grid, now the implementation details for the above ENO

scheme are discussed. For the AiMuR, ghost grid points are

considered in the stencil wherever needed while applying

the ENO scheme for the real grid points; and are not needed

for the interfacial boundary condition since we ensured a

sufficiently wider band of the refined grid near the inter-

face. This is done to ensure that the weights of neighboring

/0s in Eq. (11), (12) and (13) are computed only once (after

the generation of uniform or non-uniform Cartesian-grid)

and do not change with time - they are not dynamic.

Values of the level-set function at the ghost grid points are

computed by linear interpolation of the adjoining real grid

points. This is shown in figure 6, where the arrows show

the neighboring real child point values involved in the

interpolation. In addition to the computation of ENO

Figure 5. Stencil arrangement for 3rd order accurate Essentially

Non-Oscillatory (ENO) scheme for non-uniformly distributed grid

points.

Figure 6. Interpolation of level-set function at ghost grid points

using real level-set function grid points.
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scheme, these interpolated level set function values at ghost

grid points are utilized when ghost level set grid points turn

into real level-set grid points.

5. Solution algorithm

1. Generate initial configuration of fluid-fluid interface for

all the level-set grid points. Initialize pressure and

velocity as zero. Calculate the weights of ENO

scheme based on the distribution of level-set grid points.

2. Identify parent as well as child level-set grid points (see

section 3). Further, bifurcate them into real and ghost

level-set grid points.

3. Before computing fluxes, calculate the thermo-physical

properties a ¼ fv; gg using a sharp Heaviside function

[9]. For an interfacial cell I, harmonic mean of the

thermo-physical properties is calculated as

j/I j þ j/NBj
aI�NB

¼ j/I j
aI

þ j/NBj
aNB

;

where the superscript NB denotes a neighboring cell on

the other side of the interface.

4. Calculate the advection and diffusion flux (in Eq. (8))

considering the continuity in velocity field and in its

gradient at the fluid-fluid interface. Predict the velocity

U� at the new time level by solving Eq. (8). Here, III-

order Lin-Lin total variation diminishing (TVD) [44]

scheme is employed for discretizing the explicit advec-

tion term while the diffusion term is discretized using a

central difference scheme.

5. Calculate the mass-source (RHS of Eq. (9)) by linearly

interpolating predicted velocity U� at the face-center of

the pressure control volume.

6. Obtain the converged solution of the pressure Poisson

equation (Eq. (9)) using the jump condition by Ghost

Fluid Method (GFM).

7. Calculate the corrected velocity at the new time step

(Eq. (10)). Linearly interpolate the corrected velocity at

the face-center of the pressure control volume.

8. Obtain the level-set advection velocity Ua at the real

level-set grid points using a linear interpolation of the

velocity at the face-center of the pressure control

volume. Advect the level set function field using

Eq. (3) for real level-set grid points using the method-

ology explained in subsection 4.2.

9. Interpolate the advected level-set function field at ghost

level-set grid points from the real level-set grid points

(see figure 6).

10. Set the level-set field as normal signed distance function

by solving level-set reinitialization equation (Eq. 4) for

real level-set grid points.

11. Repeat step 9.

12. Go to step 2 until the stopping criterion is met.

6. Validation and qualitative performance study
of AiMuR based SI-LSM

In order to present the validation of the proposed numerical

methodology and performance study, three different types

of two-phase flow problems are considered: Dam-Break
(DB), Jet-Breakup (JB) and Drop-Coalescence (DC). The
dominant force is gravity, inertia and capillary force in the

DB, JB and DC simulations, respectively. The DB simu-

lation does not involve breakup of the interface, while the

JB and DC problems involve more rigorous interface

dynamics with breakup of the interface that leads to a

droplet formation. Computational setup corresponding to

the three problems are shown in figure 7. A performance

study of the proposed AiMuR based SI-LSM is presented

here by considering the adaptive un-refinement of the

interface mesh on both uniform and non-uniform grid.

However, since the result on a non-uniform as compared to

the uniform grid is more accurate, the AiMuR on a non-

uniform grid is considered on a coarser grid while the

AiMuR on a uniform grid is presented on a finer grid; the

respective AiMuR based SI-LSM is represented here as

NUAiMuR
c and UAiMuR

f . Considering our in-house codes for

the novel AiMuR based SI-LSM as well as the traditional

SI-LSM, the scope of the present performance study is to

compare the relative accuracy of the novel and traditional

SI-LSMs (on uniform and non-uniform grid), with the

accuracy obtained by comparing with the published

experimental and numerical results for the DB, JB and DC

problems. The relative accuracy is presented qualitatively

in this section and quantitatively in the next section. The

resulting five different grid types of SI-LSM are presented

in table 2 along with the associated grid size considered in

the present simulations. Note that grid size mentioned in

table 2 for NUAiMuR
c and UAiMuR

f is without performing un-

refinement for the level-set function.

For the five grid types (Uc, NUc, NU
AiMuR
c , UAiMuR

f , and

Uf ), the grid resolution of uniform coarse grid Uc (table 2)

is intentionally chosen such that, numerical result will not

be accurate enough while the finer grid size Uf is kept fine

enough to produce reliable numerical results. Furthermore,

non-uniform coarse grid (NUc) is chosen such that it

comprises of same number of control volumes as that of

uniform coarse grid (Uc). However, grid stretching in NUc

is done such that the grid resolution in interfacial regions is

comparable to uniform fine grid (Uf ). For grid case

NUAiMuR
c , control volume distribution for pressure and

velocity is same as that for NUc. Nevertheless, mesh un-

refinement strategy is incorporated in NUAiMuR
c , which

creates level-set resolution equivalent to NUc in interfacial

region and coarser resolution in non-interfacial regions.

Similar discussion is also applicable for grid types Uf and

UAiMuR
f . Similar to NUc, both NUAiMuR

c and UAiMuR
f possess

grid resolution equivalent to that of Uf near the interface.
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Based on the characteristic of the grid types selected in

present work, one can predict that computational time for

Uf will be maximum among all, which will get reduced

after applying mesh un-refinement (UAiMuR
f ). Computational

time associated with Uc and NUc should be nearly the same,

as they have same number of control volumes. However, it

largely depends on the trend of iterations while solving

pressure Poisson equation and also up to some extent on

additional computational operations required for NUc as

compared to Uc. Computational time for NUAiMuR
c should be

less than that required by NUc. Difference in computational

time for NUAiMuR
c (UAiMuR

f ) and NUc (Uf ) will depend on the

number of unrefined level-set grid points (which implicitly

depends on how the interface evolves with time) in

NUAiMuR
c (UAiMuR

f ). The hypothesised computational time

for the various grid types are compared quantitatively in the

next section.

6.1 Dam break simulation

Computational setup for this problem in figure 7(a) shows a
water column that is allowed to collapse under the effect of

gravity. For the non-uniform Cartesian grid generation, a

grid transformation function [46] is used that is given as

Figure 7. Computational setup for (a) Dam break simulation (b) Breakup of a liquid jet and (c) Coalescence of a stagnant ethanol drop

at air-ethanol interface.

Table 2. Grid size for the five different grid types: uniform

coarse grid (Uc), non-uniform coarse grid (NUc), non-uniform

coarse grid with AiMuR (NUAiMuR
c ), uniform fine grid with AiMuR

(UAiMuR
f ) and uniform fine grid (Uf ) corresponding to the dam

break, jet breakup and droplet coalescence problem.

DB JB DC

Uc, NUc, and NUAiMuR
c

100�50 35�200 100�200

Uf and UAiMuR
f

144�80 50�300 200�400
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X=Y ¼ Lk 1þ sinh b n� Að Þð Þ
sinh bAð Þ

� �
; ð16Þ

where,

A ¼
ln

1þk eb�1ð Þ
1þk e�b�1ð Þ

� �

2b
:

The value of different tuning parameters for non-uniform

distribution in X and Y directions are bX ¼ 2:5, bY ¼ 3:1,
kX ¼ 0:466, and kY ¼ 0:066. Resulting non-uniform grid

distribution is shown in figure 8(a1) for NUc and fig-

ure 8(a2) for NUAiMuR
c ; and figure 8(a3) shows adaptive

unrefined uniform grid UAiMuR
f . Note that the adaptive

unrefined grid in figure 8(a2; a3) corresponds to s ¼ 1:5.
For instantaneous interface position, figure 9(a)-(e) shows
excellent agreement between the present results on the

various types of SI-LSM on uniform/non-uniform grids

(with or without interface mesh un-refinement) except the

present result on Uc. This is also demonstrated for the

leading edge distance in figure 9(f) by comparing with a

benchmark experimental results [45]. The validation study

for the dam break simulation shows that our implementa-

tion is equipped to accurately resolve the contact line

motion on surfaces with contact angle of 90�. For the other
surfaces, level-set method-based contact line modeling [47]

requires the interfacial velocity and instantaneous contact

angle, which are readily accessible in our AiMuR

framework.

6.2 Breakup of a liquid jet

Computational setup for this problem is shown in fig-

ure 7(b), where a lighter liquid is injected (against the

gravity) in the heavier liquid with a constant velocity 0.15

m/s. For the present problem, as long as the surface tension

force dominates over the buoyancy force, the jet will keep

on rising. Once buoyancy force exceeds the surface tension

force, a neck forms and a droplet gets detached from the jet.

The detached droplet continues to rise in the heavier stag-

nant fluid and the jet will regain its original shape.

Number of control volumes employed for the present jet

breakup problem is presented in table 2. For NUc and

NUAiMuR
c , gird clustering is implemented in both radial and

axial direction, that results in almost same grid resolution to

that for the fine uniform grid (Uf ) in the breakup region.

Distribution of level set function grid points after

Figure 8. Interface (level-set) mesh for (a) dam break simulation, (b) liquid jet-breakup, and (c) drop coalescence problems. The

interface mesh shown in ða1Þ, ða2; b; cÞ, and ða3Þ is for NUc, NU
AiMuR
c , and UAiMuR

f , respectively. The adaptive unrefined instantaneous

interface mesh is at s ¼ 1:5 for (a2) and (a3), s ¼ 150 for (b), and s ¼ 0:55 for (c).
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performing un-refinement on a non-uniform grid is shown

in figure 8(b) at a time instance s ¼ 150. Results for the

interface dynamics corresponding to breakup of two dro-

plets from the inlet jet are shown in figure 10. The

instantaneous interface at s ¼ 80 and s ¼ 145 in fig-

ure 10(a)-(d) shows an excellent agreement between the

present results on a coarse non-uniform grid (with and

without un-refinement) as compared to the uniform grid.

Similar agreement between the results on the various grid

types and also with the results reported in Lakdawala et al
[48] is shown in figure 10(e), for the temporal variation of

jet length Lj; except for the result on uniform coarse grid

Uc, which experiences late breakup of the jet as the inter-

play between surface tension and buoyancy force is not

captured well because of insufficient grid cells in radial and

axial direction.

6.3 Coalescence of an Ethanol droplet

Computational set-up for the coalescence dynamics of an

ethanol droplet of diameter 1.07 mm, surrounded by air,

over a pool of ethanol is shown in figure 7(c)); and the

unrefined non-uniform interface-mesh at s ¼ 0:55 is shown

in figure 8(c). Except for the result on uniform coarse grid

Uc, we found an excellent agreement between the instan-

taneous interface obtained on the various grid types and the

experimental results reported by Blanchette and Bigioni

[49] (figure not shown).

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

(f)

Figure 9. Dam break simulation at Re ¼ 3� 106 and Fr ¼ 1.

For the present SI-LSM on the various grid types (table 2),

(a� e) instantaneous interface position at three different time

instances and (f) comparison of the present numerical and the

published experimental [45] result. The stair-stepped lines for

NUAiMuR
c and UAiMuR

f represent the interfacial region (in between

the lines) outside which the level-set grid points are dynamically

unrefined.

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1)

(e)

(d2)

Figure 10. For jet breakup study at Re ¼ 396, We ¼ 1:27, and
Fr ¼ 5:44, comparison of instantaneous interface obtained from

Uc, NUc, NU
AiMuR
c , and UAiMuR

f (left) with that obtained from Uf

(right) after ða1 � d1Þ first jet breakup and ða2 � d2Þ second jet

breakup at time instances s ¼ 80 and 145, respectively. Temporal

variation of jet length Lj obtained in the present work is plotted in

(e) and compared with the published numerical results [48].
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Figure 11. For coalescence dynamics of an ethanol droplet in air, comparison of temporal variation of instantaneous interface obtained

for Uc, NUc, NU
AiMuR
c , and UAiMuR

f (left) with that obtained for Uf (right).
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As compared to the time-duration just before the first

pinch-off, figure 11 shows the temporal variation of the

instantaneous interface for a longer time-duration corre-

sponding to the second pinch-off of the secondary droplet.

The figure shows that our result for the non-uniform grid

with or without un-refinement agrees very well with the

result on the finer uniform grid. However, the present result

on a coarser uniform grid shows a slight delay in the first

pinch-off of the primary droplet and thereafter it does not

show the second pinch-off that is seen in the present results

on the other grid types.

7. un-refinement time-period independence
and order-of-accuracy studies

7.1 un-refinement time-period independence study

For the present AiMuR, the periodic un-refinement of the

interface mesh is done after certain number n of the time-

step Dt that results in the time-period for the un-refinement

as nDt . Thus n is a numerical parameter for the present

method that is problem dependent and determined here

from an un-refinement time-period independence study;

similar to the grid-independence and time-step indepen-

dence studies commonly used in CFD. The time-period

independence study is presented in figure 12(a), for the

uniform grid based AiMuR and the droplet-coalascence

problem. The figure shows an asymptotic decrease in the

error with increasing n, with almost no change in the error

after n ¼ 15. Thus, n ¼ 15, i.e., the periodic-un-refinement

after every 15th time-step, is chosen for the AiMuR based

simulation of the coalascence of an ethanol droplet in air.

The figure also shows an almost 20% increase in the

computational time as n decreases from 120 to 15.

The un-refinement after certain number of time-steps,

instead of after every time-step, is due to the fact that the

present AiMuR involves a wider band of finer mesh near

the interface. The fine-mesh region, along with the interface

extreme positions, during the time-interval of the un-re-

finement is shown in figure 12(b1)-(b5) for various values

of n. For the cases with n ¼ 120 and 60, the figure shows

(a)

(b1) (b2) (b3) (b4) (b5)

Figure 12. For the droplet coalescence problem, un-refinement time-period independence study of the present AiMuR on a uniform

200� 400 grid: (a) variation of % error and % increase in computational-time with decreasing number (n) of the time-step Dt after which
the interface-mesh is periodically-unrefined; and (b1)-(b5) instantaneous interface obtained for the different values of n. The % error is

for the first pinch-off time reported by Blanchette and Bigioni [49]. For (b1)-(b5), the region in-between the red-curves corresponds to the
fine-mesh region, with unrefined coarser-mesh outside this region; and the dashed and solid black-lines represent the interface at a time-

instant corresponding to the beginning (s1) and end (s2) of the associated un-refinement time-period, respectively.
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that the interface moves outside the fine-mesh region during

the time period nDt of the un-refinement; thus resulting in

the larger error as seen in figure 12(a). The un-refinement

time-period independence study ensures that the fluid-fluid

interface stays within the fine-mesh region for an accurate

solution. Similar un-refinement independence study for the

other problems resulted in n ¼ 50 for the dam break

problem and n ¼ 150 for the liquid jet breakup problem.

7.2 Order of accuracy study

For a multiphase flow solver, order of accuracy study is

widely reported for a problem on decaying oscillations of a

capillary wave that has an analytical solution (Prosperetti

[50]). Thus, after ensuring the verification of our numerical

with the analytical solution, figure 13(a) presents an order

of accuracy study for this problem. The computational

setup for this problem can be found in Gerlach et al. [51];
error is defined as L2 norm of the difference between time-

wise variation of the non-dimensional relative amplitude

computed numerically and that obtained analytically. The

figure shows that the order of accuracy of our SI-LSM on a

uniform grid, with and without AiMuR, is between first and

second order; almost same as that seen in the figure for the

refined level-set grid method of Hermann [35]. For a

comparative study, the figure also presents the order of

accuracy study of seven other numerical methods: front-

tracking method [52], Gerris flow-solver [24] (volume-of-

fluid implementation with generalised height-function cur-

vature calculation for quadtree and octree discretizations),

PROST [53] (volume-of-fluid implementation with a

parabolic reconstruction of surface tension) and CLSVOF

[54] (coupled level-set volume-of-fluid formulation)

implementations of Gerlach et al. [51], CSF-VOF [55]

(continuous surface force method based modelling of sur-

face tension in volume-of-fluid framework), and VOF-

NIFPA-1 [56] (VOF implementation with non-intersecting

flux polyhedron advection (NIFPA) scheme for the advec-

tion of volume fraction) and Conservative DI [57] (diffuse-

interface) implementations of Mirjalili et al. [58] . The

figure shows that the Gerris, PROST, and CLSVOF are

almost second order accurate while the other six multiphase

flow solvers (including our SI-LSM) exhibit an order of

accuracy between first and second order. It is worth noting

from the figure that the present SI-LSM as compared to the

other numerical methods is most accurate for the coarser

grid resolution of N ¼ 8 Whereas, on relatively finer grid

resolution of N ¼ 64, it can be seen that our SI-LSM is

more accuracte than the front-tracking, CSF-VOF, conser-

vative DI and RLSG.

Order of accuracy study is also presented in figure 13(b)
for the same dam-break simulation (figure 7(a)), consider-
ing the mass-error since this is the biggest disadvantage of

the level-set method [6]. With grid refinement, the con-

vergence of the mass-error (at some particular time-instant)

in the figure shows that the present AiMuR based LSM is

somewhere between first and second order accurate; same

as concluded from figure 13(a). Using the physical inter-

pretation of Heaviside function, proposed [39] and later

used in the previous work from our reasearch group

[36, 59], the mass error is computed here as

(a) (b)

Figure 13. With increasing grid refinement levels, variation of (a) L2 norm of the error (between the present/published mumtiphase

solvers and analytical solution [50]) for the time-wise variation of the non-dimensional relative amplitude of a damped capillary wave

(for q1 ¼ q2 ¼ 1, l1 ¼ l2 ¼ 0:064720863, and Ohnesorge number Oh ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
3000

p
) and (b) mass-error for the UAiMuR

f based dam-break

simulation.
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% Mass Error ¼

100� 1

smax

Z smax

0

P
i;j H

s
i;jDVi;j �

P
i;j H

o
i;jDVi;j

���
���

P
i;j H

o
i;jDVi;j

ds;

ð17Þ

where, Ho
i;j is the initial Heaviside function and Hs

i;j is

Heaviside function at a particular time instance s. The

accuracy of the current AiMuR solver can be further
improved by incorporating higher-order schemes to advect

the level-set field (e.g., weighted ENO schemes [42]),

which helps to mitigate the mass loss. In addition, more

precise ways to perform the level-set reinitialization and

interpolation of ghost level-set nodes are also desirable.

8. Quantitative performance study

For the three different two-phase problems, the above

comparison of the unsteady interface dynamics on the

various grid types and also with the published numeri-

cal/experimental results clearly demonstrates the superior-

ity of the SI-LSM on the non-uniform grid and un-

refinement as compared to that on the uniform grid. Almost

similar superiority of the NUc, NUAiMuR
c , and UAiMuR

f as

compared to Uc was demonstrated qualitatively above and

presented quantitatively here.

The quantitative representation of the relative perfor-

mance considers the total computational time (including the

time required for the interpolation and the inter-grid

transfer) along with the computational accuracy to distin-

guish the relatively superior performance of NUc, NU
AiMuR
c ,

Figure 14. Variation of the performance parameters (Eq. (18)) for the present novel SI-LSM and traditional SI-LSM on the various grid

types (table 2) for (a) dam break, (b) jet breakup, and (c) drop coalescence problems.
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(b1) (b2)

(c1) (c2)

   22 Page 18 of 22 Sådhanå           (2023) 48:22 



and UAiMuR
f as compared to Uc. Thus, for a quantitative

representation, a detailed performance study is carried out

by defining two performance parameters: % Error Reduc-

tion and % Computational Time Increment; given as

[36, 37, 47, 59]

%Error Reduction ¼ 1� Errorgrid�type

ErrorUC

� �
� 100;

% Computational Time (C.T.) Increment ¼
C.T.grid�type

C.T.UC

� 1

� �
� 100;

ð18Þ

where a grid-type corresponds to NUc, NU
AiMuR
c , UAiMuR

f ,

and Uf . Further, present performance study is carried out

using coarse uniform grid (Uc) as a reference grid for all the

problems. In order to calculate the error associated with the

present numerical results on various grid types, as com-

pared to the published experimental/numerical results,

certain parameter is selected in each problem. The param-

eter considered for calculating the error of the present SI-

LSM corresponds to leading edge distance reported by

Martin and Moyce [45] at time s ¼ 2:4, jet breakup length

reported by Lakdawala et al. [48] (after second breakup) at

time s ¼ 145, and first pinch-off time reported by

Blanchette and Bigioni [49] for Dam-Break (DB), Jet-
Breakup (JB) and Drop-Coalescence (DC) problems,

respectively.

For the three sufficiently different two phase flow prob-

lems, the performance parameters (Eq. (18)) for the present

novel and traditional SI-LSM on various grid types are

shown in figure 14. As discussed in previous subsection,

the error reduction in figure 14 demonstrates a quantitative

(in terms of accuracy) evidence of almost same superiority

of the NUc, NUAiMuR
c , and UAiMuR

f as compared to Uc.

Whereas, the computational time increment clearly

demonstrates the relative superiority of the NUc, NU
AiMuR
c ,

and UAiMuR
f , with the least computational time increment by

the SI-LSM on NUAiMuR
c as compared to that on NUc and

UAiMuR
f . Theoretically, computational time for grid type

NUc should be same as that for Uc (as both of them are

having same number of control volumes). Nevertheless,

since NUc as compared to Uc requires more iterations for

solving pressure Poisson equation, NUc results in more

computational time. Application of AiMuR on NUc reduces

this overhead in computational time. This is seen in

figure 14(a2; b2;), with a negligible increase in computa-

tional time by NUAiMuR
c as compared to Uc. Further, the

figure also shows that computational time demanded by Uf

gets reduced after applying the mesh un-refinement.

After applying AiMuR strategy on either uniform or non-

uniform grid, the reduction in computational time is cor-

related with AiMuR based total grid-point reduction (%)

that is shown in figure 15. The figure shows that instanta-

neous value of AiMuR based total grid-point reduction (%)

for level-set function is more than 45% for the problems

studied here. Time-wise increase or decrease of AiMuR

based total grid-point reduction (%) in figure 15 also

implicitly represents the dynamics of the fluid-fluid inter-

face, i.e., spreading of the fluid-fluid interface in compu-

tational domain and AiMuR based total grid-point

reduction (%) are inversely related. In dam break problem,

gradual decrease in AiMuR based total grid-point reduction

(%) is due to the interface spreading after the collapse of

the water column. Similarly, in jet breakup, initial decre-

ment in total grid-point reduction (%) is because of the

continuous injection of fluid. After the first breakup, an

increase in total grid-point reduction (%) is attained as soon

as the detached droplet escapes the computational domain,

followed by another decrease-increase cycle. For drop

coalescence problem, an increase in AiMuR based total

grid-point reduction (%) after first pinch off corresponds to

the smaller daughter droplet size. Among all grid combi-

nations, NUAiMuR
c is found to be computationally most

efficient since it produces numerical results of almost same

accuracy as that on a fine uniform grid (Uf ) and requires a

computational time almost same as that on coarse uniform

grid (Uc).

9. Concluding remarks

In the present work, numerical methodology for simulating

multi-phase flows on dynamically unrefined uniform as

well as non-uniform level-set mesh is proposed, where un-

refinement is carried out away from the interface location.

The dynamic un-refinement is done for the Cartesian

interface mesh corresponding to level-set function only.

Consequently, higher order schemes based solution of

level-set equations (advection and reinitialization) is

obtained on almost half of the grid in the region away from

the interface. Further, ENO scheme with varying weights is

used to solve mass conservation equation on highly stret-

ched non-uniform grids. To demonstrate the numerical

accuracy and computational efficiency of the proposed

AiMuR based SI-LSM, performance study is carried out for

three sufficiently different two-phase flow problems: dam

break, breakup of a liquid jet and drop coalescence prob-

lems. For a detailed qualitative and quantitative perfor-

mance study of the proposed adaptive un-refinement based

SI-LSM as compared to the traditional SI-LSM, a

bFigure 15. Temporal variation of AiMuR based total grid-point

reduction (%) for the level-set function on the ða1; b1; c1Þ non-

uniform coarse grid NUc and ða2; b2; c2Þ uniform fine grid Uf , for

ða1; a2Þ dam break, ðb1; b2Þ jet breakup and ðc1; c2Þ droplet

coalescence problems.
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systematic combinations of various types of SI-LSM and

coarse/fine grid size are considered. It is found that the

present SI-LSM on a non-uniform coarse grid (NUc)

demands more computational time than for the uniform

coarse grid (Uc) with numerical accuracy almost same as

the uniform fine grid (Uf ). After implementing adaptive

interface-mesh un-refinement (AiMuR) on a non-uniform

grid (NUAiMuR
c ), further reduction in computational time is

obtained without much compromise in numerical accuracy.

Incorporating AiMuR on a fine uniform grid (UAiMuR
f ) also

produces results of almost same accuracy as that of uniform

fine grid but with less computational time. However,

reduction in computational time by UAiMuR
f is not as sig-

nificant as that of NUAiMuR
c .

The application of the AMR as well as the AiMuR

algorithm generates a time-evolving hierarchical distribu-

tion of Cartesian control volumes. The evolution of this

hierarchical distribution (successive refinement or un-re-

finement of control volumes) is governed by the mesh

refinement/un-refinement criteria that is based on flow

physics as well as interface dynamics for the AMR and only

interface dynamics for the AiMuR. However, the imple-

mentation details of the novel AiMuR are relatively less

complex as compared to the AMR. Furthermore, dynamic

grid strategies such as AMR and the present AiMuR are

more advantageous than local level-set methods [29]. Such

methods compute the solution of the level-set advection

equation only within the narrow band of a uniform grid in

the vicinity of the fluid-fluid interface but require the

extrapolation of the level-set field outside the band. The

AiMuR based LSM is presented here as a proof-of-concept

and studies on the performance of AiMuR on more suit-

able multiphase problems is part of future work. Applica-

tion of the present non-uniform and adaptive un-refinement

grid strategies will be extended to two-phase flows

involving phase change. Furthermore, performance char-

acteristics of these grid types will also be studied for three-

dimensional multi-processor multi-phase flow simulations

as present study is restricted to two dimensional two-phase

flows. While the proposed methodology helps to achieve

the speedup without compromising numerical accuracy, it

does not significantly reduce memory requirements as it

relies on an easy-to-implement matrix-like structure. Fur-

ther investigation is needed to identify the class of prob-

lems where memory footprint outperforms the

computational speedup and how to circumvent it without

significantly increasing the complexity of the algorithm.
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