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Abstract. Micro-resonators are used intensively in various sensors and actuators. An important consideration

for resonator-based structures is to have a great level of balance and stability in the vibrational mode opted for

resonator operation. In this paper, the object of study is a double-ended-tuning-fork (DETF) resonator which has

the inherent advantages of high sensitivity and improved performance. A systematized evaluation of resonator

performance is done through a simulative approach for the basic shapes of DETF resonators found in the

literature. The boundary organization and geometric framework of the DETF resonator are extensively exam-

ined. Resonator modelling is done using the finite element model tool COMSOL and a novel design of the DETF

resonator is presented. The focal point of this study is designing a flexural resonator structure suitable in high

frequency design requirements along with improved stress considerations for the resonator design. This study

demonstrates the outcomes of simulations like impact on stress at the fixed ends, impact on the anti-symmetric

mode of operation like its position, frequency, and modal interference. Lastly, certain simplified design rules for

novel micro-DETF resonator designing are also presented.

Keywords. Resonator; flexural; tuning fork; anti-symmetric mode; stress; resonant frequency.

1. Introduction

Resonant sensors inherit the utilities of quasi-digital output,

very good resolution, stability and improved sensitivity

[1, 2]. Further, micro-machining techniques aid in size,

weight and cost reduction making the structures more

portable and affordable [3]. The key component in a micro-

resonant sensor is a micro-resonator whose design opti-

mization is very crucial for achieving optimum device

performance [4]. Amongst different types of resonators,

flexural resonators are the ones that are highly suited for

sensing applications such as sensing pressure [5], force [6],

temperature [7] and acceleration [8]. This is due to their

inherent low mechanical stiffness [9]. Flexural resonators

due to their less stiffness, also have low frequencies. Fur-

ther due to their large surface to volume ratio, flexural

resonators experience higher energy loss from surface

effects [10].

A key factor that needs optimization for improved device

performance is the amount of energy lost from the vibrating

resonator element into the ambient structures [11]. Now, for

achieving a high Q factor, the energy coupled from the

resonator into the ambient structures should be minimal and

reduction in coupled energy necessitates that the resonant

frequency should be high [12]. High operational frequen-

cies are also highly desirable in wireless communication

[13], biomedical applications [14] and aviation [15]. For

increasing the vibrational frequency, the stiffness of a res-

onator should be higher. Since flexural resonators are

intended for usage in sensing applications, an increase in

stiffness can pose difficulty since sensitivity decreases with

increased stiffness [9]. However, with suitable design

optimization it is possible to achieve an improved resonator

design along with high frequency operation as has been

elaborated in this paper.

The study presented here investigates the results for

analysis of flexural resonator in order to introduce a novel

flexural resonator design. For selection of appropriate

boundary conditions and favourable vibrational model, the

resonator selected as object of study is a double-ended

tuning fork (DETF). For achieving optimized performance,

geometrical boundary of DETF resonator should be chosen

such that Q factor achievable is high [11]. For obtaining

optimized geometric parameters, it must be well understood

how the geometry impacts resonator performance. Different

geometric parameters affect operation in different manner*For correspondence
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and obtaining this information is a must to derive the most

appropriate structural parameters.

Efficient performance often requires trade-offs between

parameters to be taken care off for achieving optimal

solution for resonator operational behaviour. In this study

impact of various geometric parameters like length, width,

thickness of tines, gap between tines, etc. on resonator

performance (frequency, stress) is analysed. This paper also

presents and discusses the results pertaining to resonator

optimization (addition of suspension and additional beams)

obtained from finite element software COMSOL. The paper

intends to present a modification in flexural DETF res-

onator design to increase its stiffness and hence increases

the operational frequency without compromising with the

operational sensitivity.

2. Design considerations

Design optimization is very crucial for reduction in coupled

energy. When the coupled energy is less, then following

advantages are ensured for the resonator operation: high Q

factor, high resolution, immunity to vibrations in environ-

mental components and improved long-term drift [16]. Two

factors are very crucial to reduce the amount of energy

coupled into the surroundings [17]:

• Optimized resonator design

• Selection of operational mode

For a conventional individual beam clamped at roots

shown as resonator A1 in figure 1, the amount of energy

dissipated from the anchoring end to the surroundings

depends on the anchor. Thus, the stability of natural fre-

quency is difficult to achieve in such resonators. DETF

resonators design which include two individual beams

clamped at roots, can be very useful to overcome this

drawback [19]. The basic resonator designs existing in lit-

erature studied in this paper to devise a new improved

resonator design are depicted in figure 1 as resonator A2-

A6. A variation in resonator A6 shown as resonator A7 in

figure 1 was also studied in this paper. A labelled schematic

for DETF resonator lying in XY plane is shown in figure 2.

The basic design of DETF resonator as shown in res-

onator A2 comprises of two fixed-fixed beams (referred to

as tines) coupled together at some gap via a fixed base. The

structure can be modified by addition of outriggers on both

fixed bases as is shown in resonator A3. Another modifi-

cation incorporated is addition of stubs in both resonators

A2 and A3 as is depicted in resonator A4 and A5. Based on

the analysis detailed later in the paper, resonator A5 was

found to be more suitable for further modification. Thus,

suspensions were added to it as is depicted in resonator A6

(two-line suspension) and A7 (three-line suspension).

Analysis and results for all the structures along with DETF

resonator design that has been modified to achieve the

novel desired design are described later in this paper.

Tuning fork based flexural resonators are highly

stable and suitable for obtaining high-Q frequency selec-

tivity with dynamically balanced operational mode [20].

The compensating factor for energy loss in tuning fork

design is the fact that when two parallel beams vibrate

symmetrical and antiphase to each other, then vibrational

forces and moments cancel each other. This eliminates any

force at the base, trapping vibrational energy inside res-

onator and thus, high Q factor is achievable [19, 21]. Thus,

lateral anti-phase symmetric (AS) mode of operation in

which the two tines vibrate in opposite direction is the

desired mode for DETF operation. The vibrational mode

shape for AS mode is shown in figure 3.

Optimum mode is the one that exhibits least stress values

at the fixed ends for the resonator [22]. Lateral vibrational

modes are benefitted by the fact that in sensing applications

the lateral motion is perpendicular to the motion of sub-

strate beneath the resonator and this reduces the coupled

energy, aiding in high Q factor [23]. The lateral AS

vibration mode is the desired mode for DETF operation

since mechanical coupling is highly reduced when the

resonator vibrates, parallelly to the substrate below [24].

Figure 1. Top view of basic DETF resonator shapes.
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Further, to reduce coupled energy the design should also

aim to increase the resonant frequency ratio of resonator

and supporting structure. Thus, to effectively reduce the

coupled energy to the substrate, the resonant frequency of

the resonator should be made higher [11].

Another important factor is the occurrence of interfer-

ence modes. All the other modes which exhibit nearby

frequencies to the operational mode act as the spurious/

interference modes. These are excited if the selection of

device geometry is poor, fabrication is asymmetrical and

the loading of DETF tines is unequal. A part of vibrational

energy of resonator’s optimum mode can lead to excitation

of these modes. Sensitivity of all these is distinct for the

axial load and their existence can even result in cessation of

the operation at the desired mode. A proper selection of the

ratio between tine width (w) and height (h) helps in real-

ization of interference-mode-free DETF resonator [25, 26].

2.1 Analytical model for DETF resonator

In anti-symmetric mode of vibration, due to 180� out of

phase movement of tines, a DETF resonator experiences

almost negligible displacement at its fixed ends which

reduces energy dissipation [27]. Thus, the two tines of

DETF resonator can be considered as independent fixed-

fixed resonant beams. As per Euler-Bernoulli beam model,

for a beam vibration, the dynamic response is managed by

the following momentum equation given below [28]–[30]:

o2

ox2
EI

o2u x; tð Þ
ox2

� �
þ o

ox
F
ou x; tð Þ
ou

� �
þ qAS

o2u x; tð Þ
ot2

¼ Pf ðx; tÞ ð1Þ

where uðx; tÞ is the deflection in y direction, x is distance

along beam from fixed end, and t is the time. I is second

moment of inertia while E and q are material properties

termed as young’s modulus and density respectively. F is

the external axial load, AS is the cross-sectional area of

resonant beam and Pf ðx; tÞ is the driving force per unit

length.

For a fixed-fixed resonant beam the boundary conditions

are as follows:

u x; tð Þ ¼ u l; tð Þ ¼ 0
ou

ox

����
x¼0

¼ ou

ox

����
x¼l

¼ 0 ð2Þ

where l is the length of resonating beam.

With the aid of mode superposition theorem, the partial

differential equation specified in equation (1) can be

decomposed into a combination of various ordinary dif-

ferential equations. The vibration mode of the beam can be

defined as the sum of the mutually orthogonal modes and

thus u (x, t) can be expressed as

u x; tð Þ ¼
X
m

;mðxÞymðtÞ ð3Þ

where ;mðxÞ represents m order mode shape function of the

resonating beam and ym tð Þ represents the generalized co-

ordinates corresponding to the mth mode. Here, the solution

for mth vibration mode can be obtained as

Me;m €ym þ ke;mym ¼ 0 ð4Þ

where the ke and Me are the effective stiffness and effective

mass for a resonating beam with mode m and are expressed

as follows.

ke;m ¼
R l
0
EIðo

2;m
ox2

Þ
2

dxþ
R l
0
Fðo;m

ox
Þ
2

dx

Me;m ¼
R l
0
qbh;2mdx

8><
>: ð5Þ

Now the general formula for vibrational natural fre-

quency of the resonator is given by expression [3] given in

equation (6)

f ¼ 1

2p

ffiffiffiffiffi
k

M

r
ð6Þ

where k is the effective stiffness andM is the effective mass

of the resonator.

For a DETF resonator, the axial load is equally dis-

tributed between its tines as they are basically two parallel

fixed-fixed beams. The natural resonant frequency f 0 for the
lateral AS mode of vibration for a DETF resonator can be

expressed as given in equation (7), [31]. When an axial

force F acts upon DETF tines, then the expression for

resonant frequency f r is obtained by equation (8), [31].

f 0 ¼
1:027w

l2

ffiffiffiffi
E

q

s
ð7Þ

f r ¼ f 0ð1þ
0:147l2

Etw3
:FÞ ð8Þ

where l , w, t are length width and thickness of the tine.

Figure 2. Basic DETF resonator schematic.

Figure 3. AS mode of vibration.
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3. FEM simulations for resonator selection

The design analysis and optimization start with basic

geometries of DETF and then certain modified DETF res-

onator structures are discussed. Selection of proper

boundary conditions for a DETF resonator is done by

optimizing the resonator geometry for its various dimen-

sional parameters like length, width, height, gap, etc.

Geometric optimization and analysis of the resonators were

carried out using finite element analysis tool COMSOL. In

FEM simulations, isotropic single crystal silicon is chosen

as the resonator material. Geometric parameters chosen for

the tines are l = 800 lm, w = 10 lm, h = 20 lm and basic

gap g in DETF is 10 lm. Boundary structures guidelines for

the basic DETF resonators shown in figure 2 are chosen

based on the geometric guidelines obtained from literature

[18] and are stated in table 1.

The desired mode of operation is chosen based on the

stress analysis at the base of fixed tines. Stress at fixed ends

is also detrimental for achieving high Q values [32]. High

stress value indicates that the mode is out of balance and

resonator experiences high energy loss. This implies

increased mechanical energy coupling between resonator

and surrounding structures and reduced Q values. There-

fore, desired mode of operation is one which incorporates

least stress at the resonator fixed ends and thus, ensures

higher Q values. Further, when a vibrational mode is cho-

sen as the operational mode, then it is highly desirable to

keep the spurious modes away from the operating mode so

that they have little impact on the working mode [16].

The specific resonant frequency, position of optimum

modes and stress values of the optimum vibrational mode

for basic DETF resonator designs included in this study are

shown in table 2. It can be observed from table 2 that for

resonator A2 and A3 stress is very high and frequency

difference between modes (modal difference) is very small.

Though, with addition of stubs the frequency difference is

improved in resonator A4 but stress at the fixed ends is

high. Stress was considerably reduced when outriggers

were also included as depicted in resonator A5. Then, with

the addition of two-line suspension, the stress at the fixed

ends became minimal in resonator A6. It became nearly

zero with a value of 0.288 N/m2.

It is known that desired mode of operation should occur

at lower vibrational mode of resonator [12]. It was observed

in simulation that anti-symmetric mode occurred as mode 2

and from table 2 it can also be seen that mode 1 acts as the

interference mode. Table 2 shows that with a frequency

difference value of 27.04 kHz, gap between interference

and working mode is maximum for resonator A6. A three-

line suspension case of resonator A7 was also analyzed.

From table 2 we can see that resonator A7 has reduced

stress and comparatively good modal frequency difference

though these results were better for two-line suspension

case (resonator A6). Hence DETF resonator design chosen
for further design modifications is resonator A6. The basic

DETF resonator A6 was analysed to study the impact of

geometric variations. Further, the dimensions for length,

width, height and gap of tines, suspensions, stubs and

outriggers were all varied for resonator A6 using FEM

simulations. The evaluated effects on resonator perfor-

mance are presented in this section.

3.1 Dimensional optimization for DETF design
existing in literature

Geometric parameters of DETF resonator greatly impact

the general behaviour of resonator operation. To evaluate

the optimised values for geometric dimensions, various

modal analysis simulations were conducted via COMSOL

software. The simulative results depicting effects of

dimensional variations are shown in figures 4 and 5. It was

analysed how the geometry impacts frequency of AS mode,

difference between operational mode (AS) frequency from

its adjacent nearby modes and stress at the fixed ends of

resonator for determining the optimum mode position. The

results derived from simulation are discussed here in this

section and final dimensions chosen for DETF resonator

that is to be further modified are tabulated in table 3.

Table 4 shows the simulated schematics for the first six

vibrational modes of the basic DETF resonator along with

their frequencies and stress at the fixed ends. It can be seen

that the mode with least stress value occurred at second

mode and it is the AS mode.

3.1a Impact of geometric variation on frequency of AS
mode and difference between AS mode frequency from its
adjacent nearby mode: Impact of variation in resonator’s

geometric parameters such as dimensions of tines, stubs,

suspensions and outriggers was evaluated via simulations.

Simulated values for the frequency of AS mode and its gap

from the frequency of nearest adjacent mode are plotted on

graphs as shown in figure 4(a-h). It can be seen from graphs

in figure 4(a-h) that amongst different geometric variables,

Table 1. Boundary structure guidelines for DETF geometric boundary.

For the beam/tine of length l, width w, thickness h, and
gap g

Outrigger width,

(lo)

Fixed base length, (lf )

Stub length,

(ls)
Stub width,

(ws)

Without

stubs

With

stubs

lo ¼ g
2 lf ¼ l

12
lf ¼ l

9
ls ¼ l

27
ws [ w

10
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Table 2. Simulated parameters for basic six resonators.

Resonator

Optimum

mode

position

Frequency

(Hz)

Stress at fixed end (N/

m2)

Mode 1 frequency

(Hz)

Mode 2 (AS) frequency

(Hz)

Frequency difference

(kHz)

Optimum

mode

AS

mode

A2 2 AS 1.3436e5 42.845 42.845 1.3161e5 1.3436e5 2.75

A3 2 AS 1.3519e5 24.655 24.655 1.3419e5 1.3519e5 1 .00

A4 6 3.6994e5 22.602 118.08 1.1364e5 1.3443e5 20.79

A5 2 AS 1.3517e5 2.986 2.986 1.1368e5 1.3517e5 21.49

A6 2 AS 1.3512e5 0.288 0.288 1.0808e5 1.3512e5 27.04
A7 2 AS 1.3516e5 3.798 3.798 1.1259e5 1.3516e5 22.57
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Figure 4. Impact on AS mode frequency and its frequency difference with adjacent mode with variation in (a) tine length, (b) tine

width, (c) resonator height, (d) tine gap, (e) stub width, (f) outrigger width, (g) suspension leg width, (h) suspension leg length;

Theoretical vs Simulated values for resonant frequency of AS mode w.r.t. variation in (i) tine length of the resonator and (j) tine width of

the resonator.
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only length and width of the tine impacts AS mode fre-

quency. This effect can also be verified theoretically using

the formula given in equation (7). Figure 4(a-h) also shows

that all the geometric variables except outrigger width lo,
have an impact on the frequency gap between AS mode and

its nearby adjacent mode. The simulated AS mode

frequency values are all validated theoretically and their

variation w.r.t. variation in length and width of tine are

shown in figure4(i-j).

3.1b Impact of geometric variation on position of optimal
mode and stress at tine ends: It is known that for a vibrating
element all the modes of vibration are present at a moment
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Figure 5. Impact on stress at fixed ends of tines and position of optimum mode for tine vibration with variation in (a) tine length,

(b) tine width, (c) resonator height, (d) gap between tines, (e) stub width, (f) outrigger width, (g) suspension leg length and (h) suspension

leg width.

Table 3. Dimensions selected for DTEF resonator to be modified.

Resonator boundary parameter dimensions (lm)

Tine length

(l)
Tine width

(w)
Resonator height

(t)
Tine gap

(g)
Outrigger width

(loÞ

Fixed base Stub Suspension

Length

(lf Þ
Width

ðlwÞ
Length

(lsÞ
Width

(wsÞ
Length

(SlÞ
Width

(SwÞ

800 10 20 10 5 88.89 40 29.63 10 20 17

Table 4. Characteristics of vibrational resonant modes of DETF resonator.

Vibration mode

position Resonant vibrational mode schematic

Mode

type

Stress at fixed ends (N/

m^2)

Resonant frequency

(Hz)

1 Lateral 1211.4 1.0808e5

2 Lateral 0.28770 1.3512e5

3 Transverse 8630.9 1.4384e5

4 Lateral 4756.7 2.1177e5

5 Transverse 1339.0 2.6080e5

6 Lateral 1.0417 3.7220e5
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and hence it is desired to have operational mode at the

lower order mode. The simulations showed that for lateral

AS mode to occur at a lower position of vibrational oper-

ation, a ratio of 1:2 must be maintained between width and

height. Geometric optimization carried out in this study

enabled occurrence of optimal AS mode at 2nd mode

position as is depicted in figure 5(a-h). Evaluation of the

stress at fixed ends via simulation showed a minimum value

of 0.288 N/m2 for resonator height of 20 lm, tine length of

800 lm and tine width of 10 lm as is shown in figure 5(a-

c). Thus, tine dimensions of 800 lm X 10 lm X 20 lm,

were chosen where stress at fixed ends was minimum and

modal difference was optimum. Gap between tines and stub

width diversely impact the stress at the fixed ends as can be

observed in figure 5(d, e). It is observed that for a tine gap

of 10 lm the stress is minimum and it maintains that value

when stub width is kept equal to the gap between tines.

Choice of outrigger region width does impact stress at fixed

ends and is minimal when it is half of the gap between tines

as is depicted in figure 5(f). Further, increase in suspension

width decreased the stress at fixed ends as can be seen in

figure 5(g). For a width of 17 lm, variation in length of

suspension showed that the stress at the fixed ends varies

non-uniformly and was minimum for 20 lm length as is

inferred from figure 5(h). A simulated stress profile for the

resonator A6 is depicted in figure 6. It shows that maximum

stress is at the tine ends and stress is minimal at the fixed

ends.

4. Analysis of proposed novel structure

A modified geometry for DETF resonator is analysed,

improvised and compared with basic DETF geometry of

resonator A6 and the modification done is depicted in

figure 7. An additional beam was added with a connector

beam placed at the centre of the DETF tine. It has been

stated earlier in the paper that a high frequency resonator

operation is highly desirable. The aim of the modification

done is to achieve a DETF resonator design with high

resonant frequency in comparison to basic DETF resonator.

The structure with additional beams was analyzed for both

non-fixed and fixed ends of the additional beam. Fig-

ure 8(a) depicts the schematic for DETF resonator with

additional beam whose ends are non-fixed (NFR) and fig-

ure 8(b) depicts the case where ends are fixed (FR). Their

respective lateral AS mode of operation are shown in fig-

ure 9(a, b) respectively. Figure 9(a) shows that the entire

additional beam experiences the same maximum displace-

ment as that of the centre of the tine in resonator NFR.

Figure 9(b) shows that for resonator FR, only the centre of

the additional beam experiences the same maximum

deflection as that of the tine centre.

4.1 Analytical model for proposed DETF
resonator

Based on the analytical model presented in section 2, the

equation for flexing of beam can be used here as well. The

value for effective mass is attributed to the contribution of

added mass ma, owing to inclusion of additional beams to

the DETF tines. Thus, the effective mass in equation (5) is

now deduced as follows [32]:

Me;m ¼
Z l

0

qbh;2mdxþ ma;mðxaÞ
2 ð9Þ

The resonator considered here is of height h with tines of

length l and width w, additional beams of length la and wa

and connector beams of length lc and width wc. When

subjected to a point load at centre, the elastic curve of the

clamped-clamped beam in AS mode can be approximated

by the mode shape function ;m ¼ ;2 ¼ 16e3 � 12e2 þ 1

with e ¼ x
l [33]. Thus, under the influence of equation (9)

the expression for effective mass for the modified resonator

design in AS mode is as follows [30]:

Me ¼ qh
13

35
wlþ wclc þ wala

� �
ð10Þ

Based on the vibrational shape of the AS mode, the

values for the effective stiffness for the resonator NFR and

FR can be obtained as follows. As has been stated earlier,

the two tines of the DETF act as independent fixed-fixed

beams, thus the stiffness of the resonator NFR is the stiff-

ness of a simple beam fixed at both ends [34, 35]. Thus, the

expression for effective stiffness ken is as follows:

ken ¼
192Eh

12
:
w3

l3
ð11Þ

Figure 6. Stress profile schematic of basis DETF resonator A6.

Figure 7. Schematic for modification done with DETF tine of

basic resonator.
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According to the structure of the resonator FR, the

effective stiffness kef can be evaluated as

kef ¼ kb þ ka ð12Þ

Where kb and ka are the stiffness attributed by the DETF

tine and additional beam. Further the very fact that the

DETF resonator exhibits two-fold symmetry allows one

quarter of the structure to be analyzed [27]. The DETF tine

and additional beams thus act as beams having one end

fixed and another end being moveable. Hence the effective

stiffness of the proposed resonator is as follows [35, 36]:

kef ¼ 4Eh
w3

l31
þ w3

a

l32

� �
ð13Þ

where l1 and l2 are the half lengths of DETF tine and

additional beam, respectively.

Based on above analysis the natural resonant frequency,

f r;m for the lateral AS mode of vibration in the DETF

resonators: NFR and FR can thus be expressed as given in

equation (14)

f r;m ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke

qhð13
35
wtlt þ wclc þ walaÞ

s
ð14Þ

Depending on the boundary conditions the value of

effective stiffness, ke can be substituted in equation (14)

from equations (11) and (13) and corresponding resonant

frequency can be evaluated.

4.2 Dimensional optimization for proposed DETF
design

The dimensions of connector beam were optimized to

reduce the stress at the ends of resonator. A connector

length of 20 lm and width of 9.9 lm with a fixed additional

beam of length 500 lm yielded minimum stress with the

value approaching nearly zero. In an attempt to increase the

frequency of the flexural resonator design based on DETF

resonator, both the designs for additional beams were

analyzed for variation in the geometric parameters of the

additional beam. The results for AS mode frequency are

shown in figure 10(a-c) and that for stress and occurrence of

optimum mode are shown in figure 10(d-f).

In figure 10(a, b), it can be seen that with additional

beams, the AS mode frequency decreases with increase in

length of additional beam for both the structures. Fig-

ure 10(c) shows that the variation in AS mode frequency for

variation in width of resonator FR. It can also be seen in

figure 10(a, b) that for resonator NFR, the AS mode fre-

quency values are far less than that for resonator FR. Fig-

ure 10(d, e) shows that the value for stress at the ends in

resonator NFR is much greater than the value of 0.80879

N/m2 for resonator FR. This minimum value is obtained at

a length of 500 lm in resonator FR. Thus, resonator FR was

chosen for further analysis and the impact of variation in

beam width was studied for it only as is depicted in fig-

ure 10(c, f). It can be seen that the width of additional

beams has very less impact on modal difference and posi-

tion of optimum mode. The AS mode frequency, however,

increases with an increase in width of the additional beam.

The optimized value of width is 10 lm for which minimum

stress is obtained.

The AS mode frequency of resonator NFR is 81.278 kHz

which is much less than the value of 135.12 kHz shown in

table 2 for basic DETF resonator A6. This result can be

culminated from equation (6) that an increase in mass of the

resonator with inclusion of additional beam decreased the

frequency. However, in comparison to basic DETF res-

onator A6, resonator FR exhibited a higher AS mode fre-

quency of 235.96 kHz. Here, the stiffness of the resonator

increased by fixing the ends of the additional beam and thus

increased the frequency. Simulated stress profiles obtained

for the both resonators are shown in figure 11. Fig-

ure 11(a) shows that in resonator NFR, there is no stress in

the additional beams while figure 11(b) shows that addi-

tional beams exhibit stress in resonator FR. Comparing

Figure 8. Basic DETF resonator with (a) non-fixed additional beams, (b) fixed additional beams.

Figure 9. Lateral AS mode for DETF with additional beams whose ends are (a) non-fixed, (b) fixed.

   17 Page 8 of 12 Sådhanå           (2023) 48:17 



figure 6 and figure 11 it can be inferred that stress at the

ends of tines is minimal in resonator FR. Thus, the novel

structure comprises of a DETF resonator with additional

beams having fixed ends.

Table 5 shows how the length of the additional beam

impacted the vibrational mode shape of the DETF res-

onator. From equations (5) and (9), we can infer that the

mode shape function impacts both the effective stiffness

and mass of the resonator. Thus, different mode shapes will

exhibit different values of mass and stiffness. In the sim-

ulations done, theoretical validation was done for resonator

FR with an additional beam of 500 lm only, since it is the

desired structure with least stress. The simulated results

were verified analytically using equations (10-14) and were

found to be in coherence with the analytical value. The

generalized results of simulation are tabulated in table 6

which provides a comparison between the two additional

beam structures.

Further, additional beam length with respect to tine

length of the DETF resonator was investigated. The study

aimed to analyse the impact on the fixed end stress of the

resonator. Tine lengths were analyzed for various addi-

tional beam lengths to get optimized minimal stress values

and a lower order mode for AS mode. This analysis was

repeated for different tine length values. Table 7 gives the

value of additional beam lengths for different tine lengths

(a) (b) (c)

(d) (e) (f)

104.38

95.503 88.05
2

81.278
74.602 0

5

10

15

20

70

80

90

100

110

200 300 400 500 600

A
S 

m
od

e 
fre

qu
en

cy
 

di
ffe

re
nc

e 
(k

H
z)

A
S 

m
od

e 
fre

qu
en

cy
 

(k
H

z)

Non-fixed additional 
beam length (µm)

516.29

429.61 315.09

235.96
186.74

0
10
20
30
40
50

0
100
200
300
400
500
600

200 300 400 500 600 A
S 

m
od

e 
fre

qu
en

cy
di

ffe
re

nc
e 

(k
H

z)

A
S 

m
od

e 
fre

qu
en

cy
 

(k
H

z)

Fixed additional 
beam length (µm)

173.95

192.92
213.71

235.96
259.05

283.36

0
5
10
15
20
25

140

190

240

290

340

7 8 9 10 11 12 A
S 

m
od

e 
fre

qu
en

cy
 

di
ffe

re
nc

e 
(k

H
z)

A
S 

m
od

e 
fre

qu
en

cy
 

(k
H

z)

Fixed additional 
beam width (µm)

13.128
0

1

2

3

13
14
15
16
17
18

200 300 400 500 600

O
pt

im
um

 m
od

e

St
re

ss
 (N

/m
2)

Non-fixed additional 
beam length (µm)

0.80879

0
1
2
3
4
5
6

0
50

100
150
200
250

200 300 400 500 600

O
pt

im
um

 m
od

e

St
re

ss
 (N

/m
2)

Fixed additional 
beam length (µm)

0.80879

0

1

2

3

4

0
5

10
15
20
25
30
35

7 8 9 10 11 12

O
pt

im
um

 m
od

e

St
re

ss
 (N

/m
2)

Fixed additional 
beam width (µm)

Figure 10. Impact on AS mode frequency and its frequency difference with adjacent mode (a) length (non-fixed ends), (b) length (fixed

ends), (c) width (fixed ends); Impact on stress at fixed ends of tines and position of optimum mode for tine vibration for variation in

additional beam, (d) length (non-fixed ends), (e) length (fixed ends) and (f) width (fixed ends).

Figure 11. Stress profile for DETF resonator with additional beams whose ends are (a) non-fixed, (b) fixed.
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of the resonator. It can be inferred from table 7 that the

stress at fixed ends was minimal for a value of additional

beam length that is greater than the half of the tine length.

This is because here the AS mode occurred on 2nd mode

position with minimum fixed end stress for each additional

beam. Also, it was observed that for additional beam

lengths smaller than half of tine length, the AS mode

occurred as higher order mode.

5. Result discussion

In this paper first of all simulative dimensional optimization

regime was followed for the existing DETF resonator

designs. Then the selected design was optimised and later

modified to achieve a high frequency vibrational operation

for the flexural DETF resonator. The modified design was

further optimised dimensionally to achieve an efficient

resonator design. The results obtained are an amalgamation

of simulated data and are discussed here in this section to

chart out the improvisations done in DETF resonator

design.

Existing DETF resonator design A6: Impact of resonator

dimensions on the frequency of AS mode and its frequency

difference from the adjacent nearby mode was studied. The

simulations intended to reduce the stress at the fixed ends of

the resonator in the lateral AS mode of vibration. Results

for minimum value of stress at fixed ends along with the

impact on position of occurrence of AS mode are presented

based on the simulations done using COMSOL. It was

observed that AS mode frequency was largely impacted by

the length and width of the tine while gap along with length

and width, also, affected the modal frequency difference. It

was inferred that small gaps between tines should be chosen

for exhibiting higher modal frequency difference. Analysis

showed that stubs also aided in increasing the separation of

the lateral AS mode from adjacent modes. Further, it was

observed that with addition of outriggers, stress reduces in

DETF resonator but with addition of stubs it reduced fur-

ther. However, the addition of two-line suspension structure

reduced the stress to a value approaching zero and thus

produced more balanced DETF resonator. A stress value of

0.09 N/m2 [18] and 0.87 N/m2 [32] has been reported in

literature for the basic DETF structure while a value of 0.29

N/m2 was achieved in this study for the analysed resonator.

This resonator design with minimal stress at fixed ends was

henceforth selected for further modifications.

Proposed DETF resonator design FR: The basic DETF

design was modified by addition of beams connected to the

centre of the DETF tines via a connector beam. It was

observed that though addition of beam decreased the fre-

quency but when the ends of the additional beam were

fixed, then the frequency increased drastically. From the

basic design the frequency increased from 135.12 kHz to

235.96 kHz in the proposed design. The length and width of

the connector and additional beams were optimized to

achieve a design where stress at the fixed ends reduced to

nearly zero value. A stress of nearly zero value of 0.81

Table 5. Impact of additional beam length on mode shape in

resonator FR.

Additional beam

length (lm) AS mode shape

200

300

400

500

600

Table 6. Impact of additional beam on basic DETF resonator

parameters.

Simulated parameters

Resonator

NFR

Resonator

FR

Additional beam length (lm) 500 500

Optimum mode 2 2

Theoretical AS mode Frequency (kHz) 84.141 268.62

Simulated AS mode Frequency (kHz) 81.278 235.96

Adjacent mode frequency (kHz) 68.663 214.65

Frequency difference between adjacent

and AS mode (kHz)

12.615 21.31

Stress at fixed end (N/m2) 15.355 0.80879

Table 7. AS mode position and additional beam length with

respect to DETF tine length in resonator FR.

Length (lm)

Mode number of AS modeDETF tine Additional beam

500 300 2

600 420 2

700 500 2

800 500 2

900 550 2

1000 630 2
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N/m2 was achieved for the modified resonator design.

Further, the stress at the ends of the tines was least for this

resonator FR. The dimensional optimization also aimed to

achieve lower order mode as the optimum mode. The AS

mode of operation was achieved at 2nd mode position in this

design as well. Thus, a new DETF design is devised which

is better in comparison to the basic DETF resonators. It has

the advantages of considerable high frequency vibrational

operation, minimal stress at the tine ends and fixed res-

onator ends.

Summary: Study of the optimized geometric dimensions

bring into consideration certain optimization facts that can

be used to design DETF resonators.

• In order to achieve the desired lateral AS mode at a

lower mode position it is required that width must

always be nearly half of the height of the resonator.

• Width of the stub equal to the gap between tines and

outrigger width equal to half of the gap between tines

aids in reducing the stress to a nearly zero value.

• For minimal stress, connector beam width should be

also nearly same as tine width and its length should be

double the width.

• For additional beam, the width should be same as tine

width and length should be more than half of the tine

length.

6. Conclusion

In order to ensure efficient operation of a resonator, it

must be ensured that coupled energy from resonator into

the ambient structure should be minimal. Designing of

resonator is a crucial aspect to accomplish this very

necessity. DETF resonators is one such design which has

inherent capability of reduced energy loss. Further, high

frequency operation ensures reduced energy loss but with

flexural resonators, high frequency achievement is criti-

cal. A thorough numerical study was carried out for

different silicon DETF resonators to obtain a balanced

structure. Simulations showed that in AS vibration mode,

DETF exhibited least stress at the resonator ends and

hence is the optimum mode for resonator operation. The

optimized balanced DETF design was further modified

and then optimized to accomplish the achievement of a

novel design. Optimum mode that is also desired to be

positioned at a lower mode was achieved at 2nd mode

position in both basic and proposed designs. With the

help of incorporated modifications, frequency of the

DETF design increased by around 100 kHz. Minimal

stress with nearly zero value (0.29 N/m2 for basic res-

onator and 0.89 N/m2 for proposed resonator) at the tine

ends was achieved through device optimization to ensure

high Q factor during operation. This paper thus, proposed

a new flexural DETF resonator incorporating high

frequency operation in comparison to basic DETF res-

onator design. By simulations it was analysed that least

stress was achieved during DETF vibration, when the

additional beam was greater than half of tine length.

Also, a theoretical vibration model for DETF resonator

designs is presented and the results obtained from finite

element simulation of the resonator design are validated

theoretically. Further, the optimization rules obtained and

demonstrated here can be of great help for designing of

DETF resonators.

List of symbols
k Effective stiffness of the resonator

M Effective mass of the resonator

f o Natural resonant frequency

E Young’s modulus

q Material density

F Axial force acting upon tines

l Length of the tine

w Width of the tine

t Thickness of the tine

g Gap between tines

lo Outrigger width

lf Fixed base length

lw Fixed base width

ls Stub length

ws Stub width

Sl Suspension length

Sw Suspension width

la Length of additional beam

wa Width of additional beam

lc Length of connector beam

wc Width of connector beam

h Resonator height
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