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Abstract. Plant disease monitoring and management are essential for ensuring reliable and lucrative crop

production in all kinds of plantations and guaranteeing sustainable agriculture production. Most traditional

approaches depend significantly on human effort, which is liable to time delay and is expensive. Moreover, plant

pathogens are nearly identical to other non-harmful species in many circumstances. Recently, computer vision

based deep learning algorithms have not been deceived by these similar diseases causing false warnings. This

paper proposes a novel deep ensemble neural network (D-ENN) framework for automated plant disease

detection. The dataset collected in real cultivated fields contains healthy and diseased images with specific class

labels. Since there are limited images of a few specific crops, a conditional generative adversarial network (C-

GAN) is leveraged to generate the additional synthetic images. Then, the total dataset is split into the training

set, validation set, and test set, in the ratio of 70:10:20 used to avoid overfitting problems. The proposed model is

trained using real and synthetic images utilizing the transfer learning mechanism. Finally, the experimental

outcomes are assessed using standard performance measures evaluating the performance of the proposed

method. The proposed vCrop framework attained Precision, Recall, and F1-Measure, and Accuracy of 95.71%,

95.32%, 95.51%, and 96.02% respectively, in classifying the plant diseases in comparison with the other state-

of-the-art approaches. The proposed D-ENN model can be a potentially helpful tool for farmers and agronomists

in diagnosing and quantifying cotton diseases.
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1. Intoduction

Plant diseases have a catastrophic impact on agriculture

production and pose a severe threat to food security glob-

ally. Therefore, diagnosing and control of plant diseases is

vital in assuring the maximum yield [1]. The conventional

approach of identifying plant infections involves a great

deal of expertise and knowledge of professionals. With the

rapid development of deep learning technologies, farmers

also browse the crop diseased images from the database or

interact with skilled agronomists and plant pathologists to

examine crop diseases remotely. The downside is that the

evaluation is simple but inaccurate with poor efficiency.

Many studies have investigated automated plant diseases

detection based on image processing and machine learning

methods to increase the accuracy and speed of diagnostic

findings [2–4]. In addition, advanced techniques such as

digital image processing methods [5], Principle component

analysis approach [6], and fuzzy inference system [7] are

used to diagnose the various crop diseases. Deep learning-

based strategies have been used successfully in multiple

applications during the last decade [8, 9]. Recently, deep

convolutional neural networks (CNNs) have elevated in the

field of agriculture and, and it has become a standard

technique for plant disease detection applications.

Coulibaly et al [10] used a transfer learning-based VGG-

16 convolutional neural network for mildew disease in

pearl millet crop and achieved an accuracy of 95%. In

Selvaraj et al [11] work, a total of 18,000 filed images of

banana were collected. They developed a custom deep

CNN through transfer learning and reported a mean Aver-

age Precision of 98%. With large open-source datasets,

various crop diagnostic experiments such as paddy [13],

apple [14], and grape [15] reached an average accuracy of

more than 85%. In this line, Mohanty et al [16] used a large

open-source plant leaf dataset of 26 different classes of

healthy and diseased leaves images. They evaluated two

different CNN models for plant disease detection, and

outcomes were quite promising with an accuracy of up to

99.35%. However, a key shortcoming was the complete

images are taken in laboratory conditions rather than in real

field cultivated images.

Atila et al [17] designed a diagnostic system for plant

disease identification using recent EfficientNet CNN*For correspondence
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models. They trained the models with and without data

augmentation images. Their accuracy rates are between

99.91% and 99.97%, depending on original and augmented

image datasets. Abbas et al [12], adopted DenseNet121

architecture for tomato plant leaves diagnosis. They con-

sidered both original and synthetic tomato diseased leaves

of ten prevalent classes. Original images are collected from

the plant village repository, and Conditional-GAN gener-

ates synthetic images. After training, they attained an

overall accuracy of 99.51% (5 classes), 98.65% (7 classes),

and 97.11% (10 classes), respectively. Similar experiments

on tomato crops [21, 22] have also been undertaken.

Numerous plant disease frameworks have also been

presented for real field condition images. In xu et al [18],

an Attentional Pyramid framework (APN) for custom

herbal image recognition was developed with satisfiable

accuracy. Mukhopadhyay et al [19] proposed a genetic

algorithm based on an image clustering approach for tea

plant leaves diagnosis, with a success rate of 83%. Pantazi

et al [20], reported a recognition accuracy 95% on vine

leaves images. Lu et al [15] developed an automated CNN

diagnostic system using a cross-validation approach to

recognize the ten rice disease classes, achieving 95.48%

overall accuracy.

Despite the effectiveness, numerous critical issues are

still there in the solutions indicated above. Initially, the

efficacy of the deep learning CNN models significantly

relies on the massive amount of datasets for training.

Currently, the datasets available for plant disease diagnosis

tasks are limited. These datasets contain laboratory condi-

tion standard single leaf images with coherent backgrounds.

Recent investigations have demonstrated that the detection

performance of the diagnostic system is drastically dimin-

ished when tested with real field images [16].

Consequently, their detection approaches cannot be

implemented in practice. On the other hand, the limited

trials for disease recognition result in low accuracy and lead

to the temporal analysis of disease conditions. To overcome

the abnormalities mentioned barriers, we collect the real

field images captured at different lighting conditions and

viewpoint locations.

This study includes the following significant

contributions:

1. An end-to-end deep ensemble neural network (D-ENN)

for automated prevention and control of vegetable crop

diseases and sensible use of fertilizers is proposed.

2. The loss functions of the proposed framework makes the

system extremely resilient against test data using real

cultivated field images.

:3. The empirical results of the D-ENN model surpass

existing benchmark classification methods.

The rest of the paper is organised as follows: Section 2

discusses the proposed architecture and implementation

details. Section 3 describes the dataset details and empirical

analysis of the D-ENN of the proposed approach. Finally,

the findings and conclusion are discussed in section 4.

2. Methodology

2.1 C-GAN network as a data augmentation
method

Data augmentation methods are employed to solve the

problem of insufficient datasets. The most common clas-

sical data augmentation technique combines affine image

transformations [35]. Various data augmentation methods

were applied to the dataset, such as image rotation, flipping,

transformation, zooming, shifting, and noise addition.

These methods generate images with similar distributions

as the original data. Therefore, the classification models

cannot be trained with more information than the original.

As a result, the model’s ability to develop is constrained,

necessitating the generation of different distributions to

boost sample diversity.

Over recent years, the profound deep learning techniques

used deep generative models as data augmentaion tech-

nique such as Variational Auto-encoders (VAE), Genera-

tive Adversarial Network (GAN), and Conditional GAN

(C-GAN). These models learn the feature distributions from

the original images and generate images with similar

distributions, adding additional information to the classifi-

cation model. In this work, C-GAN [23] has been used as a

data augmentation technique to contribute synthetic images

from original images to prevent overfitting problems while

training the network.

Formally, GANs are composed of two adversarial Con-

volutional neural networks models. The first model is the

generator model that generates fake samples directly

depending on the input vector from the random noise. In

contrast, the adversary discriminator model differentiates

the fake samples made by the generator from the real

samples obtained from the original image dataset. Both the

models are trained simultaneously, competing to outper-

form each other. Aside from the training, generator model

strives to deceive discriminator model by generating pro-

gressively better samples. On the other hand, discriminator

model trained to become more resilient in distinguishing

images from fake and real distributions.

Conditional-GAN also comprises of generator G and

discriminator D, both getting extra auxiliary conditional

input data such as the current image class label or another

attribute. Conditional input enables the network to resolve

the overfitting problem and long convergence time. The

overall layered structure of the C-GAN generator and dis-

criminator is shown in figure 1.

Mathematically, X represents data samples, and ‘C’

denotes a class label data fed to both generator G and

discriminator D. In addition, a random noise distribution
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given to G is indicated by Pz(z). The goal of the D is to

maximize the log-likelihood of correctly assigning class

labels to the real and fake images generated by the G, given

by logD(X/C), whereas G aims to maximize the generator

loss denoted as logð1 � DðGðz=CÞÞ. The overall loss

function of conditional-GAN is expressed as a two-player

min-max game as given by equation (1)

min
G

max
D

VðD;GÞ ¼ Ex� pdataðxÞ½logDðX=CÞ�

þ Ez� pzðzÞ½log½1 � DðGðz=CÞÞ��
ð1Þ

Initially, C-GAN trained with the original vegetable leaf

dataset to generate sythetic diseased images. Suppose, a

given leaf image dataset LD=f
�
XðnÞ;CðnÞ�gNn¼1, where XðnÞ

indicates a given leaf image and CðnÞ�f0; 1; 2::::12g, indi-

cates its associated class label. A real leaf image XðnÞ with

respective class label CðnÞ fed as input to the discriminator

model to train C-GAN. At the same time, a random noise

vector z and a class label CðnÞ is fed to the generator model.

Afterward, the generator generates fake images Fi and

passes them into the discriminator model. Finally, the

discriminator attempts to differentiate the real and fake

images. In this manner, C-GAN was trained on a custom

vegetable leaves dataset as shown in figure 2. Finally, the

synthetic images of each vegetable crop diseased leaves

category are generated by C-GAN. All these real and

synthetic images are integrated as input to the proposed

D-ENN Network.

2.2 Ensemble Network architecture - D-ENN

Figure 3 depicts the ensemble architecture of the proposed

model. The model comprised two simultaneous networks:

ensemble network EN and prediction network PN . Initially,

the training dataset, S=fS1; S2; :::; SKg contains both origi-

nal and synthetic images of vegetable plant diseased images

with class labels as ground truth. Let Ok is the ground truth

of class label Sk. Each sample image Sk is fed into the

ensemble network EN . Ensemble network contains the M

distinct Convolution Neural Networks (CNNs). Each CNN

is composed of softmax and Fully Connected (FC) layers.

For a given sample image Sk, each CNN generate the

individual features f1ðSkÞ; f2ðSkÞ; :::fNðSkÞ½ �. These features

are combined to generate the final ensembled deep features,

which functions as input to the prediction network PN . The

prediction Network PN comprises three Fully connected

(FC) layers and one softmax layer. This network predicts

the class label for each sample image Sk according to the

ensemble features f Skð Þ, i.e., cOk = o f ðSkÞð Þ. The diseased

vegetable leaf is identified when each image Sk is fed to the

proposed D-ENN network.

Earlier deep learning ensemble approaches are fine-tuned

after training the ensemble model. In contrast to these prior

methods, a unique ensemble framework including two

losses - ensemble loss LEnsð Þ and prediction loss LPreð Þ to

upgrade the ensemble network and prediction network

concurrently while training the model is designed in this

work. Two losses are added together and propagated back

to the ensemble and prediction networks during each epoch.

The proposed end-to-end D-ENN system can learn bigoted

fine-grained features and tackle the issues of vegetable crop

disease. The overall loss LTotalð Þ function to optimize the

proposed D-ENN network is represented using equation

(2).

LTotal ¼ LEns þ kLPre ð2Þ

where LEns and LPre indicate the ensemble loss and pre-

diction loss, respectively. k refers to a constant weighted

loss value. The ensemble loss LEns directs the ensemble

network to extract the fine-grained features generated by

each CNN based on the class labels. This loss function is

based on the categorical cross-entropy of all CNNs

obtained in the equation. Each CNN has the last softmax

layer to act as an activation function. The ensemble loss

LEns for mth CNN is measured by equation (3).

LEns;m ¼ �1

K

XK

k¼1

Ok log omðfmðSkÞÞ ð3Þ

where omðfmðSkÞÞ indicates the softmax prediction of mth

CNN of mth feature.

Similarly, equation (4) gives the prediction loss LPre on

the training dataset S. we indicate the total parameters of all

CNNs. The prediction network employs the deep features

supplied by f ðSkÞ. This characteristic drives the prediction

network to classify the diseased leaves images with a

correct class label from deep learned features. Also, the

prediction loss boosts the ensemble network to update the

CNNs, as each CNN generate consistent, fine-grained fea-

tures with that of prediction network PN .

Figure 1. Structure of C-GAN.
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LPreðS;weÞ ¼ �1

K

XK

k¼1

Ok log oðf ðSkÞÞ ð4Þ

2.3 Implementation details D-ENN network

In this work, as part of the proposed (D-ENN) design, four

different benchmark CNN models includes Inceptionv3

[24], MobileNetv2 [25], DenseNet121 [26], and Effi-

ceintNetB0 [27] are used. Each CNN in the ensemble

network (EN) generates fine-grained features. These

features are combined and, given as input to the prediction

network (PN). The present work employs the approach of

transfer learning to tackle the samll or limited dataset issues

of diseased leaf identification studies. The transfer learning

technique is a method that optimizes pre-trained model

parameters by training them with the target domain dataset

[36]. The source domain is the autonomous plant disease

scenario, and the target domain is the vegetable disease

detection. Given that the CNN models have been well

trained on an extensive dataset in the source domain, fine-

tuning these pre-trained models with a specific dataset in

the target domain might yield significant results. An added

Figure 2. Sythetic Image Generation using Conditional- GAN.

Figure 3. The Overall Pipeline of the Deep Ensemble Neural-(D-ENN) Framework.
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benefit of these techniques helps the proposed model to

improve detection performance in less time. In this work,

All the CNNs are pretrained by large-scale ImageNet [28].

These CNNs have tremendous image analysis accom-

plishments and can classify 1000 wide range of objects. So,

the top prediction layers of the pre-trained CNN models are

removed and incorporated in the and incorporate the cus-

tom prediction top layers to classify the diseased leaves

images. Each CNN is combined with one fully connected

layer (each layer with 512 nodes) and a softmax layer.

Then, the softmax layer helps to compute the final

ensemble loss. Lastly, the prediction network is used to

produce the classification task. The deep features of all the

CNNs are integrated and passed to a prediction network. It

contains three fully connected layers; each layer contains

512 (FC-1), 512 (FC-2), and 1024 (FC-3) nodes. Here, the

prediction loss is computed by the softmax layer of the

prediction network.

3. Experimental results and analysis

The experiments are conducted on Intel (R) Xeon

(R) E5-2698v4 processors, NVIDIA TeslaV100, and 32GB

memory per GPU. The proposed D-ENN framework is

implemented using deep neural network libraries, using the

python Keras Tensorflow framework.

3.1 Dataset

Custom field vegetable leaves images were taken from

different cultivated vegetable fields with wide variations in

illumination and weather conditions in this study. The

original vegetable dataset is imbalanced and has 1,986

images included with 12 total classes. Among the twelve

classes, 11 classes are about diseases of vegetable plant

leaves, and 1 class pertains to all healthy leaves. The dis-

ease classes (OYMV, RGALS, OCLF, CALB) contain a

limited number of images and are heavily biased to specific

disease classes. Synthetic images are generated using

C-GAN for specific diseased classes. Adding the synthetic

images generated by C-GAN to the original data set, the

volume of the data increased by nearly five times. The

Vegetable dataset with class-wise distribution of images is

presented in table 1. Acronyms were given for each class,

and all the images were resized to 256x256 to speed up

computations. The total vegetable dataset has been divided

into three subsets: training set, validation set, and test set, in

the ratio of 70:10:20 to mitigate the overlapping conflicts

between the sets. The training and validation sets were used

to train the D-ENN model, and the test set was used to

assess the model performance.

3.2 Evaluation metrics

Two series of evaluation metrics were carried out in this

study. The first series of metrics belong to evaluate the

performance of C-GAN. C-GAN model is trained to gen-

erate synthetic images of training set with 250 epochs. At

each epoch, the weights are updated to both generator and

discriminator models to produce the synthetic images near

actual images. After training, the C-GAN model generates a

total of 3250 vegetable leaves images. The metrics Peak-

Signal-to-Noise-Ratio (PSNR) and Inception score ðISgenÞ
measure the quality of the generated images by C-GAN

respectively.

PSNR ¼ 20: log10ðMAXIÞ � 10: log10ðMSEÞ ð5Þ

MSE ¼ 1

mn

Xp�1

i¼0

Xq�1

q¼0

½Sði; jÞ � Tði; jÞ�2 ð6Þ

where, MAXI denotes the maximum level of pixel intensity,

generally 255 and MSE denotes the mean squared error.

ISC�GAN ¼ expðEs� pgDKLðpðtjsÞjjpðtÞÞÞ ð7Þ

where, s� pg is the sample image s taken from g, p(t|s)

refers the conditional label distribution, p(t) is marginal

label distribution. Higher inception scores indicate a better

outcome, whilst DKLðpðtjsÞjjpðtÞÞ indicates the Kullback

Leiblerm (KL) - divergence corresponding to larger value

between the two distributions.

The second series of metrics is used to evaluate the

proposed D-ENN system trained on original and synthetic

images. Since the classification task for the plant disease

detection problem is associated with 12 classes, the per-

formance metrics are computed using equations (8), (9),

(10), and (11) respectively.

Table 1. Dataset statistics.

Crop_Disease_Name Label_Name Total_Images

Cucumber_Alternaria leaf blight CALB 590

Cucumber_ Herbicide burn CHB 1706

Cucumber_ Mosaic virus CMV 1086

Okra_Cercospora Leaf Spots OCLF 576

Okra_Yellow Vein Mosaic Virus OYMV 370

Bitter Gourd_yellow mosaic virus BGYMV 786

Bitter Gourd_Herbicide burn BGHB 582

Eggplant_Alternaria leaf spot EALS 1100

Ridge gourd_Alternaria Leaf Spot RGALS 470

Ridge gourd_Aphid damage RGAD 1008

Ridge gourd_Mosaic disease RGMD 690

Healthy HEALTHY 950
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Accuracy

¼
P12

cls¼1 TPcls þ
P12

cls¼1 TNcls
P12

cls¼1 TPcls þ
P12

cls¼1 TNcls þ
P12

cls¼1 FPcls þ
P12

cls¼1 FNcls

ð8Þ

Precision ¼
X12

cls¼1

TPcls

TPcls þ FPcls
ð9Þ

Recall ¼
X12

cls¼1

TPcls

TPcls þ FNcls
ð10Þ

F1 � Score ¼
X12

cls¼1

2 � Precisioncls � Recallcls
Precisioncls þ Recallcls

ð11Þ

Figure 4. Sample instances of original and synthetic images of vegetable dataset.
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3.3 Optimization and hyper-parameter selection

The overall vegetable leaves images are divided into 12

classes throughout the training. With the batch size of 16

images, momentum as 0.8 and weight decay as 0.0001

considered. Adam optimizer [29], is used for quick

convergence. After 200 epochs, the model training is

completed. Additionally, examine the k and learning rate to

analyze the correlation between ensemble loss LEnsð Þ and

prediction loss LPreð Þ in the D-ENN model. Initially, k is

set to 0, and then the ensemble loss LEnsð Þ is considered

when back propagating the model. With an increase in the

value of k, the significance of prediction loss LPreð Þ also

increases. As part of the evaluation, the value of k was

varied from 0 to 2 to observe the impact of k while training

the D-ENN model. In addition to k, the learning rates also

influence model convergence. The learning rate tweaked

from 10�3 to 10�5 to examine whether the network

converged. In the proposed D-ENN model, loss LEns

reduces all CNN losses to gain in-depth fine-grained fea-

tures, loss LPre reduces the prediction losses to achieve

accurate prediction outcomes. In this way, appropriately

integrating LEns and LPre allows the D-ENN network to be

optimized more effectively. Finally, the empirical findings

indicate that the D-ENN model with a learning rate = 10�4

and k ¼ 0:5 has the best F-measure value.

3.4 Performance analysis of C-GAN and D-ENN
Network

Figure 4 shows original vegetable leaf images and synthetic

leaf images generated by C-GAN. It exhibits that synthetic

images closely resemble the original images. Table 2 pre-

sents the relation between real and synthetic images

regarding PSNR values. The PSNR values reveal that the

images generated by C-GAN are almost similar to the

Table 2. PSNR Analogy.

Label_Name PSNR_Real (dB) PSNR_(Real ? Syntehtic) (dB)

Cucumber_Alternaria leaf blight 27.147 27.107

Cucumber_Herbicide burn 27.124 27.612

Cucumber_Mosaic virus 27.016 27.605

Okra_Cercospora Leaf Spots 28.947 29.104

Okra_Yellow Vein Mosaic Virus 28.101 28.524

Bitter Gourd_yellow mosaic virus 27.894 27.920

Bitter Gourd_Herbicide burn 27.192 27.706

Eggplant_Alternaria leaf spot 27.194 27.095

Ridge gourd_Alternaria Leaf Spot 28.861 28.349

Ridge gourd_Aphid damage 28.106 27.916

Ridge gourd_Mosaic disease 27.610 27.101

Healthy 27.107 27.741

Table 3. Mean Inception score.

Image_category Inception score

Real Images 2.642 ± 0.146

Synthetic Images 2.968 ± 0.203

Table 4. Comparison of D-ENN framework results and execution time with different benchmark methods.

Model Method Accuracy ð%Þ Precision ð%Þ Recall ð%Þ F1-Score ð%Þ Average Time (sec)

VGG [31] Method_VGG19 82.41 82.62 81.41 82.01 0.005

ResNet [32] Method_ResNet101 83.40 84.21 82.11 83.14 0.006

Inception [33] Method_InceptionV3 84.21 85.32 83.91 84.60 0.007

MobileNet [25] Method_MobileNetV2 85.90 86.20 82.71 84.41 0.006

DenseNet [26] Method_DenseNet169 82.61 84.21 83.92 84.06 0.005

Xception [34] Method_Xception 87.01 86.10 88.91 86.49 0.006

EfficeintNet [27] Method_EfficeintNetB0 88.42 88.25 87.52 87.88 0.005

AV_CNN [30, 31] Method_AV_CNN 89.64 88.65 88.92 88.78 0.021

DR_CNN [26, 32] Method_DR_CNN 90.15 90.40 89.91 90.15 0.034

Proposed D-ENN 96.02 95.71 95.32 95.51 0.045
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original images. The total mean inception scores were

calculated on real and synthetic images, as shown in

table 3. Synthetic image inception score is quite close to

that of real images inception score.

The proposed D-ENN model is compared with several

existing benchmark deep learning models and ensemble

models. Five recent CNNs are compared with proposed

model including ResNet50 [32], Inceptionv3 [24], Mobi-

leNetv2 [25], DenseNet121 [26], and EfficeintNet-B0 [27].

Furthermore, two well known ensemble based deep learn-

ing models were examined, namely AV-CNN and DR-

CNN. AV-CNN include the ensemble of Alexnet [30] and

VGG [31], while DR-CNN includes a combination of

DenseNet169 [26] and ResNet [32]. These models are

initially pretrained by ImageNet [28] and fine-tuned by a

custom vegetable training dataset. The results and average

computational time of all the above state-of-the-art meth-

ods are represented in table 4. EffcientNetB0 [27] achieves

the best accuracy compared to other deep learning methods

due to its compound scaling approach. Despite this,

ensemble-based deep learning methods yield better results

than deep learning methods. These findings suggest that

ensemble deep learning models can learn fine-grained

features for plant disease classification tasks. As shown in

table 4, when compared with DR-CNN, AV-CNN give

worse results since DR-CNN have deeper residual and

dense block interconnections in the network.

DR-CNN relies on a majority voting technique for label

prediction; our proposed scheme employs a prediction

network rather than a majority voting scheme leading to

accurate prediction label outcomes. Furthermore, our

framework trained end-to-end way by concurrently updat-

ing the parameters of both ensemble and prediction

networks, thus achieving the best performance metrics

compared to AV-CNN and DR-CNN ensemble models and

all other recent benchmark methods. Generally, ensemble

based deep learning methods incorporate multiple CNNs; it

takes longer to compute than approaches that employ one

CNN. Even so, the proposed framework mean frame rate

(seconds) is above 25, indicating that the proposed method

is a practical solution to aid in plant diagnosis. Figure 5

presented the confusion matrix of the proposed D-ENN

framework. As shown in figure 5, the x-axis represents the

predicted outcome, and the y-axis represents the ground

truth class labels of the plant diseased images.

3.5 Ablation studies

The ablations experiments were undertaken to exemplify

the effectiveness of the proposed D-ENN framework by

considering various combinations of Convolutional Neural

Networks (CNNs). To overcome the GPU card and memory

storage constraints, the four light-weight CNN models at a

time, namely, Inceptionv3 [24], MobileNetv2 [25], Den-

seNet121 [26], and EfficeintNetB0 [27] are simultaneously

trained. And also considered the same dataset (train and

test), and the total number of epochs for these experiments.

For the sake of keeping things simple, each CNN

abbreviated with specific notations. For example, I?M?E

indicates that the proposed model is trained with Incep-

Netv2, MobileNetv3, and EfficientNetB0 to extract the

fine-grained features. Ablations studies were determined by

taking various combinations of CNNs as represented in

terms of F1-Score as shown in figure 6. The union of

CNNs, M?D gives the second-best F1-score. And, the

union of D?E CNNs owned the first-best F1 score. Fur-

thermore, the F1 score of I?D?E was the highest when

three CNNs were combined. These results suggest that the

Figure 5. Confusion matrix for D-ENN framework.

Figure 6. Accuracy comparison of proposed framework with

various CNN combinations.
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union of InceptionNetv2, MobileNetv3, and EfficientNetB0

CNNs can get better fine-grained features for plant disease

classification tasks. Despite this, the proposed approach

with four CNNs had the highest F1-score compared to all

the above mentioned experiments.

4. Conclusion

In the present study, a novel ensemble-based D-ENN

framework to solve the plant disease detection problems

using real cultivated field images is developed. The pro-

posed method also uses a Conditional Generative

Adversarial network to generate synthetic image samples

for specific limited disease classes. This kind of proposed

augmentation approach enhances network generalizability

and prevents overfitting problems. Afterward, the pro-

posed model was trained on original and synthetic ima-

ges. In contrast to the other existing deep ensemble

models, the proposed model can learn in-depth features

from different CNNs and successful prediction accuracy

at the same time in an effective end-to-end way. To

adequately train the parameters of the D-ENN network,

both ensemble loss and the prediction loss are presented.

Four CNNs are used in the architecture: InceptionNetv2,

MovileNetv3, DenseNet, and EfficeintNetB0. Ablation

experiments suggest that combining several CNNs and

losses for plant disease categorization is beneficial. The

experiments have proven that the proposed technique is

significantly superior to the competing benchmark mod-

els. In Future, the proposed approach will be integrated

with diagnostic methods to analyze pathological parame-

ters and examine the infected portions in plant diseased

images.
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