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Abstract. Human hand gestures are the most important tools for interacting with the real environment.

Capturing hand motion is critical for a wide range of applications in Augmented Reality (AR)/Virtual Reality

(VR), Human-computer Interface (HCI), and many other disciplines. This paper presents a 3 module pipeline for

effective hand gesture detection in real-time at the speed of 100 frames per second (fps).Various hand gestures

can be captured by simple RGB camera and then processed to first detect the palm and then find essential 3D

landmarks, which helps in creating skeletal representation of hand. In order to form a 3D mesh around the

skeletal hand 2D and 3D annotations of Hand gestures are merged and in the final module 3D animated hand

gestures are presented using advanced neural network. 3D representation of hand gestures ensures greater

understanding of depth ambiguity problem in monocular pose estimations and can be effectively used in

computer vision and graphics applications. The proposed design is compared with several benchmarks to

highlight improvements in the results achieved over conventional methods.

Keywords. Augmented reality; Human-computer interaction; 3D reconstruction; Virtual reality.

1. Introduction

Gesture detection is a complex issue as it has various aspects to

look after. A lot of work has already been conducted in face

detection while hand gesture detection is a relatively a difficult

task. Hand gestures including fingers have more permutations

and combinations of gestures to detect, which can be useful for

computer graphics applications. Computer vision solutions face

different challenges like self-occlusions, depth ambiguity-per-

ceptions, noisy backgrounds etc. Also real-time detection of

hand gestures requires auxiliary processing power that can

process more frames per second, ideal speed being 30 fps. 3D

motion capture of handgestures becomes a challenging task due

to motion parallax of depth in a monocular set up and fast

movements of the hand in real-time. The recent research has

extensively tried to solve suchproblemswith the effectiveuseof

deep learning [1–3], yet there are two major issues to be

resolved.

Firstly, even though the annotated hand data is severely

constrained due to difficulties in gathering real human hand

gestures with 3D annotations, the approaches make use of

the classification of all publicly available training datasets

separately. The inclusiveness of all kinds of data types in

solving this problem is missing. Especially for acquiring

3D annotation for hand gestures, complex set ups such as

stereo cameras or multiple cameras need to be set up at

different locations [4]. Also, there is another way to capture

hand motions, which includes use of 3D scanners [5, 6] or

hand gloves with sensors [7] placed at required key points

which are completely ignored due to hardware constraints.

Secondly, the state–of-the-art gesture detection research

comes with 3D joint detection using different deep learning

techniques, but it misses outs an opportunity of a complete

3D hand representation which can be an ultimate solution

for various computer graphics applications such as AR and

VR. Some investigations mitigate this issue by undertaking

an independent inquiry of fitting a dynamic hand model to

sparse predictions [8], but lack local convergence due to

excessive optimization. All of the research studies dis-

cussed lack strong supervision in training as it includes only

similar kind of 2D or 3D annotated data.

In this research paper a technique to solve the above-

mentioned issues is proposed. This technique uses

monocular RGB images as input to efficiently detect hand

gesture landmarks in 3D space with the help of all the

possible data for training along with 3D representation of

captured hand in real-time. Here, initially the palm in the

frame is detected using real and synthetic hand dataset.*For correspondence
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Detecting palm is comparatively easy and hence, it is a fast

process as the possibility of occlusion and blur is minimal.

Secondly, a hand landmark model trained on 2D and 3D

annotated data is used to find out 21 landmarks in a given

hand. The start of the wrist is highlighted as the ground

truth. Three different datasets are used to increase accuracy,

namely real-world, synthetic and combination of both. Both

datasets have their pros and cons, but combined one gives

scalable results. An accurate skeletal representation of hand

gesture is revived to process it further.

When it comes to research in gesture detection, only

skeletal representation of hand is not enough as the pro-

posed system attempts to achieve it not only in real time but

also continuously via live video feed that too at the stag-

gering speed of 100 fps. A 3D Mesh representation of the

hand gesture landmarks is selected. Therefore, because of

the real-time video processing, it not only detects hand

gestures but also detects motions in real-time.

For further research, it is also important to project 3D hand

gestures to understand joint rotation in real time which is also

known as the inverse kinematics problem [9]. For this pur-

pose, IKNet6 is introduced, which solves the issue by using

3D hand gesture landmarks as well as quaternion represen-

tation of gestures in 3D space to animate a virtual hand.

IKNet6 is trained on 2D as well 3D annotated data. It makes

IKNet6 better than its previous version as training onMotion

Capture data which gives strong supervision while training,

thus it delivers superior performance in real-time.

A three-module pipeline is proposed for hand gesture

detection in real-time:

1. Palm detector plus 2D hand landmarks

2. 3D mesh estimation of hand gesture

3. 3D mapping of hand gesture rotation

Figure 1 showcases the dynamic model, which captures

and animates various hand gestures and poses in real-time.

The proposed system works efficiently in various chal-

lenging scenarios such as self-occlusions, varying scales,

and even object occlusions. To summarize, the proposed

system delivers superior performance as compared to state-

of-the-art techniques.

2. Related work

This section describes recently conducted research in this

domain and how the proposed system is different and

better.

2.1 Standalone methods

Santavas et al [10] proposed a lightweight Convolutional

Neural Network (CNN) for 2D hand gesture detection for

Human-computer Interaction (HCI). Although efficient and

real–time, this system lacks the depth part for greater

accuracy. A model named ArtiBoost [11] has recently been

introduced for 3D hand pose detection. It has been trained

only on the HO3D dataset and lacks inclusion of other

possible hand datasets. BigHand 2.2 M is the benchmark

dataset [12] produced exclusive outcomes for hand pose

Figure 1. 3D skeletal as well as 3D virtual hand representation as final output.
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estimation. It has been produced using six different mag-

netic sensors and highlights depth as well as 21 key points

of hands, but it lacks joint rotation analysis. Body2Hands

[13] is another technique, which has been introduced to

infer 3D hands from a picture frame containing the upper

body of the subject. It is a bit complicated as in every frame

hand needs to be cropped from the body to process it fur-

ther. ContactOpt [14] is a technique proposed to estimate

the contact of human hand on the particular surface with the

help of an optimized model, as it tries to find mesh in both

i.e. hand and object surfaces. It turns out to be a bit com-

plicated. Zimmermann et al [15] proposed a contrasting

technique using self-supervised learning over a large

dataset for hand shape estimation; this comes under visual

representation learning and lacks a variety of possible

datasets.

2.2 Semi-supervised methods

A semi-supervised generative model [16] is used to over-

come possible annotation error in hand pose estimation by

compensating the faulty ground truth. Although useful in

preparation of effective datasets, this technique lacks

advanced application. A cascading multitask learning

method is used to understand the correlation between a

hand and the object in a particular scenario [17], heat maps

are used for a better understanding of the same. As multiple

datasets are used to implement this model, the outputs are

predictable and vary in noisy backgrounds. A multi-view

bootstrapping technique is used to triangulate a frame

where hand key points are found from RGB images [18],

this technique lacks real-time outputs. HandTailor [19]

presented a technique to recover 3D hands from an input

RGB image, but misses out on 3D mesh representation of

the same. Ge et al [20] used Graph CNN for 3D Hand

gesture estimation effectively, but they did not have MoCap

data in training. Chen et al [21] made an attempt for

effective 3D reconstruction of hand, but showed inadequate

results when it came to uniform skin texture of hands. A

recent upgrade in 3D reconstruction of hands was carried

out especially while interacting [22] using collision aware

factorized refinements, although impressive this method is

prone to occlusions. Another semi-supervised model with

pseudo labels was attempted to highlight the interaction

between 3D hands and objects [23], this model had similar

constraints as the previous one. On the similar grounds,

research by NVIDIA proposed an adversarial motion

modelling for hand gesture estimation using unlabelled

images [24]. This method needs generalization in different

types of videos in real-time.

2.3 Disparity-based methods

Due to the widespread availability of advanced depth

cameras, many studies have explored estimating hand

posture from depth images, which basically highlight dis-

parity for better understanding. Initial depth-based studies

approximated hand pose by integrating a probabilistic

model onto a depth image [25–27]. In other cases, exclu-

sionary projections [28–30] were also used for initialization

and validation. Self-supervised parameter tuning was

adopted using unlabelled depth information [31], whereas a

realistic dataset was presented to improve robustness [32].

Additional representations, such as 3D point cloud [33, 34]

and 3D spatial information [2, 35] can be extracted from

depth maps and were used in some investigations. While

these initiatives yield compelling outcomes, they remain

restrained by the intrinsic limitations of depth sensors,

which do not operate in direct sunlight, consume a lot of

power and demand users to be in close proximity to the

sensor.

3. Methodology

As shown in figure 2, the proposed system initiates by

capturing the hand gestures in real-time, then it extracts

features. Firstly, it detects palm then creates 2D and later

3D key points around the palm and fingers. In the second

module, 3D mesh is formed around the skeletal represen-

tation and 3D shape estimation, followed by 3D represen-

tation of hand gestures in the third one. All of this is done in

Figure 2. Step-wise implementation of the proposed system.
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real-time. The total size of this three-module model is 535

MB with dataset included; the individual size of the mod-

ules does not exceed 50 MB. The detailed description of the

process is presented in the following sub-sections.

3.1 Palm detection and hand landmark module

The first stage contains two sub-sections. First step is to

detect the palm in the given frame. Once the palm is

detected, then finding proper key points over the rest of

the hand becomes easier. Supplying the hand landmark

model with a correctly cropped palm image minimizes

the necessity of data augmentation and allows the net-

work to devote the majority of its capacity to landmark

detection performance. The landmark prediction of the

previous frame is used as input for the current frame to

construct a bounding box, excluding to apply detector on

each frame. Rather, the detector is used just on the first

frame. In another scenario, the detector turns on only

when there is no hand in the last frame. Thus, a lot of

processing power is saved, which is crucial for a real-

time system.

Hand detection is a difficult task due to two main rea-

sons. Firstly, it has typical occlusion with its surrounding

along with other fingers. Also, the pixel area in a frame

covered by hand is pretty small. Secondly, as compared to

face detection where there are diversified areas such as

mouth, eyes, and nose, scarcity of such diversified areas

makes detection of hand gesture a bit difficult task. This

complexity is resolved by introducing a palm detector as

palm is immune to aforementioned occlusions. A pre-

trained Single Shot multibox Detector (SSD) is employed

trained on COCO dataset [36], which uses Square bounding

boxes for palm at the same time ignores the pixel ratio and

reduces the anchors [37]. Further, Non Maximum Sup-

pression (NMS) algorithm is applied for finding out an

accurate bounding box. The NMS algorithm works well as

it choses intersection over union even if there are inter-

acting palms. A bounding box can be finalized compara-

tively in short period of time for a higher scene-context

perception. Then a feature extractor based on Feature

Pyramid Network (FPN) is made functional for object

detection. An encoder-decoder feature extractor is

manoeuvred akin to FPN, which minimizes the focal loss

during training.

Following palm detection across the input frame, hand

landmark model uses regression to conduct precise land-

mark placement of 21 key points within the detected hand

regions. It consists of two-layered CNN trained on HGM-4

[38] dataset for real-world hand gesture data along with

synthetic hand gestures from Creative Senz3D [39] dataset.

This data is annotated with 21 key points over different

hand gestures. This model is further trained on combined

dataset i.e. real-world and synthetic hand gesture dataset to

increase its robustness. The combined dataset contains total

3000 different hand gesture images out which 2000 are

taken from real-world and 1000 synthetic images are taken

from aforementioned datasets.

3.2 3D mesh estimation of hand gestures

2D key points data received from the last model is further

processed with depth map estimated hand gesture data. A

dataset named FabDepth I, on similar grounds to fore-

ground-background separated hand gestures with depth

map is developed [40]. Further 3D annotated dataset is also

introduced while training this model for strong supervision.

Mediapipe [41] model is introduced to get perfect key

points at uniform distance which presents an accurate

skeleton of the hand. Mediapipe has number of calculators,

which make hand gesture tracking faster and more precise

with a minimum number of anchors involved.

A quaternion representation is chosen to give an exact

idea about the movement of hand in real time and in 3D

space mesh. For developing the final hand gesture model

and its 3D mesh estimation, MANO [5] model is incorpo-

rated. MANO’s surface mesh can be entirely altered and

depicted by the geometrical features.

M b; hð Þ ¼ w TP b; hð Þ; J bð Þ; h; Ŵ
� �

ð1Þ

TP b; hð Þ ¼ T þ BS bð Þ þ BP hð Þ ð2Þ

As shown above, a skin feature w is applied to a rigged

dynamic hand mesh with shape TP, joint positions J estab-

lishing a kinematic branch, pose h, shape b and blend

weights Ŵ all of which are trained on the MANO dataset

itself. With the help of this template 3D Hand skeleton

shape estimated gestures ready to feed to the next stage of

IKNet6 are made available.

3.3 3D mapping of hand gesture rotation

To thoroughly understand the hand gesture movements in

real-time dynamic system, only 3D skeleton hand is not

enough as the application area of this research lies in

computer graphics applications such as AR/VR and also

360-degree video. IKNet6 was employed as mentioned

before to come up with animated hand also known as

hand gesture rotation. This model has many benefits as

compared to contemporary networks. Firstly, it trains on

motion captured data along with various 3D hand gesture

data. This provides full supervision during training, which

is not the case with similar networks. Also it has single

feed forward pass, which gives it extra speed in operation

in comparison with iterative methods tried in the related

research.

IKNet6 is further trained on EgoGesture [42] dataset.

This dataset focuses on hands and has depth frames and

videos of various hand gestures. IKNet6 is a 6-layer fully
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connected neural network with batch normalization, and its

activation function is sigmoid. Due to better interpolation

properties required in the data augmentation stage, the

quaternion representation is selected over a horizontal angle

representation.

The loss term has four different sections namely Lcosine,
L1-2, L3D and Lnorm, therefore the equation becomes,

Lcosine þ L1�2 þ L3D þ Lnorm ð3Þ

where Lcosine gives distance between the angles involved, It

is connected via the ground truth quaternion QG and pre-

dicted Q, as seen in,

Lcosine ¼ 1� QG � Q�1
� �

ð4Þ

where Q�1 is the inverse quaternion and � is the product of

two terms. L1-2 supports the quaternion presentation of the

results and is given by,

L1�2 ¼ QG � Q
�� ��2

2
ð5Þ

L3D gives the measure of loss in 3D representation of hand

gestures which can be represented by,

L3D ¼ TG � D Qð Þ
�� ��2

2
ð6Þ

where TG is nothing but 3D joints annotation ground truth

and D refers to dynamic function. Finally, Lnorm provides

normalization loss involved, which can be represented with

a non-normalized Q
^

as,

Lnorm ¼ 1� Q
^

���
���
2

2
ð7Þ

4. Results

In this section, we discuss about the framework in terms of

instruments used for research experiments along with hyper

parameters opted for training the model followed by qual-

itative and quantitative results, which are finally supported

by an ablation study to highlight the significance of the

parameters in the proposed design.

4.1 Instrumentation

As the system works in real-time, Octacore I5 machine

backed with NVIDIA 1080Ti Max Q Graphics Processing

Unit (GPU), all three modules running together give avant-

grade 100 fps runtime performance speed which is better

than contemporary research carried out in recent times.

First two modules of the model can run on CPU but with a

limited speed of 30 fps. For the last module, GPU is a must

for processing 3D reconstruction and animation of hand

gestures.

4.2 Training details

The hyper parameters are selected to achieve a trade-off

between the expected results and the complexity of the

model. All three modules are trained with Adam optimizer

with a learning rate of 10-4. The batch size for the first

module is 32 while for the second one it is 64, both having

50 iterations each. For the third module, the batch size is 64

but the number of iterations are increased to 100. The entire

framework is run on PyTorch.

4.3 Qualitative results

Demonstration of the applicability of this unique method in

a variety of scenarios is given in this subsection, proving

that it generalizes effectively to previously unseen data.

The first two outputs of figure 3 indicate that the proposed

method is effective for swift motions and unclear images

due to complex background, as well as tricky stances like

holding a pen between fingers in an uneven manner. The

third output shows a hand holding a ball in a side pose as

well as the fourth one a complicated hand finger gesture

being reconstructed with fine precision. The middle part of

figure 3 shows key points of hand gestures highlighted in

3D space. In figure 4, it is shown that one can capture

biologically different hand shapes such as that of a Kid or a

Man with the help of the proposed method. It is worth

noting that the finger and palm shapes have been adapted

and appear genuine. The results show that estimated hands

give a realistic representation of varying inputs.

4.4 Comparative study

The proposed combinational model is compared with its

peers on various datasets. These datasets and benchmarks

are selected such that the proposed model is not trained on

them previously. Two such datasets as test sets namely DO

[21] and ED [23] are selected. Needless to say, these

datasets have different numbers of hand sequences. The

percentage of correct 3D key points (PCK) and the area

under the PCK curve (AUC) are employed as evaluation

metrics, with the thresholds ranging from 25 mm to 50 mm.

Global alignment is undertaken as pre-synthesis, to pre-

cisely measure the local hand pose. The centroid of the

finger was aligned for ED and DO.

4.5 Quantitative analysis

Table 1 gives one to one comparison between the latest

techniques incorporated on DO and ED datasets, as none of

the models included in the comparative study are trained on

them.

This gives an impartial platform for the analysis of these

techniques. As seen in Table 1, the proposed model gives a

Sådhanå          (2022) 47:247 Page 5 of 9   247 



(a)

(b)

(c)

(d)

Figure 3. Examples of results in four scenarios are shown, (a) Noisy background, (b) Self and Object occlusion, (c) Grabbing a ball and

(d) A Challenging gesture.
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superior performance as compared to others and outper-

forms the rest of the models in both test benchmarks. The

basic reason behind it is, being trained on the extra number

of datasets especially MoCap and EgoGesture datasets that

help in full and strong supervision of the model.

4.6 Ablation study

Two separate ablation studies are presented in this sub-

section. The first one is about the palm detector and 2D

landmark module. Key terms are swapped with each

other to better understand the proposed design. As

observed in Table 2, the decoder with focal loss gives at-

par accuracy.

In the second ablation study, final architecture is verified

by first presenting the AUC of IkNet6 and then removing

the support of the same from module 2 i.e. 3D mesh esti-

mation and hand gesture detection part. Later, the effect of

final datasets used without MoCap and then EgoGesture

data is studied. The final analysis of the design is performed

by removing two key loss terms from module 3.

5. Conclusion

In this study, a combinational approach is introduced to

estimate monocular hand posture, shape as well as gestures

using data from two fundamentally distinct modalities i.e.

image and motion data. The novel neural network design

IKNet6 provides 3D representation of an animated hand. As

shown in table 1, the characteristics such as accuracy per-

centage (95.2 on DO dataset and 82.5 on ED dataset),

robustness, and runtime (100 fps) show significant

advancement over the state-of-the-art networks. For future

research, this network can be upgraded to capture and

process more than one hand in the given frame through

RGB input.
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