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Abstract. This paper presents a difference scheme by considering cubic B-spline quasi-interpolation for the
numerical solution of a fourth-order time-fractional integro-differential equation with a weakly singular kernel.
The fractional derivative of the mentioned equation has been described in the Caputo sense. Time fractional
derivative is approximated by a scheme of order O(t>~*) and the Riemann—Liouville fractional integral term is
discretized by the fractional trapezoidal formula. The spatial second derivative has been approximated using the
second derivative of the cubic B-spline quasi-interpolation. The discrete scheme leads to the solution of a system
of linear equations. We show that the proposed scheme is stable and convergent. In addition, we have shown that
the order of convergence is O(t>~* + h?). Finally, various numerical examples are presented to support the
fruitfulness and validity of the numerical scheme.
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1. Introduction

Partial integro-differential equations with a weakly singular
kernel have many applications in various fields of science
and engineering, such as heat conduction in materials with
memory, viscoelasticity, reactor dynamics, biomechanics,
and pressure in porous media [1-4]. Several numerical
methods have been used for solving integro-differential
equations with a weakly singular kernel. For example,
Wang et al [5] proposed a high order compact alternating
direction implicit scheme for solving two-dimensional
time-fractional integro-differential equations with a weakly
singularity near the initial time. Qiu et al [6] introduced and
analyzed a Sinc—Galerkin method for solving the fourth-
order partial integro-differential equation with a weakly
singular kernel. In [7], the Sinc-collocation approach
combined with the double exponential transformation has
been employed for solving a class of variable-order frac-
tional integro-partial differential equations. Fakhar—Izadi
[8] derived a space-time Spectral-Galerkin method for the
solution of one and two-dimensional fourth order time-
fractional partial integro-differential equations with a
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weakly singular kernel. Zhang et al [9] proposed the quintic
B-spline collocation method for solving fourth order partial
integro-differential equations with a weakly singular ker-
nel. Dehestani et al [10] applied Legender-Laguerre func-
tions and the collocation method for solving variable-order
time-fractional partial integro-differential equations.
Hashemizadeh er al [11] presented a spectral method for
solving nonlinear Volterra integral equations with a weakly
singular kernel based on Genocchi polynomials. Biazar and
Sadri [12] presented an operational approach based on
shifted Jacobi polynomials for solving a class of weakly
singular fractional integro-differential equations.

Fractional calculus has proved to be a valuable tool in
modeling of different materials and processes in many
applied sciences like biology, bio-mechanic, electrochem-
istry and etc, in accordance with their memory and hered-
itary properties [13—16]. Various numerical schemes are
presented for solving fractional partial differential equa-
tions, such as finite difference [17-22], spectral [23-25],
meshless [26, 27], and finite element [28, 29] methods.

In this paper, we consider the fourth-order time-frac-
tional integro-differential equation with a weakly singular
kernel as follows [30]:
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CD&;M(L t) - uxx(xv t) - I('B)uxx(xv t) + Mxxxx(x7 t) :f(xa t)v
(x,1) € Q,
u(x,0) = u’(x),0<x<L,
u(0,1) = u(L,t) = uy,(0,1) = uy (L, 1) =0,0<t<T,

(1)

where Q = (0,L) x (0,T],0<a, f<1f(x, ) is source term
and u°(x) is given smooth function. In fact, problem (1) is
equivalent to

D u(x, 1) — v(x, 1) — TPv(x, 1) + vie(x,1) = £ (x, 1),
' (x,1) € Q,
v(x, 1) = e (x,1),0<x<L,0<t<T,
u(x,0) = u’(x),0<x<L,
u(0,¢) = u(L,t) =v(0,1) =v(L,t) =0,0<t<T.

(2)
In (2), ¢ Dy, is fractional derivative operator in caputo sense
and Z) is defined as follows

t
Z(B)uxx(x, ) = ! )/ (t— s)ﬂfluxx(x, s)ds,t >0, (3)
0

r(p
where I'(.) is the Gamma function.

Equation (1), can be found in the modeling of floor
systems, window glasses, airplane wings, and bridge slabs
[31, 32]. In fact, fourth-order spatial derivative operators
are needed in the modeling of heat flow in materials with
memory, strain gradient elasticity, and phase separation in
binary mixtures [33-35].

The fourth-order fractional equations have recently
attracted the attention of researchers. For example, in [36],
the authors proposed a new study for weakly singular
kernel fractional fourth-order partial integro-differential
equations by means of optimum q-HAM. Tariq and
Akram developed a quintic spline technique for time
fractional fourth-order partial differential equations [32].
Heydari and Avazzadeh used the orthonormal Bernstein
polynomials to solve nonlinear variable-order time frac-
tional fourth-order diffusion-wave equations with nonsin-
gular fractional derivative [37]. Abdelkawy et al [38]
derived a highly accurate technique for solving dis-
tributed-order time-fractional-sub-diffusion equations of
the fourth order. Yang et al [39] introduced a quasi-
wavelet based numerical method for fourth-order partial
integro-differential equations with a weakly singular ker-
nel. Roul and Goura considered a high order numerical
method for time-fractional fourth order partial differential
equations [40].

Cubic B-spline quasi-interpolation has been applied in
some papers, see [41-47]. The fundamental benefit of
B-spline quasi-interpolation is that they may be built
directly without solving any systems of linear equations. It
also results in a better approximation of smooth functions.
Furthermore, they are local in the sense that the value of
B-spline quasi-interpolant at a given point is determined
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solely by the values of the given function in the neigh-
borhood of that point. Sablonniere [48] found that the cubic
B-spline quasi-interpolation first derivative is more accu-
rate than the finite difference approximation. Among the
numerical methods so far proposed to solve time-fractional
integro-differential equations, B-spline quasi-interpolations
have rarely been used. This motivates us to construct a
numerical scheme by using cubic B-spline quasi-interpo-
lation to solve equation (1).

In this paper, we construct a difference method using
cubic B-spline quasi-interpolation for problem (1). We
approximate the temporal Caputo derivative with a L;-
discrete formula. Meanwhile, we apply a second-order
formula to approximate 7 #) operator. Then we proved the
stability and convergence of the difference method.
Numerical examples verify the accuracy of the proposed
method. Also, the convergence order of the scheme is (2 —
o) for time and 2 for space. The advantages of the method
are flexibility and simplicity. The method is computation-
ally optimal and fast.

The remainder of the paper is organized as follows. In
section 2, we introduce some definitions and preliminaries
to fractional calculus and cubic B-spline quasi-interpola-
tion. The difference scheme for the fourth-order time-
fractional integro-differential equation with a weakly sin-
gular kernel is derived in section 3. The stability and con-
vergence of the method are investigated in Sections 4 and
5. In section 6, some numerical examples are provided to
demonstrate the theoretical results. A conclusion ends the
article.

2. Some definitions and preliminary

The domain is divided into a uniform grid of mesh points
(xj,t) with x; = jh, h :ﬁ,OSjSM and 1, = kT, T :§,
0 <k < N. The values of the function u at the grid points are
denoted u(x;, ;) and UF is the approximate solution at the
point (x;, ).

Definition 1 The left- and right-sided Riemann-Liouville
integrals of a suitably smooth function f{x) on (a, b) are
defined by [31, 49, 50]

RLIZ’J()C) = 1_<1“> /a e ]_C(gna dt,a<x,n—1l<oa<n,

(4)

b
reL3f () = F(la)/x (1 _f()gn_adt,x<b,n —l<a<n,

(5)

respectively.

Definition 2 The left- and right-sided Riemann-Liouville
derivatives of order o are defined by [31, 49, 51]
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"
RLIDZ,JJ(X) = ﬁ (RLD;§n7a>f(x))

T @
- T(n—a) dx”/a (x

Wdt,x>a,

(6)

and

WL () = (<1 S (W DL A (0)
(

S Gy SN
_F(nfoc)dx"/a (x_t)ot—n—o—l dr,x<b,
(7)

respectively, where n is a positive integer satisfying
n—l<oa<n.

(k=DM — (k=1 - pr*
b (k—j+ )P 4 (k-

W)
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|R| < CT*™* (12)

where C is a positive constant given by

22—a
+2—a

1 11—«
F(Z—a)[ 12

C= — 27+ 1)] max [u"(x,1)].

to<t<t
Lemma 2 Let ff € (0,1) and u(., t) is suitably smooth on
(0, T) then for the TP there holds that [49]

k

I('[;>M(X, tk) = Zaj,ku(x, t]) + 0('[2),
Jj=0

(13)

where

Now, we introduce B-spline and univariate B-spline

j=0,
=) =20k =)™,

1<j<k—1,
1, j=k

Definition 3 The left- and right-sided Caputo derivatives
of order o are defined by [16, 31, 49]

D f(x) = F(n]— 2 / ) = f tgt)_ﬂ di,a<x,  (8)

and

Dl f(x) = F(_l) )/: 7 fngi)_nH dr,x<b,  (9)

(n—oc —X

respectively, where n is a positive integer satisfying
n—l<a<n.

Lemma 1 (L; approximation) Let o € (0,1) and u(.,t) €
C%([0,T)) then the following approximation formula holds
[52, 53]

D u(x, 1)

>~

1

= m [bou(x, l‘k) — (bk,j,1 — bk,j)u()@ lj) (10)

1

~.
Il

- bk_lu(x, to)] + R,
in which

b=+ =1 0si<k=1, ()

quasi-interpolants that we will use in the next section. In
order to define B-splines, we need the concept of knot
sequences.

Definition 4 A knot sequence & is a nondecreasing
sequence of real numbers,

E={&, ={6 <6< <EmeN.

The elements &; are called knots.
Provided that m > p + 2 we can define B-splines of
degree p over the knot sequence &.

Definition 5 Suppose for a nonnegative integer p and
some integer j that §;_,_; <&, < -+ <¢; are p + 2 real
numbers taken from a knot sequence &. The j-th B-spline
Bjpe: R — R of degree p is identically zero if {;_,_; = ¢&;
and otherwise defined recursively by [54]

§—x
Bi1p-1(x) + gi—éBj,p,l,g(x)
J j—p

X — éjfpfl

Bjpe(x) = m

(14)
starting with

17 lf X € [éi*hii)a
0, otherwise.

Bipe(x) = {
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A B-spline of degree 3 is also called a cubic B-spline.
Using the relation (14), the cubic B-spline B;3 ¢ are given
by

(x — ‘fj74)3
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Definition 7 A knot sequence £ is called (P + 1)-open on
an interval [a, b] if it is (P + 1)-regular and it has end knots
of multiplicity p + l,i.e., [54]

(&3 = &a) (&2 — §a) (&1 — &joa)
x—&a)’ (G2 =)

Jfa<x<{is

(&2 —

Eia) (& — &3)(Gmr — &ioa)
(x — @;4)(@71 —x)(x — ‘fj73)

+

T e -5 &)
(5]‘ - x)(x - fj—s)z

(& —&3)(G1 — &3)(Ga — &3)

Vg3 <x<gi

Bise(x) = (= &a)(&1 —x)° (15)
(&o1 = Gma)(Gm1 — &=3)(&m1 — &i2)
T (x—¢&i3) (&1 —x)(x = &)
(&1 = &-3)(G1 — §2) (& = &3)
(&~ 0~ &) . |
* (&= &a)(&G =& — &) Forasx<im
(& -’ ifé | <x<&
(& —&3)(&— &) - ¢0) = !
0, otherwise.
Li;cggéizlﬁzz [54], suppose for integers n > p >0 that a Gim e E<E <5
- . S 6n—1 < 6n
é = {él’}i:y{)—p—l = {énfpfl < énfp <-- < §n+p}7 . o - .
N N *fnJrl*"'*énﬁLp*'b'
ne P € Ny, (]8)

is given. This knot sequence allows us to define a set of
n + p B-splines of degree p, namely

{Bl,pﬁéa e aBn-s-p,P-,é}- (16)

We consider the space of splines spanned by the B-splines
in (16) over the interval [&g, &,],

n+p

Spei={s:[{,&] o R:s= chBjJ,_;,cj e R}. (17)
=T

We now introduce two definitions about knots which are
crucial for splines.

Definition 6 A knot sequence ¢ is called (P + 1)-regular
if &, 1<¢ fori=1,---,n+p. Such a knot sequence
ensures that all the B-splines in (16) are not identically zero
[54].

Suppose {Bj¢}i-1 form a basis for S, ¢. For each j =
1,---,n+p, let 4; be a linear functional defined on
Cla, b] that can be computed from values of f at some set of
points in [a, b]. We have the following definition.

Definition 8 A formula of the form

n+p

O (%) =Y (4)Bjpe(),

J=1

(19)

is called a B-spline quasi-interpolation formula of degree
p [55].

According to [54, 56] the error of a quasi-interpolation
satisfies
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19yl

) = (p+1)]

(Qnf)(¥)] <

s, A x € S,
(20)

where 7 = [, &,], S is the union of the supports of all B-
splines B, ¢, i ~x and [|f"*V)]| so.s, denotes the maximum
norm of f*1) on S, and A(x) = max,cs, |y — x| that ~ is
used to indicate proportionality. If the local mesh ratio is
bounded, i.e., if the quotients of the lengths of adjacent knot
intervals are <r,, then the error of the derivatives on the
knot intervals (&, ¢,) can be estimated by

) = (@) @) < elp )Gl s A,

(21)

for j <p.
Suppose a = xp <...<x, = b are equally spaced points
in the interval [a, b]. We have the following theorem.

Theorem 1 Given a function f defined on [a, b], let

5 () + 187()

Aif =

f(x0)7

l(*f(xj—s) + 8f(xj-2)

0 s) ~ 9 2) +
f(xn)7
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¢j=xj for j=0,1,...,n. Now according to (23) and (24)
we have
) 1/ 11 3 1
(0af) (x0) = 7 ( - gf(xo) +3f(x1) — Ef(xz) + gf(%))
. 1/ 1 1 1
(@) = ( = 3700) ~ 3o0) +£(02) = 7))
(Qaf) (xn-1)
11 1 1
= i (G0 1)+ 1)+ 3705 )
(0f) (xa)

(Qif),(xj)
:% (1_12](()(12) o %f(xjfl) +§f(x]+l) - %f(x]'+2)>7

2<j<(n-2),
=1,
— 9 (x2) + 2f (x3)), j=2,
—f(x-1)), 3<j<n+1, (22)
18f (xp—1) + 7f (%)), Jj=n-+2,
j=n+3.

Then (19) defines a linear operator mapping Cla, b] into
Spe with Q,s = s for all cubic polynomials s [55].

For approximate derivatives of f by derivatives of Qsf up
to the order /3, we can evaluate the value of f’ and f” at X;

by (Q3)'(x) = S5 (4)Bj ¢ () and
(Q3)"(x) = 315 (44F) By (). We set
Y=(fofir--of)'s Y= flsonf)) and Y=
(fO, VoD where f = (Qsf) (%), j=1,...,n and
[ =(0)"(x;), j=1,...,n. The first and the second
derivatives of Qs(f) are calculated as
n+3
:Zm B, s(x),j=0,1,...,n, (23)
=
w3
= Z(m Bj,¢(x),j=0,1,...n, (24)

where B, pe(x) and B; .¢(x) are obtained from (15) such that

and
" 1
(@) an) = g (00) = 5700) + 45e2) o))
(@) 0) = g (1) = 20 41 )
() (1) =3 (£ = 2n0) 4705

(  Fa) + 4 () — 5 (ert) + 2f(xn)>

h2
(©)') = 3 (- g -2) + 3705-0) - ()
+21) — §f05:2)) 257 < (- 2)

Therefore, we can display the approximation of f’ and f” in
the following matrix form
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Y =D =Dy, (25)  Dialit) = v(xis 1) = TPv(i, 1) + via i ) = f (i 10),
V(Xhtk) = Mxx(x,',tk), 1 SZSM - la 1 SkSN
where Dy, D, € R"D*(1) are obtained as follows:

(26)
11 3 1
- 3 -——= = 0 0 0 0
6 2 3
1 1 1
R | _Z
3 > G 0 0 0 0
1 2 0 2 1 0 0 0
12 3 3 12
1 2 2 1
2 3 Y 3 & o 0
D, = : : : ;
1 2 2 1
0 0 T -3 0 3 I 0
1 2 2 1
0 0 2 3 312
1 1 1
- 1 Z -
0 0 0 0 G > 3
0 0 0 0 1 3 3 1
3 2 6
2 -5 4 -1 0 0 ... 0 0
-2 0 0 0 . 0 0
1 5 5 1
5 3 > 3 “g5 0 0 0
1 5 5 1
0 —- 2 -3 2 - 0 0
6 3 3 6
D2 =
1 5 5 1
0 0 s 3 3 76 °
1 5 5 1
0 0 O =% 3 7 3 7%
0 0 0 0 1 -2 1
0 0 0 -1 4 -5 2
3. Description of the difference scheme Using (10), (13), (23) and (24) equation (26) can be
approximated by
In the present section we construct a difference scheme for i
solving (1). T PN o N 0
Considering (2) at the point (x;,#;), one has r2-oa) [boui = (be—jmt = biy)it; = by
B (27)
k
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M d2 M 2
ik k .
vf.‘:zoh—’uj+(R2)i7l§l§M—1,1§k§N, (28) Z;—z’ A<i<M—1,1<k<N, (33)
= =
where |(R)f| < C(z>™* + h?) and |(Ry)f| < Ch2. Us=UY =0,VE=VE =0,1<k<N, (34

After simplification we obtain
- . U =Ux),1<i<M. (35)
-1

uf — (4 pag vl + p Z hU Vi = uff + u Z aj i+ We set I} = p+ pagx and I = /5. So that in each time step

J=0 we encounter the following system of linear equations
k-1
(bk_] 1 — by /)I/tl + by _ 1U; +/1(R1) AUk :Fk, (36)
j=1
where
Ld; k k
vf:Zh—’u]+(R2)i,1<z<M—1,1<k<N, Ut
Jj=0 Uk
(29) g
where p = 7°I'(2 — a).
Ignoring (R,), (R,)} and replacing the functions u* and Upr—s
vk with its numerical approximations U¥ and V¥ in (29), we A I B Uk — Uk, P F!
obtain the following difference scheme c 1) 14 ’ )’
u_p 4
Uf — (1 + pag) Vi + Z—é :ufk—’_:uzajkvj
j=0 :
(30) Vit
. Vi
+ ) (brjmr — by I)U + bi 1U0 (31)  such that B and C are pentadiagonal matrices and [ is
J=1 identity matrix
1<i<M—-1,1<k<N, (32)
L =2 I3 0 0 0 0 0 0
5 1
=1 -1, =3l =1 —=1 0 0 0 0
3h 1 2 2 6"
1 5 5 1
——1 =1 — 1 =3l =1 ——1 0 0 0
2 3h 1 2 3h 2
B = : ,
1 5 5 1
0 0 0 ——1 =1 -1 =3l =1 ——1
2 32 1 2 3h e
1 5 5
0 0 e 0 0 ——1 =1 — 1 =3l =1
e 3h 1 2 3h
0 0 0 0 0 0 L —L =2
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2 1
2 i 0 0 0 0 0 0
5 3 5 1
- — - — 0 0 0
%hz h25 %hz 6h§
— - — - — 0 0 0
6h2 3h2 h? 3h*  6h?
C= : : : : : : : : : o
' ' ' 1 5 3 5 1
0 0 0 — - — ——
6h? 13h2 h25 %h2 6hg
0 0 0 0 — — — -
6h? 3h? }122 %hz
0 0 0 0 0 0 n i
Us
h2
_ _ k
W4 Y0 @ VE+ 30 (bejor — b )US + by U — bV _ioz
_ b 6h
WS 4 1Y) @ VE + 3 (brjor — b ) US + by 1U0+6Vk 0
0
_ kS auVE + Y (b — bu) US + by U3 o :
k k=1 k ' 0 bk 0
Wi + 1D o ajkaM72+Z S (brjor = b ) Uy + b a Uy 2+6V U(')"
W + ,“Z;Zol iV, + Z 1 (brejot = bic) Uy + bica Uy, — bV 6_;:;
Uy
e
4. Stability analysis 1 5 5 1
yandy Uik—s<—6U§‘2+3U’<1—3Uk+3Uf;1 6U,"+2>
In the current section, the stability of the scheme (31)—(33) , 1 5 5 1
can be analyzed by using the Fourier method [57]. We _W< 6 U, 4t 3 3 3 — 3Ulk )t 3 3 Uk 1 _EU‘k>
assume that the exact solution u is continuous and the
derivative of u is square integrable. Let U}‘ be the (] —Ur 4= 5 -3UF | += > Ut — ! Uf‘ﬂ
. . 3h? 6 3 3 6
approximate solution of the scheme, and define
S e ey EAET )
with corresponding vector
5r | 5 " 5 4« R
k= (k)T 32 (—gUi_l +3U =30 +3 U — g Uis
_ r | 5 k 5ok |
Thanks to (31)—(33) we have — &7 <_8Ui 4z 3 z+1 —3Uf, + 3 SU, — c Ui,y
1 5 5 1 k=1
Kk _agrk k k ; 1 5
Ul s( Ui +3U5 = 3Uf +3 UL — 6U,+2> :ﬂﬁk+uz%(_gUlIc2+3Ukl_3Uk
+r( Ly +5V" 3V"+5V" Ly ) 5 ]1:0
z 2 1 i+1 i+2 k k
6 ) 3 3 6 +§ Ui+1 6 Ui+2>

k-1
=puff+u Z aj Vi + Z(bkqu — b YU + by UY,
=0 =)

U pagk
R

_ K

=7

So that

Set
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A r 10r s r 25r

TS 2:_18h2’)“3:6+ﬁ+ﬁ’

=2 A0 0 e T 0O
3182 B 1872 " 9

then we have

WUy + U5+ WU, + UL

+A5Uk+)4 l+1+)3 l+2+}2 l+3+il i+4

¢ 5
= Zg(—U,"er?)U"l—w"
5 k 1 k
+3 Ul+1 6Ul+2>

=~

_i
(br—j— ]_bk—])U + b UY.
1

<.
Il

Next, we define the grid functions as follows:

. h h
G, xj_§<x§xj+§a
) = 2 (38)
0, 0<x<—-orL——=-<x<L.
2 2
We can expand ((x) into a Fourier series
C) = D dihe™t, (39)
I=—
where
1t k —i2nlx/L
=— [ F(x)e dx. (40)
L Jo
Denoting
L 5 i
= ([ 1w e). (1)
and using the Parseval equality
b2 S 2
[ i@k =3 wor, @)
I=—0
one has
117 = ) (43)

I=—00

We can expand Cj]-‘ into Fourier series, and Because the
difference equations are linear, we can analyze the behavior
of the total error by tracking the behavior of an arbitrary nth
component [58]. So we can assume that the solution of (37)
has the following form
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k iojh
gj = dke o )

where o, = 2nl/L. Substituting the above expression into
(37) we obtain

k—1

b i

dk: k— ld() Zj—l
Z

(brcjr = buy)d; 75 0 Giad

Z Z

(44)

where

1 10
s = fgcos(2axh) + ?cos(axh) —-3<0,
z =21 cos(4fh) + 24, cos(3h)
+ 23 cos(2ph) + 224 cos(fh) + /5.
Theorem 2 Suppose that d, (1<k<N—1) are

defined by (44), then we obtain

ldi| < Cildo], k=1,2,---,N—1.

Proof We will prove this claim by mathematical induc-
tion. For k = 1 we prove that there exist a constant C; such
that

Hl —|—FS‘/(101|

I

|| = |do < Cy|dy|.

For this purpose, we have

1
1+ rsag; =1 —1—52610 | < 3 (1 — 202 + O(h“))

10 a2h?
—(1-=2—+0H")) -3
202h*  50%h?
=1+ h—2 ( — o(h“))

3 3
=1 — pag 0% + pag10(h?*),

and

M Q22 4
z-—18h4(1 8p°h —|—0(h))

10u (1 - 95;”2 + 0(h4))

S oont
p+pagy  2p 50u 2,2 4
— 4+ — )1 =2 h
+( 3h? Jrh“Jr9h4 B+ o)
n —10u — 10ua; - 10_,u - 20_,u
3h? ont  ht
272
h
X (1 —ﬁT+0(h4)> +1
L+ 3u+3par U 50u 9u
h? 18h* " on*
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h 04 2 S Ao 20n
T1sht 18K ont  ont K+ ' 18h*
SW9uwﬁ5M_2wmmﬂz
On*t Kt 18K2 h? 3

Sp+5Suap o Bu+3pary  p+ pa
+< 3 )ﬁ + h? 3h2

10[14’10#(11’1

3h?
10u 68u 190u

o(1l)——0(1)+—0(1) ———o0(1

+4co0(1) - Lo+ =L o) - = o)

+<ﬁ;?i>mw)

1 1
_( 0#+30M01,1)0(h2)+1

18h? h?

— (3u+3par,)O(h*) + 1.

2634

+ (u+ ,ua1,1)ﬁ2 - ?0(1)

1+ .
a1 561 — O and h — 0 in such a

T F(2 o)

We take the limit from ———

way that we maintain the ratio 4 w= equal to a fixed
constant H. So that
1+ rs'ag 1

—>4 5 =
z BPH A+ 1

As a result, there is a positive constant C; independent of
N, M that says

1+ rs'ag
Z

<q.

Assume that
|dy| < Cyldo|, 1<n<k—1

We have
| < biildo| + 7 (b1 — b )ldj| + |rs'|| 50 ajulld|
k| < .
|2
Now assume that
c :max{Cl,Cz,...,Ck,l},C” > CI,C”Z 1, (45)

so similar to initial case k = 1, we obtain

be 1 C"|do| + 3777 (br—j1 — bij)C"|do| + |rs'|C"| 0 4| do

<

|2

(bk—l + 30 (bejor — bk—j)) C"|do| + |rs'|C"| 2 @il o]
B l2]
_ (e wIen S )il _

Izl

Ck‘d()':

This completes the proof. O
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Theorem 3 The finite difference scheme (31)—(35) is
unconditionally stable for o € (0,1).

Proof Thanks to theorem (2) and Parseval’s equality, we
obtain

Sk 2 k2 012
[U* = Tl = 111 < G,
so that
|US = 0"l < CIIU° = T°||s
which indicates that the numerical scheme is stable. ]

5. Convergence

In this section, we prove that convergence of the difference
scheme (31)—(35). Similar to the previous section let eJ’-‘ =
ujk — U}‘,1<j<M— 1,0<k <N — 1 and and denote, ek =
(ek ek, .. ek, )T R = (R RS, .. R, )T,
0<k<N-1.

From Equations (31)~(35) and R{™! = O(z*~* 4 h*) and
noticing that ej‘-) = 0, similar to (37) one has

k k 1k k k 1k k
)461;4 + /1261-73 + 43€;_5 + /1461»71 + )vsei + As€; ) + l3€i+2

k ) ok
+ o€y + ey

a k 5 5
:/‘f}k+ﬂzfi_2 __ez 2+§ 1_36 +3ez+1 _geﬁrz)
j=0
k-1 '
+ ) (brjo1 = bij)e; + uR}
=
(46)

Using the similar idea of stability analysis, we define the
following functions

i h h )
€, Xj—5<x<x+5,1<j<M-1,

k : 2 2

ef(x) = L I (47)
0, 0§x§§0rL—§<x§L.

and
. h h .
R;, Xji—z<xZ<xj+-,1<j<M—1,
k 2 2
R (x) =

h h
0, 0<x< EorL—§<x§L.
(48)

We expand the ¢*(x) and R*(x) into the following Fourier
series expansions
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o0

ek(x) = Z nk(l)eiZ”IX/L,Rk(x) _ Z ék(l)ei2“1"/L7
[— el
(49)
where
1 L . 1 L ]
nk(l):_/ ek(x)e—zanx/L dx, ék(l):_/ Rk(x)e—zanx/L dx.
L Jy L)
(50)

Applying the Parseval equality

/ue Wear= S Ine)]

I=—00

& [ IR eEa= 3 a0l
(51)

and

L ) M—-1 ) L , M—-1 )
/ lE @I dx = 3 Allet| P, / IR @I dx = 3 R,
JO j=1 0 j=1

(52)

we have

k112 = D It

I=—00

WP IR = > 1@

[=—00

(53)

Now, we suppose that

k io.jh
ej = e ’
k __ iojh
Rj - éke )

where o, = zé—" By replacing the above relations into (46)
leads to

S (brjor — by s S0 ajan;
Wk:jl J J./+ JOJr]_"_.u_ék'
Z b4 b4
(54)
Lemma 3 (Discrete Gronwall inequality) Let y, and g,

be nonnegative sequences and b be a nonnegative constant.

If [59]
yngb—i_ Z gkYk»nZO;

0<k<n

then

w< ]«

0<j<n

> )

0<j<n

1+g) <bexp<

Theorem 4 If i, be the solution of Equation (54), then
there is positive constant C such that

Il < Cl& . (55)
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Proof In view of the convergence of the series on the
right-hand side of Equation (53), we know that there exists
a positive constant C,, such that

|§k|§c2|él|7k:1727"'5N_1' (56)

According to Equations (54), (56) and theorem (2), we have

k—1 k— |
;i IIFS le'\
1 < D (bt — biy) Tj Z j 7 |J
= ay 2
k=1 k=1
< <C1 (br—j—1 — b—j) + &> Z%‘,k) In;| + C3&4]
=0 =0
S C3|fl ‘ exp(C1(1 — bk) + C2C4)
< Gsléi|exp(Cr + CCy) = Cl&y].
This completes the proof. O

Theorem 5 The difference scheme (31)—(35) is conver-
gent, and the order of convergence is O(t*~* + h?).

Proof By theorem (4) and Equation (56), we can obtain

ekl = > ImI* < - laml?

l=—00 I=—0

=Y laml?

I=—00

= C*|IR |,

furthermore, there exists a positive constant Cj, such that

RESC (27 + 1) = ||RY| < Ci/(M — D)h(z> ™ + h?)
<CVL(T T+ 1)

So that
el < CIRYp <C'(7* + h?),

where C' = C+/L. This completes the proof. O

6. Numerical experiments

In this section, five test problems are presented to check the
effectiveness, validity, stability, and convergence orders of the
present method. The domain in all examples is Q = [0, 1]x
[0,1]. All computations are implemented with MATLAB
R2020b. The error norms used in this section are as follows:

llelloe =, max __ lu(x, ;) — Ulxi, )],

1

le(z.m)ll = [l = (Axfjm)

where ej’-‘ = u(x;, %) — U}. In all examples we have used the

following formulas to calculate the convergence rate:
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Table 1. L2-norm errors and order of convergence for « = 0.1,0.3,0.5 and f = 0.1,0.15,0.45 for example 1.

T a=0.1 p=0.1 T a«=0.3 p=0.15 T a=0.5 p=0.45

h % lle"] ri(t,h) % M ri(t,h) 5 lle"] ri(t,h)
% 9.6233e—03 9.9334e—03 1.0321e—02
% 2.6307e—03 1.8711 2.6851e—03 1.8873 2.7430e—03 1.9116
ﬁ 6.4975e—04 2.0175 6.6955e—04 2.0037 6.7759e—04 2.0173
% 1.5008e—04 2.1141 1.6518e—04 2.0191 1.6533e—04 2.0350
11% 2.5577e—05 2.5528 4.0002¢—05 2.0459 3.8777e—05 2.0921
ﬁ 5.4572e—06 2.2286 8.8637e—06 2.1741 7.3685e—06 2.3958
Table 2. L2-norm errors and order of convergence for « = 0.1,0.3,0.95 and = 0.65,0.45,0.15 for example 1.
T h o=0.1 p=0.65 h a=0.3 p =045 h o=0.95 p=0.15

000 [Vl ra(t,h) 000 M| r(z,h) T000 lle¥ |l ra(z, h)
i 3.6258e—04 2.5677e—04 4.0930e—05
% 1.1178e—04 1.6976 7.7851e—05 1.7217 2.4556e—05 0.7370
% 3.3758e—05 1.7273 2.3047e—05 1.7561 1.2870e—05 0.9321
L 9.6178e—06 1.8115 6.2854e—06 1.8745 6.0982e—06 1.0775

W
N

Table 3. L2-norm errors and orders for 7 =1/109 and o =
0.9, f# = 0.75 for example 1.

%=09 B=0.75

h lle¥ |l ri(z, h)
L 1.0717e—02

L 2.7944e—03 1.9393
L 6.7617e—04 2.0471
L 1.5544e—04 2.1210
L 2.7379¢—05 25052
L 4.3300e—06 2.6606

W
DS}
(=]

n@m—M&(k@%ﬂ)m@m—m&(k@ﬂM)

le(z, m) lle(z, W)l

Example 1
lowing problem:

For the first example, consider the fol-

Table 4. L.,-norm errors with & = 1/512 for example 1.

CD(D;J”(X’ t) - ”xx(xv t) - I(ﬁ)uxx(xa t) + uxxxx(xa t) :f(x7 t)v

with the initial condition u°(x) = 0. The source term is

Fa+p+1) , mT(a+p+ l)t/,
rpg+1) reg+1)

+ 7 + n4> £ sin(mx).

) =

The exact solution is
u(x, 1) = P sin(nx).

In tables 1 and 3, we record the norm of errors and
convergence orders in spatial direction for different values
of o and f . In table 2, the orders of convergence with
respect to time for different values of o and f§ are reported.
For each value of o and f3, we chose different spatial step
sizes h = 1/10,1/20,...,1/320 and a fixed temporal step
length of 7 to obtain the numerical convergence rates in

a=0.15 B =0.95 o=0.95 B =085
T llelloe CPU [le]] 5 llelloe CPU ]l
% 1.8425e—05 0.5749s 9.444e—05 5.7083e—04 0.5517s 5.632e—04
% 9.2283e—06 1.2213s 2.410e—05 29111e—04 1.1902s 2.882e—04
é 6.7322e—06 3.1247s 6.012e—06 1.5331e—04 3.0141s 1.529¢e—04
.. 6.0623e—06 9.1477s 1.732e—06 7.7794e—05 8.9472s 7.770e—05

N
o0
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Table 5. Error for different 7, « and fixed &, 7, f for example 1.

Page 13 of 22 253

0=04,=05 2=0.7,=05
T h T [le]] lleV]]
2 o L 5.6081e—06 2.2204¢—05
4 & L 47115606 3.5576e—05
8 o L 1.2735¢—05 4.8432¢—05
10 o L 2.6216e—05 7.5994¢—05

Exact solution for u(x,t)

t 0 o ’ %

Numerical solution for u(x,t)

t 0 o X

Figure 1. The graph of exact (left) and numerical (right) solutions at t = 1/55 and h = 1/320 with o = f = 0.1 for Example 1.

Pointwise errors for u(x,t)

%10
4

04
08 06

X t

Figure 2. The surface of absolute pointwise errors when 7 =1/55, h =

contour plot for numerical solution u(x,t)
— e

Y

0 0.2 0.4 0.6 0.8 1

ﬁ and contour plot of numerical solution for Example 1.
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%108 le(x,t=1)l

1.2 T T 1.2

*  Numerical solution
Exact solution

Figure 3. The comparison between numerical solution and exact solution (left) and pointwise absolute error (right) with T = 1/55 and

h =335 at t =1 for example 1.

Table 6. L2-norm errors and order of convergence for o = 0.1,0.4,0.8 and f = 0.3,0.5,0.6 when t = 1/277 for example 2.

=03 =05 =0.6
a=0.1 F a=04 F «=0.8 P

h leN]] ri(t, h) CPU lleM | ri(t, h) CPU lleM ] ri(t, h) CPU
1.0339e—02 0.7798s 1.0563e—02 0.7663s 1.0646e—02 0.7657s
2.7348e—03 1.9186 1.4044s 2.7753e—03 1.9283 1.3889s 2.7890e—03 1.8867 1.3777s
6.7373e—04 2.0212 2.5325s 6.8187e—04 2.0251 2.3544s 6.8486e—04 2.0717 2.5309s
1.6383e—04 2.0400 4.8787s 1.6701e—04 2.0296 4.6083s 1.6718e-04 2.0344 4.8575s
3.8025e—05 2.1072 9.6636s 4.0284e—05 2.0516 9.0576s 3.9813e—05 2.0701 9.6751s
- 6.8213e—06 2.4788 20.1019s 8.8901e—06 2.1799 19.0211s 8.2699¢—06 2.2673 20.320s

[ N ST
|»—o|"o‘ 8l-3l

[T
I|— Q|
(=] ]

Table 7. L.,-norm errors with 7 = 1/512 for example 2.

B =0.35 =0.15 =0.60
o=10.50 ’ o =0.55 A o=0.15 A

llell o CPU Jle]| 5 el CPU e 2 lell. CPU ]|

1.3292e—04  0.5127s 1.400e—04  1.2294e—04  0.5598s  1.268e—04  6.9553e—05  0.5420s  6.930e—05
5.0593e—05 1.0761s  5.562e—05  5.4439e—05 1.2022s  5.829e—05  2.0456e—05 1.1891s  2.340e—05
1.8086e—05  2.6267s  2.237e—05  2.3390e—05  3.0994s  2.763e—05  4.0925e—06  3.1243s  7.567e—06
5.0688¢—06  7.4859s  9.078e—06  9.0937e—06  9.1954s  1.329e—05 1.3550e—06  9.1544s  72.492e—06

]

2= -5

N
0!

Table 8. Error for different 7, « and fixed h, 7, § for example 2.

2=04,=05 2=07,=05
T h v e el
2 & L 1.3528¢—06 5.0532¢—07
4 L L 5.2240e—06 3.9042¢—06
8 & L 9.4774¢—06 8.6232¢—06
10 & L 1.0983¢—05 1.0252¢—05
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Exact solution for u(x,t)
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Numerical solution for u(x,t)

Figure 4. The exact (left) and numerical (right) solutions at t = 1/277 and h = 1/640 with « = 0.8, f = 0.6 for example 2.

09r b

0.8 r b

0.7 [ *  Numerical solution

Exact solution
0.6 4

051 b

0.4 r b

031 ]

02 4

01 1

0 . . . . . . . . .
0 0.1 02 03 04 05 06 07 08 09 1

x107 le(x,t=1)l

0 . . . . . . . . .
0 0.1 02 03 04 05 06 07 08 09 1

Figure 5. The comparison between numerical solution and exact solution (left) and pointwise absolute error (right) with t = 1/277 and

— 1 —
h =g at t =1 for example 2.

spatial, which is in excellent agreement with our theoretical
results. In table 4, we compared our results with the
reference [30]. In table 5, we presented the results for large
time instant f.

Figure 1 compares the plots of the exact and numer-

ical sulotions computed by difference scheme using t = %

and h = ﬁ. The plot of pointwise errors and the contour
plot of numerical solution at # = 1 with t =2 and h = 335
is illustrated in figure 2. In figure 3, a comparison between

the numerical and exact solutions at r = 1 with 7 = % and

h = ﬁ is demonstrated. It can be seen from tables 1 and 3

that, when spatial step sizes decrease, we obtain better
results. In tables 1, 2, and 3 the CPU time is almost 2
seconds. All the figures show that the numerical scheme is
efficient and effective.

Example 2 Consider the problem (1) with exact solu-
tion u(x,t) = t#sin(nx), (x,) € Q. The source term is
taken as

©°T(B+1)
r2p+1)

(T
0= (g1

P+ n4) 1 sin(nx).
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Pointwise errors for u(x,t) Pointwise errors for u(x,t)
-3
%103 x10
5 3
4 25

Pointwise errors for u(x,t) Pointwise errors for u(x,t)

-4
%10 x10

Figure 6. Poinwise  errors for  Example 2: top left (2=0.8,5=0.6,71=1/10,h=1/640), top  right
(0 =0.1,=03,t=1/277,h = 1/640), bottom left (0 =04,=05,t=1/10,h = 1/640), bottom right
(2 =0.6,5=09,t=1/5h=1/640).

Table 9. L2-norm errors and order of convergence for o« = 0.1,0.5,0.7 and ff = 0.1,0.5,0.7 for example 3.

T 2=0.1 p=0.1 T 2=0.5 B=05 T 2=07 B=07
h By lle¥] ri(t,h) B lle¥] ri(th) % lle¥] ri(th)
=+ 4.0189e—03 4.0180e—03 4.0259e—02

L 1.1401e—03 1.8176 1.1517e—03 1.8276 1.1566e—03 1.7994
x 2.9085¢—04 1.9708 2.9551e—04 1.9625 2.9706e—04 1.9611
& 7.3102e—05 1.9923 7.4336e—05 1.9913 7.4659¢—05 1.9924
1 1.8346e—05 1.9932 1.8479¢—05 2.0080 1.8460e—05 2.0159
o 4.6520e—06 1.9808 4.4587e—06 2.0512 4.3457e—06 2.0867

L 1.2216e—06 1.9291 9.4657e—07 2.2358 8.0916e—07 2.4251
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Table 10. L2-norm errors and order of convergence for « = 0.1,0.2,0.95 and = 0.71,0.85,0.15 for Example 3.

h o=0.1 p=0."71 h o=0.2 p=0.85 h o =0.95 p=0.15
5000 llel ra(z, h) 000 [l r(z, h) 1000 [l ra(t, h)
% 2.3836e—05 2.0196e—05 4.4053e—05
% 6.1586e—06 1.9525 4.9076e—06 2.0409 2.5523e—05 0.7874
le 1.6320e—06 1.9159 1.2385e—06 1.9864 1.3373e—05 0.9325
ﬁ 4.9616e—07 1.7178 3.7713e—07 1.7155 6.5759e—06 1.0241
Table 11. Error for different T, « and fixed 4, 7, f for Example 3.
a=04,=0.5 0=0.7,=0.5
T h T [l [l
2 ﬁ % 9.8215¢—05 8.7838e—05
4 ﬁ 1—10 7.5296¢—04 7.3353¢—04
8 ﬁ % 5.7694¢—03 5.7400e—03
10 ﬁ % 1.1099¢—02 1.1070e—02

Exact solution for u(x,t)

0.015

0.005

t 0 o = %

Numerical solution for u(x,t)

0.015

0.005

t 0 o T

Figure 7. The exact (left) and numerical (right) solutions curves at T = 1/95 and & = 1/1280 with « = 0.7, f = 0.7 for example 3.

In table 6, we list

L2-norm errors and experiment order of convergence
for the difference scheme. Herein, we take 7 = 2% and
choose different spatial step sizes for different values of o
and f§ . Also, the convergence rate in space is seen to be
about 2. The CPU time is less than 30 seconds. In table 7,
we compared our results with those of the reference [30]. In

table 8, we presented the results for large time instant .
Figure 4 shows the exact and numerical solutions. Figure 5
presents the exact and numerical solutions and absolute
error at r = 1. In figure 6, we depicted graph of pointwise
errors for different values of «, f8, 7, h. It is apparent from
tables and figures that the numerical scheme works well.
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Pointwise errors for u(x,t)

x107

Pointwise errors for u(x,t)

errors  for

8. Poinwise
(=0.9,=0.1,7=0.02,h = 1/640,T = 2),
(0 =0.8,=04,7=0.08,h =1/640,T = ).

Figure
bottom  left

Example 3 In this example the exact solution of the

problem (1) is given by u(x,7) = Ax*(1 —x)* and the

inhomogeneous term is

6:3(1 — x)°
I'4—o
36x(=5x% + 10x% — 6x + 1)f+3
B T(f+4)

flx,0) = — 683x(=5x> + 106> — 6x 4 1)

Tables 9 and 10 give the L2-norm errors and
convergence orders using the present numerical method.
It is observed that the numerical solutions of the numerical
scheme are seen to be in good agreement with the exact
ones. In table 11, we presented the results for large time
instant #. The CPU time is less than 12 seconds. In figure 8,
surfaces of pointwise error are portrayed at different
o, B,7,h, T . In figure 7, the numerical solution and exact
solution curves have been demonstrated. In figure 9, the

Example 3: top left
(0=0.9,=0.1,7=0.04,h = 1/640,T = 4),

—72(5x* — 5x + 1)F.

Sadhana (2022) 47:253

Pointwise errors for u(x,t)

Pointwise errors for u(x,t)

x10

(0=0.7,=0.7,7=1/95,h =1/1280,T = 1), top
bottom

right
right

comparison between u(x;, fx) and Uf at t = 1 is created to

show the efficiency of the presented method. Also, the CPU
time illustrates that the proposed scheme is fast.

Example 4 Consider fourth-order time-fractional inte-
gro-differential equation with a weakly singular kernel (1)

with exact solution u(x,7) = 2e*x*(1 — x)°, (x,7) € Q. The
source term is taken as

22773 (1 — x)°
flxr) = ﬁ
+ 2 x(x® + 9x* + 3x° — 37%% +30x — 6)
n 2e°x(x° 4+ 9x* + 3x3 — 37x% + 30x — 6) B2
rp+3)
— e (x4 212 + 123x* 4 1674
— 156x% — 108x + 48).
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x107 le(x,t=1)I

0.016 . 1
*  Numerical solution
0.014 Exact solution

0.012

0.01

0.008

0.006

0.004

0.002

0

0 0.1 0.2 0.3 0.4 0.5 06 07 08 0.9 1

Figure 9. The comparison between numerical solution and exact solution (left) and absolute error (right) with © = 1/277,h = % and
a=0.7,=0.7 at t = 1 for example 3.

Table 12. L2-norm errors and order of convergence for « = 0.1,0.6,0.8 and f = 0.1,0.3,0.5 when t = 1/40 for Example 4.

% =0.1 B=0.1 x=0.6 B=03 %=0.8 B=0.5
h lle¥ |l ri(z,h) [l ri(t,h) el ri(z,h)
L 5.8631e—03 5.7861e—03 5.7812e—02
L 2.1882¢—03 1.4219 2.1813e—03 1.4074 2.1907e—03 1.3999
L 6.0335e—04 1.8587 6.0458e—04 1.8512 6.0829e—04 1.8486
L 1.5495¢—04 1.9612 1.5552e—04 1.9588 1.5617e—04 1.9616
L 3.9074e—05 1.9875 3.9049¢—05 1.9937 3.8712e—05 2.0122
i 9.8318e—06 1.9907 9.5980e—06 2.0245 8.9835¢—06 2.1074
L 2.5002e—06 1.9754 2.2062e—06 2.1212 1.5212e—06 2.5621
e 6.6552e—07 1.9095 3.5654e—07 2.6694 3.6583e—07 2.0560

)
®
(=}

Table 13. Error for different 7, T', o and fixed A, f§ for Example 4.

a=20.3 a=0.8
T h T lle¥]] [le]]
0.5 % 2‘70 8.2658e—07 1.6247¢—06
1 Hlo 1_10 4.0473e—06 1.2768e—06
2 @ 4|L0 9.9581e—06 8.9517e—06
4 o ) 3.8448e—05 3.7578e—05
8 % % 1.5223e—04 1.4828e—04

From table 12, we can see that by decreasing /, more  solutions are the same. The plot of pointwise error and
accurate results can be achieved. In table 13, L-2 norm comparison between numerical and exact solutions at t = 1
errors are demonstrated for o = 0.3,0.8. It is clear from are illustrated in figure 11. All the tables and figures clearly
table 12 that the presented method is accurate with a good  show that the present difference scheme is impressive in
order of convergence. The CPU time is less than 12  term of accuracy.
seconds. Figure 10 shows that the exact and numerical
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Exact solution for u(x,t)

t 0 o ’ "
Figure 10.
Pointwise errors for u(x,t)
%107
6
5
4

t 0 o ’ %
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Numerical solution for u(x,t)

t 0 o ’ N

The exact (left) and numerical (right) solutions plots at T = 1/40 and & = 1/1280 with o = 0.8, # = 0.5 for example 4.

0.03 T T T T T T

% Numerical solution

Exact solution
0.025

0.02

0.015

-0.005 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1

Figure 11. The poinwise error (left) and comparison between numerical and exact solutions (right) for example 4.

Table 14. L2-norm errors for « = ff = 0.1,0.3,0.7 for Example
5.

a=p=0.1 a=pf=03 a=p=0.7
h T lle¥ | lle™] lle¥ ]
5 2.0264¢—03 2.0339¢—03 2.0805¢—03
% % 4.2266e—04 4.2396e—04 4.3339¢—04
% % 3.7887¢—05 3.8003¢—05 3.8765¢—05
5 % 3.1906¢—06 3.1950e—06 3.2162¢—06

Example 5 In the Ilast consider

u(x, 1) = (2 — x)*sin(mx) .,
In table 14, L-2 norm errors are reported for
o==0.1,0.3,0.7. In table 15, numerical results are

example, we

Table 15. Error for different T, « and fixed h, 7, § for Example 5.

2=04,=05  a=07,=05
7 h g "] el
2 2.1160e—06 2.6063e—06
4 L 2.7389e—06 4.1694e—06
6 b 3.1801e—06 5.4769e—06
1[0 SR H 3.8303e—06 7.7039¢—06

presented with large time instant ¢, (T = 2,4,6,10).
Tables 14 and 15 verify the efficiency of the proposed
method.



Sadhana (2022) 47:253

7. Conclusions

In this paper, we presented a difference scheme using cubic
B-spline quasi-interpolation for the numerical solution of a
fourth-order time-fractional integro-differential equation
with a weakly singular kernel. The time fractional deriva-
tive of the mentioned equation is approximated by a
scheme of order O(t>~*) and the spatial derivative is
replaced with a second order approximation. The fractional
integral is approximated by polynomial interpolation. In
terms of the implementation and speed of the method, it is
easy to apply and almost fast. We have proved the stability
and convergence of the numerical method with the order of
convergence O(t>~* + h*). Five test problems have been
performed to show the convergence orders, applicability,
and capability of the method. All numerical computations
are obtained by using MATLAB R2020b.

List of symbols

reZ’ . Riemann-Liouville integral
¢D. . Caputo fractional derivative
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