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Abstract. Blasting has been one of the most important contributors of mining since the start of mineral

extraction and excavation. Along with fragmentation of the rocks, blasting also produces an excess of energy in

the form of heat and vibration. Due to the spread of the vibration, the surrounding environment gets affected.

Therefore, this paper aims to minimize the vibration to reduce the impact of ground vibration happening due to

the mine blasting. In order to optimize the blasting parameters, a good predictor of such vibration is to be

created. Hence, the paper compares a lot of predictors including empirical formulas and ANNs (Artificial Neural

Networks). The best performing predictor has been used as the objective function for the optimization of

parameters. Among the various optimization methods, the firefly algorithm proved to be a very good optimizer.

Therefore, it was used to optimize the field parameters and implemented. The resulting optimized parameters

showed a significant reduction in the ground vibration of 14.58%.

Keywords. Artificial neural networks; Back-propagation algorithms; Ground vibration; Peak particle velocity;

Firefly algorithm; Meta-heuristic algorithms.

1. Introduction

1.1 Blasting and ground vibration

Being one of the oldest contributors to the world’s indus-

trial age, mining has a big role to play in building our

modern world. A majority of the blast energy is always lost

in the form of heat and noise. During the development of

the opencast mines, most of the investment goes towards

the blasting of the rocks. The blasting can cost at least 5%

of the cost of production during the running of the mine,

whereas during the developmental stage, a mine may spend

as high as 20% or more of its expenditure towards blasting

[1]. The same energy which breaks the rock also sends out

weakened shockwaves to the surrounding strata before the

energy dissipates. These ground vibrations due to blasting

have numerous adverse effects not only on the surrounding

environment but also has an impact on humans or human-

made structures [2]. As the high energy of the blast is

released during blasting, the mechanical wave travels

through the ground outwards in every direction from the

hole [3]. This vast amount of energy releases an enormous

amount of gas and pressure resulting in the development of

strain on the surrounding ground strata. This strain crushes

the surrounding strata into the powder form, as seen in

figure 1, and the subsequent surrounding strata fail due to

tensile strain [4]. The vibration frequency is responsible for

damaging the surface structures. When the vibration

reaches a structure, the surface structures respond to the

vibration by reflecting the wave within the structure. When

these vibrations create resonance vibrations, the amplitude

of the blast vibration increases, which results in damaging

the surface structures/features surrounding the mine area

[5]. It is required that blasting parameters should be opti-

mized properly so that the cost of production can be min-

imized and also the consumption of explosives and

minimum ground vibration [6, 7]. The objective of the work

is to predict the ground vibration as accurately as possible

and to optimize the blasting parameters to reduce the

ground vibration using firefly algorithm.

1.2 Literature review

To examine the impact on the surrounding environment due

to regular blasting, PPV (Peak Particle Velocity) was

chosen for the measurement of vibration due to blasting. It

has proven to be a very reliable standard for correlating the

damage to the surroundings. From field survey and past

studies, it has been seen that scaled distance and charge per

delay have been the most influencing parameters of the

blast which impacts the ground vibration [8–11]. There

have been many attempts to predict the PPV via empirical

formulas taking in a small local dataset, but it is hard to
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implement the same universally [10, 12–14]. The usual

limitations with this kind of model are that it cannot adopt

in different conditions from different sites.

With 220 vibration datasets, Rai proposed a predictor

that had a better correlation coefficient than other empirical

predictors [15]. One of those common methods of predic-

tion in various regression analysis. Where Agrawal [16]

used modified scaled distance regression and Peng et al
[17] also tried several regression methods among which

they found best results using Robust regression. Bisoyi and

Pal [18] used various regression analysis, among which the

probabilistic Gaussian process regression was the most

accurate in predicting the PPV. The work done by different

researches are shown below in table 1.

2. Case study

2.1 Mine description

The studies were conducted in the Dongri Buzurg mine

(MOIL), which is situated in Bhandara district in the state

of Maharashtra. It is about 120 kms from the nearest city

Nagpur. The mine is located in an eastside tending ride

rising to ?395 MRL. It has a stripping ratio of 1:9. The

overall pit slope is about 32-330. The Bieniawski’s RMR

(Rock Mass Rating) [29] in the mine varies between 24 and

70. The mine uses emulsion explosives predominantly with

charge factor of 0.4 kg/m3.

2.2 Parameters for the blast

There are eleven parameters that were chosen for the study.

Among them the bench parameters which were considered

as input parameters are spacing, burden, depth of blast hole,

stemming length. These bench parameters have been used

by multiple researchers in the field [9, 24, 25]. Parameter

like maximum charge per delay and distance from the

blasting face were considered of importance by Duvall and

Petkof [3], Langefors and Kihlström [14], Singh [30],

Monjezi et al [31]. There are some additional explosive

properties that have been taken into account in order to

examine their influence on the ground vibration, such as

explosive density, velocity of detonation and charge per

blast-hole. The shockwaves of a blast are a mechanical

wave which can only travel through a medium. When the

medium is changed there is always a part of the shockwave

energy which is reflected back. Therefore, the distance of

the blast face from the measuring point without changing

the medium might be of importance. Hence, the reason why

in-land distance is also considered as one of the input

parameters in this study. The rock strength parameters and

the hole diameter has not been taken into account in pre-

diction because it remained same for this single site and did

not contribute to the prediction of the network.

Figure 1. Cross-sectional view of a blast hole.

Table 1. Previous studies done with the help of ANN.

Researchers

ANN

methods Layers

Number of

datasets Input parameters R2 Error

Khandelwal & Singh

[19]

FFBP 13-8-2 150 Di, HD, S, B, D, Qmax, BI, Y, P, PW, VOD, CL, Qh 0.99 MAPE – 4.74

Khandelwal & Singh

[20]

FFBP 10-15-2 174 HD, S, B, D, Qmax, BI, Y, P, PW, VOD 0.98 MAE – 0.1964

Ragam & Nimaje [21] FFBP 6-10-1 25 HD, S, B, D, Qmax, H 0.99 RMSE – 0.08

Monjezi,

Ghafurikalajahi &

Bahrami [22]

FFBP 4-10-5-1 162 Qmax, D, St, HD 0.95 MAE – 0.002

Gao & Wang [23] FFBP 2-5-1 10 Qmax, D 0.99 MAE – 0.2168

Hajihassani et al [24] PSO-ANN9-12-1 62 HD, St, Qmax, B, S, RQD, D, H, PF 0.94 MSE – 0.063

Armaghani et al [25] PSO-ANN10-15-2 44 Di, HD, Qmax, S, B, St, PF, RD, SD, NR 0.93 MAPE – 10.71

Bayat et al [26] FFBP 4-23-1 154 S, B, D, Qmax 0.97 RMSE – 4.38

Iphar et al [27] ANFIS 44 D, Qmax 0.98

Fisne et al [28] FIS 33 D, Qmax 0.92

Ghasemi et al [9] FIS 120 D, Qmax, B, S, St, N 0.95
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The figure 2 shows how the in-land distance has been

calculated using the ANSYS 15 software by modelling the

opencast mine. The given figure 3 shows the locations of

the blast sites and the two monitoring stations from where

the data was collected. Along with the PPV reading at the

monitoring stations, other blasting parameters (like spacing,

burden, distance from the monitoring station, the charge per

hole, etc.) were also collected for each of the corresponding

blasts. These data will help with the prediction of the PPV.

3. Network training

3.1 Artificial neural networks

The artificial neural network is an expert system which

became more popular recently after advancement in

computing power. A neural network is loosely based on

the neural connections and workings of our own human

brain. It consists of a number of nodes and connections

which form the network. The connections consist of basic

computations that forward the result to the next set of

nodes in the next layer. These connections are also known

as neurons. The neural network architecture is very simple

and capable of categorizing and finding similarities even

in a new set of data that has not seen before when trained

well.

3.2 Training of the data

Training helps the network to identify patterns and correlations

between the input and output parameters. Every connection of

the network has a ‘weight’ associated with it. Every node of the

network also consists of a numerical value called ‘bias.’ The

output layer compares the output with the target value from the

training dataset and calculates the error.

Let’s assume alj is the numeric value stored in a node of

the neural network where, l is the layer number and j is the
jth neuron of the lth layer.

alj ¼ r
X

k

al�1
k :wl

jk þ blj

 !
ð1Þ

where wl
jk is the weight of the connection which connects

from the kth node of (l-1)th layer to the jth node of the lth

layer, and blj is the bias associated with the jth neuron of the

lth layer [32].
The actual learning of any neural network occurs from a

cost function, which can be defined as the error of the

network in predicting the target. The cost function decides

the amount of adjustment to be applied in each connection.

The cost function is defined as follows

Cx ¼
1

2
ky� aLk2 ¼ 1

2

X

j

yj � aLj

� �2
ð2Þ

where L represents the number of layers in the network, y is

the target data, and Cx is the cost function for a single

training dataset. Basically, Cx is the squared error in a

single training data and the complete cost function

Cis 1n
P

x Cx. Taking this very assumption, it can compute

the steepest gradient algorithm needed to tweak the weights

and biases for the network connections so as to minimize

the cost function. In gradient descent algorithms the

steepest descent is calculated with respect to each of the

weights and biases and the modifications to their values are

done to minimize the cost function.

Figure 2. Calculation of in-land distance of shockwave propagation.
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3.3 Selecting the number of nodes in hidden layers

To select the number of nodes in each of the layers a grid

search algorithm was applied to consider all possible

combinations of the nodes in each hidden layer. It was

decided to consider 3 hidden layers for the neural network.

The grid search was done with a combination of 1 to 40

nodes in each of the hidden layers. The combination with

best RMSE in validation data is chosen for the network

training.

3.4 Sensitivity Analysis of the network

For the sensitivity analysis of network, a comparison

needs to be done between the changes in output w.r.t. the

changes in the input parameter. Hence, a Gaussian noise

had been added at the input end for each of the input

parameters and then the trained network is used to pre-

dict the output. Doing this for each of the input

parameter we can correlate the changes that happens to

output. This way a comparison can be made between the

deviation in input and output for every input.

4. Firefly Algorithm

The firefly algorithm [33] used in the study depends on the

attractiveness of individual fireflies towards each other. The

algorithm depends on three rules: (i) all fireflies are uni-

sexual. Therefore, every firefly is attracted to every other

firefly, (ii) attractiveness is proportional to brightness of the

individual fireflies. Thus, the dimmer fireflies will move

more towards the brighter ones and (iii) the brightness of

individual fireflies is based on the objective function.

The attractiveness depends on two factors. One being the

brightness and other the distance from each of the fireflies.

The brightness is decided using the objective function. The

following equation tries to emulate the same.

Figure 3. Locations of blasting sites and monitoring stations.

Table 2. Empirical Predictors.

Predictor Name PPV from scaled distance n k

USBM [10] k Dffiffiffiffiffiffiffi
Qmax

p
� ��n 0.4265 13.4462

Ambraseys-Hendron [34] k Dffiffiffiffiffiffiffi
Qmax

3
p
� ��n 0.3747 40.411

Langefors-Kilhstrom [14]
k

ffiffiffiffiffiffiffi
Qmax

D2=3

q� �n 0.2459 3.7984

Indian Standard [35] k Qmax

D2=3

� ��n 0.4917 14.4278
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Xtþ1
i ¼ Xt

i þ b0e
�cr2ij Xt

j � Xt
i

� �
þ at2t

i ð3Þ

where t is the iteration number and i denotes update for ith

firefly r is the distance, at is random number between 0 and

1

and 2 is a vector of random numbers

b rð Þ ¼ b0e
�cr2ij ð4Þ

where b0 is the attractiveness of firefly at r = 0

at ¼ a0d
t; 0\d\1 ð5Þ

where a0 is initial randomness scaling factor and d is

cooling factor.

The above updating equation is an amalgamation of a

number of other optimizers with different conditions. Like,

when b0 ¼ 0, the algorithm becomes a harmonic search

algorithm; or in the same case if e�cr2ij ! 0, the second term

in the equation is negligible and the equation reduced to

simulated annealing; similarly, in case when e�cr2ij ! 1 and

at ¼ 0, the equation converts to a type of differential evo-

lution algorithm; when c ¼ 0 and Xt
j is replaced by gbest

(global best for PSO), FA reduces to accelerated PSO. This

way it encompasses the advantages of several of the opti-

mization parameters. It also uses nonlinear updating.

Therefore, it has higher convergence rate. FA also con-

verges into subdivision and when the subdivisions fail to

give good result the entire subdivision population gets

rejected. This way the computation eases. It also has

Table 3. Parameters chosen and their range.

Parameters Range

Input Parameters Spacing (m) 2.5–3

Burden (m) 3–3.5

Explosive per blast-hole (kgs) 15–34

Distance from blast site (m) 50–820

Explosive density (g/cc) 1.15–1.3

VOD of explosive (m/s) 3048–5791

Blast hole depth (m) 3–10

Stemming height (m) 1–4

Number of holes 24–248

Maximum charge/delay (kgs) 256–8432

In-land distance (m) 54.4–844.2

Output Parameter PPV (mm/s) 0.02–18.82

Figure 4. The error in prediction of PPV depending on the number of nodes in each of the hidden layer.

Figure 5. The Neural network layout used in the study.
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controlled randomness as at2t
i which can be user defined

and controlled.

Considering these many advantages of the FA, it has

been chosen as one of the optimization methods for the

study. In addition, it also has been compared with a few

other optimizers.

5. Conventional Empirical Predictors

This study has taken into account the traditional empirical

predictors for comparing the performance of the ANN

against the existing predictors in hand. The empirical for-

mulas have proven to be close to the actual measurement of

the PPV in the past. All of the empirical formulas chosen in

this study rely on two of the input parameters: distance of

measuring instrument from the blast site and maximum

charge/delay. The below table shows a few of the most

popular empirical formulae used for the prediction of PPV.

These have proven to be fairly accurate in the past studies.

The ‘n’ and ‘k’ are site constants that are location

specific and need to be calculated from the observations

done at a certain place. These site constants can be calcu-

lated using simple linear regression for each of the equa-

tions with the help of the field observations made.

6. Observations

A total of 112 data were collected from the field. Consid-

ering the earlier researches, several parameters were cho-

sen, which were collected from the site. The input

parameters that were chosen for the study are spacing,

burden, explosives per hole, distance from measuring sta-

tion, explosive density, VOD of explosives, depth of the

hole, stemming, number of blast holes, charge per delay

and in-land distance.

Along with the above parameters, the PPV of the blasts

was collected with the Minimate Series II instrument. The

PPV was calculated using the radian, transverse, and ver-

tical PPVs measured in the instrument to get a single scalar

value of the PPV. For the calculation of the PPV from the

empirical methods, the site constants were calculated using

linear regression (table 2).

6.1 Predictions with different empirical formulas

The empirical formulas in the study use a few variations of

scaled distance to predict the peak particle velocity. Scaled

distance is the ratio of the distance of the blast site from the

monitoring station and the square root of the charge per
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Figure 6. Empirical predictors vs. field observations.

Table 4. Error calculation from the prediction of different models.

Empirical Predictors

USBM Ambraseys-Hendron Langefors-Kilhstrom Indian Standard

R2 0.50 0.61 0.08 0.08

MAD 3.13 31.88 2.34 3.79

MSE 12.40 1021.41 17.84 27.36

RMSE 3.52 31.96 4.22 5.23
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Figure 7. Performance of different ANN algorithms w.r.t. field observations.

Table 5. Coefficient of determination and error in prediction of ANN algorithms.

ANN algorithm predictions

Bayesian

Regularization

Levenberg-

Marquardt

Scaled Conjugate

Gradient

Resilient Back-

propagation

One Step

Secant

Variable Learning Rate

Gradient Descent

R2 0.98 0.89 0.95 0.94 0.93 0.85

MAE 0.33 0.50 0.57 0.49 0.64 0.69

MSE 0.19 1.49 0.67 0.73 0.83 1.93

RMSE 0.44 1.22 0.82 0.86 0.91 1.39
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delay. So, all of the empirical formulas have used variations

of the same basing their formula on their observed data.

After calculating site constants, the equations from table 3

had been used to predict the PPV.

6.2 Prediction of blast vibration using ANN

For accurately predicting the ground vibration, the network

itself needed to be designed. Because of the difficulty in

visualization, out of the three hidden layers only two hidden

layers are shown (figure 4) with RMSE value of each

respective combination. This operation was repeated for

Levenberg-Marquardt algorithms [36], Bayesian-Regular-

ization [37], scaled-conjugate gradient [38], resilient

backpropagation [39], one step secant [40] and variable

learning rate backpropagation [41]. For each of the algo-

rithms the optimum number of nodes in the hidden layers

were kept respectively. This was to ascertain the best result

for each of the algorithms.

The sketch of figure 5 shows the basic architecture of the

neural network used in the study. Each of the nodes loosely

simulates the work of a neuron, and each of the connection

tries and simulates the dendrites as in our own nervous

system.

The neural network tool of the software MATLAB

2021b was used to simulate the neural network. The algo-

rithms that have been used for the study are using back-

propagation algorithms for training and predicting the PPV.

7. Results and discussion

7.1 Empirical predictions

From figure 6, it seems like the USBM predictor is coming

close to predicting the observed PPVs.

By looking at table 4, the predictions of the empirical

formulas are not very accurate. The major reliance on

scaled distance is a big limitation for such prediction. The

Ambraseys-Hendron predictor has a high coefficient of

determination but the error is too high because of the offset

in prediction.

7.2 Neural network predictions

From figure 7, it can be seen clearly that the performance of

the ANN algorithms has shown to be much more accurate

than the empirical predictors. With rigorous testing of dif-

ferent network sizes in each of the algorithms, the ANNs

were able to predict the PPV with a very good accuracy.

In table 5, it can be seen that the best performing algo-

rithm is Bayesian regularization algorithm with a very good

Figure 8. Relevancy factor of the input parameters on the

prediction.

Table 6. Average blasting parameters before and after optimization.

Blasting Parameters

Lower

Bound

Upper

Bound

General Parameters

(Average)

Optimized Parameters

(Average)

Changes in Parameters

(%)

Spacing (m) 2 4 2.7 2.5 - 7.4

Burden (m) 2 4 3.0 2.9 - 3.3

Explosive per blast-hole

(kgs)

20 50 30.4 28.0 - 7.9

Distance from blast site

(m)

50 1200 366.4 366.7 0

Explosive density (g/cc) 5300 5600 5473 5505 ? 0.6

VOD of explosive (m/s) 1.1 1.3 1.28 1.14 - 10.9

Blast hole depth (m) 3 12 9.22 9.74 0

Stemming height (m) 1 4 3.6 3.5 ? 5.6

Number of holes 20 180 94 88 - 2.7

Maximum charge/delay

(kgs)

120 500 386.5 361.76 - 6.4

In-land distance (m) 50 1800 389.2 389.2 0
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coefficient of determination above 0.98 but all of the neural

network algorithms were better than the empirical

counterparts.

7.3 Sensitivity analysis

The sensitivity analysis of each of the input parameter on

the ground vibration is to be calculated. This can be decided

by calculating the relevancy factor [42, 43] of the input

variables.

RF ¼
Pn

i¼1ðxl;i � xlÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxl;i � xlÞ2

Pn
i¼1ðyi � yÞ2

q ð6Þ

where xl;i is i
th value of the lth input, xl is the average value

of lth input, yi is ith value of predicted output and y is

average value of predicted output. Figure 8 shows the

influence of different parameters on the prediction of the

PPV.

7.4 Optimization

The best prediction is given by the Bayesian regularization

algorithm. Therefore, it can be used as the function based

on which the optimization can be done. Among the several

optimization algorithms tested, the firefly algorithm is

going to be used as it has multiple advantages compared to

the others.

For the optimization the neural network in this study is

used as the objective function. As the best performing

network was found to be Bayesian Regularization network,

it can be used to optimize the parameters. For the opti-

mization, the location was determined for each of the blast

and it was kept unchanged but all other parameters were

subjected to change within a pre-decided upper and lower

bound. The upper and lower bounds were decided accord-

ing to the requirements of the mine based on the location

and amount of rock in the mine wanted to be blasted.

In table 6, the difference in the usual and optimized input

parameters can be seen after optimization. With the opti-

mized parameters, a total of 23 blasts were done. The PPV

of the the optimized parameters decreased by 14.58% when

implemented.

8. Conclusion

From the field observation of 112 unique cases of blasting,

several models of predictions were used to predict the peak

particle velocity. The artificial neural networks that were

used for the studies have proven to be the most accurate in

terms of predicting the same. The neural networks far

outperform the empirical predictors with Bayesian

regularization algorithms having the best coefficient of

determination of 0.98. At the same time the empirical

formulas were incapable of attaining that high of an accu-

racy because of their sole dependence on the scaled dis-

tance. A sensitivity analysis was done for the network

prediction using relevancy factor and it was seen that

maximum charge per delay, number of holes were the most

influencing parameters in the prediction. It is also seen that

the newly introduced parameter in-land distance does not

have much relevance on the prediction outcome. For opti-

mization of the parameters the Firefly algorithm was chosen

because of its various advantages, including the computa-

tion time and avoiding local minima. With 23 more blast

studies with adjusted parameters, there was a considerable

reduction of 14.58% in ground vibration during the field

testing.

Abbreviations
FFBP feed-forward back-propagation

PSO particle swarm optimization

ANFIS adaptive neuro-fuzzy interference system

Di hole diameter

HD hole depth

S spacing

B burden

D distance

Qmax maximum charge per delay,

BI blastability index

Y Young’s modulus

P Poisson’s ratio

PW P-wave velocity

VOD velocity of detonation

CL charge length

Qh charge per hole

St stemming length

H number of holes

N number of rows

PF powder factor

RD rock density

SD sub-drilling

NR number of rows

MAPE mean absolute percentage error

MAE mean absolute error

RMSE root mean square error
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