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Abstract. The heat transfer characteristics of the thermally developing flow in the circular and parallel plates

microchannels under the constant wall temperature and the constant heat flux are studied analytically. The

energy equations are solved by using the separation of variables combined with the Gram–Schmidt orthogo-

nalization. The effect of the number of eigenvalues on the calculation accuracy of the local Nusselt number is

first determined. The temperature distribution and the heat transfer coefficient at the entrance region are

calculated considering the effects of the rarefaction (0\Kn\0.1) and the axial heat conduction (Pe[50). It is

found that the axial heat conduction can dramatically improve the heat transfer of the thermally developing flow

when the Peclet number is less than 250. But when the Peclet number is greater than 500, the effect of the axial

heat conduction can be omitted. Enhancing the rarefaction would weaken the influence of the axial heat

conduction on the heat transfer, and the difference of the local Nusselt number between the two boundary

conditions decreases as increasing Kn. Enhancing fluid axial heat conduction would increase the thermal

entrance length. The thermal entrance length of the microtube is 3–4 times that of the parallel plates

microchannel, and the correlations of the thermal entrance lengths are developed, which may provide guidance

for thermal design and optimization of microchannel heat sinks.

Keywords. Entrance effect; rarefaction effect; axial heat conduction; constant wall temperature; constant heat

flux.

1. Introduction

With the development of the modern micro-electro-me-

chanical system and the continuous improvement of pack-

aging density, the heat dissipation requirements of nano-

scale chips in conventional microelectronic devices have

reached 10 MW/m2. Such a large amount of heat dissipa-

tion puts forward higher requirements on the thermal

management system. It is necessary to configure the best

cooling system to ensure the device operates properly and

prolong the cycle life of the device. While conventional

heat exchangers are cumbersome and cannot handle such

high heat flux density. The microchannel heat exchanger

emerges as the engineering requires. The tiny size is a

distinguishing feature of microchannels. The Knudsen

number Kn, defined as the ratio of the mean free path k to

the length scale characteristic Dh [1], increases as the

characteristic length decreases. As 0.001\Kn\0.1, the

well-known Navier–Stokes equations are still appropriate

for the fluid, but velocity slip and temperature jump

boundary conditions are required to modify the fluid-solid

interface.

When the channel is short in mini-structured devices, the

entrance effect has to be taken into account. The heat

transfer capacity of the thermally developing flow in a

channel is significantly higher than that of the fully

developed region because of the entrance effect. The con-

vective heat transfer problem of the thermally developing

flow in a channel is also named Graetz problem [2]. Shah

and London [3] summarized plentiful results about the Graetz

problem in various macro channels. In 1997, Barron et al
[4] first extended the problem to include the effects of slip

flow through the microtube (CM) with the constant

wall temperature by using the Frobenius series method [5].

They found the Nusselt number increases as the Knudsen

number, meaning that the rarefaction effect in the

microchannel enhances the heat transfer, which is different

from other results [6–9]. Larrode et al [7] and Tunc and*For correspondence
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Bayazitoglu [8] pointed out that the rarefaction effect

weakens the heat transfer performance, and the results in

Barron et al [4] are due to ignoring the temperature jump

boundary condition during the calculation. Therefore, the

flow and heat transfer characteristics in the microchannel

still meet the Reynolds analogy [10, 11].

The velocity profile is fully developed for the Graetz

problem. The problem of the thermally developing flow can

be thus solved with some theoretical methods. Apart from

the aforementioned series method, some other methods are

also applied to study the Graetz problem. Chalhub et al [12]
obtained the solution of the extended Graetz problem in

isothermal parallel plates microchannels (PPM) based on

the Generalized Integral Transform Technique. They con-

sidered the effects of the axial conduction and the rar-

efaction on the local Nusselt number and found the

influence of the axial conduction declined as increasing the

rarefaction. Haddout et al [13] also studied a similar

problem in both CM and PPM. They degraded the energy

equation into two first-order partial differential equations

by using the self-adjoint formalism and indicated that the

local Nusselt number was strongly influenced by the Peclet

and Knudsen numbers. What’s more, the separation of

variables was often employed to settle the extended Graetz

problem [14, 15].

Nevertheless, it is worth noting that the influence of the

axial fluid heat conduction, characterized by the Peclet

number Pe, on the heat transfer performance of the ther-

mally developing flow in microchannels was often ignored

in most of the above analytical results. Many studies about

the thermally developing flow were also based on the

assumption of ignoring the axial heat conduction [16–24].

While the axial heat conduction even dominates the heat

transfer process when the Peclet number is low enough

[25–28]. However, it is not clear when the axial heat con-

duction should be considered. Tada and Ichimiya [29]

pointed out that the effect of the axial heat conduction can

be neglected when Pe[200. But Renksizbulut and

Niazmand [30] demonstrated that the local Nusselt number

was independent of Pe when Pe[50. Avci and Aydin [31]

found that the axial heat conduction had little effect on heat

transfer when Pe[5. While some investigations showed

that the influence of the axial heat conduction on the

convective heat transfer was obvious when Pe\100

[32–43]. The inconsistent results indicate that the impor-

tance of the axial heat conduction on heat transfer of the

developing flow remains to be further determined.

The objective of this work is to determine the impacts of

the axial heat conduction (Pe[50) and rarefaction

(0\Kn\0.1) on forced convection heat transfer in both CM

and PPM. The motivation is to figure out the criteria for

ignoring or considering the effect of axial conduction in

microchannels. Two types of thermal boundary conditions,

namely constant wall temperature and constant heat flux,

are taken into consideration. The energy equation is solved

by using the separation of variables. The effect of the

number of eigenvalues on the calculation accuracy of the

local Nusselt number is first investigated. The Gram–

Schmidt orthogonalization is utilized to solve the

nonorthogonal boundary problems caused by considering

the axial heat conduction. The heat transfer performance

under different thermal boundary conditions is also com-

pared. The thermal entrance lengths of different

microchannels with different boundary conditions are also

calculated, which may provide the guideline for the design

of microchannel heat sinks.

2. Analysis

The velocity is fully developed for the Graetz problem as

illustrated in figure 1 and the flow chart of the analytical

solution is shown in figure 2. For laminar flow, the general

form of the energy equation is expressed as follows [44]

qcp
DT

Dt
¼ r � jrTð Þ þ Qþ bT

DP

Dt
þ lU ð1Þ

where Q is internal heat generation, b is the coefficient of

thermal expansion, l is the dynamic viscosity, q is the

density, cp is the specific heat, j is the thermal conductivity

and U is the viscous dissipation function. The viscous

dissipation can be ignored with the huge heat flux and small

dynamic viscosity of air in the present work. With the

assumption of ignoring the effects of viscous dissipation,

natural convection, and radiation heat transfer, the energy

equation of constant thermophysical properties and

incompressible Newtonian fluid without internal heat gen-

eration in parallel plates and circular tubes can be simpli-

fied to

qcpu
oT

ox
¼ j

1

rp
o

on
rp
oT

on

� �
þ o2T

ox2

� �
ð2Þ

The geometry factor p (or n) is 0 (or y) in PPM and 1 (or

r) in CM. Before solving the energy equation, defining the

following non-dimensional quantities,

x

r or y

O

ro or b

Tw = Constant or q = Constant

Fully developed 

velocity profile

Tw = Constant or q = Constant

Figure 1. Schematic diagram and coordinate system.
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CM : A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ 4Knu

r
; X ¼ A2 2� A2ð Þx

roPe
; Y ¼ n

ro
A;

Pe ¼ Pe

A 2� A2ð Þ

PPM : A ¼ 1þ 12Knu; B ¼ 1þ 8Knu
A2

; Y ¼ n

Ab
;

Pe ¼ 3

8
PeA2

ð3Þ

where Knu, defined as Kn(2–rv)/rv, is the modified Knud-

sen number [45] and the corresponding tangential

momentum accommodation coefficient rv is set as unity in

this paper. Based on these non-dimensional quantities,

Eq. (2) is transformed into

B1�p � Y2
� � oh

oX
¼ 1

Yp

o

oY
Yp oh

oY

� �
þ 1

Pe
2

o2h
oX2

ð4Þ

where h is the no-dimensional temperature and defined as

h¼

T � Tin
Dhq=j

constant heat flux

T � Tw
Tin � Tw

constant wall temperature

8><
>: ð5Þ

where Tin is the inlet temperature of the working medium.

2.1 Constant heat flux

The non-dimensional boundary conditions for the constant

heat flux are as follows

h 0; Yð Þ ¼ 0 ð6Þ

h 1; Yð Þ ¼ h1 ð7Þ

oh
oY

				
Y¼0

¼ 0 ð8Þ

oh
oY

				
Y¼A2p�1

¼ 1 ð9Þ

where h? is the no-dimensional temperature in the fully

developed region. As Eq. (4) is a linear equation, according

to the superposition principle, we have

h¼hþ h1 ð10Þ

For the new variable h, the corresponding equation and

the boundary conditions are

B1�p � Y2
� � oh

oX
¼ 1

Yp

o

oY
Yp oh

oY

� �
þ 1

Pe
2

o2h
oX2

ð11Þ

h 0; Yð Þ ¼ �h1 ð12Þ

h 1; Yð Þ ¼ 0 ð13Þ

oh
oY

				
Y¼0

¼ 0 ð14Þ

oh
oY

				
Y¼A2p�1

¼ 0 ð15Þ

Due to the homogeneous boundary conditions in the Y
direction, the equation has an infinite series solution of the

following form

h ¼
X1
n¼1

Cne
�k2nX/n Yð Þ ð16Þ

where Cn, k
2
n, /nðYÞ are the coefficients, eigenvalues, and

eigenfunctions respectively. Substituting Eq. (16) into

Eqs. (11), (14), and (15) yields

1

Yp

d

dY
Yp d/n

dY

� �
þ B1�p � Y2 þ 1

Pe
2
k2n

� �
k2n/n ¼ 0 ð17Þ

d/n

dY

				
Y¼0

¼ 0 ð18Þ

d/n

dY

				
Y¼A2p�1

¼ 0 ð19Þ

In order to solve Eq. (17), choosing g ¼ knY2,

xðgÞ¼e
g
2/nðgÞ gives

g
d2x
dg2

þ pþ 1

2
� g

� �
dx
dg

þ B1�pkn � p� 1þ k3n
Pe2

� �
x
4

¼ 0

ð20Þ

Figure 2. Flow chart of the analytical solution.
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�x
2
þ dx

dg

� �
g¼knA4p�2

¼ 0 ð21Þ

Equation (20) is a confluence hypergeometric equation,

also known as the Kummer’s equation [46]. The eigen-

values can be obtained by solving Eq. (21) with the

characteristic of the Kummer’s equation. Equation. (21) is

then transformed into

4a

1þ p
F aþ 1; cþ 1; zð Þ ¼ F a; c; zð Þ ð22Þ

where the term F(a,c,z) is the Kummer’s confluent hyper-

geometric function and the related parameters are as

follows

a ¼ 1þ p

4
� k3n
4Pe

2
� B1�pkn

4
ð23Þ

c ¼ 1þ p

2
ð24Þ

z ¼ knA
4p�2 ð25Þ

k2n can be acquired by solving Eq. (22) using the Find-

Root command in Mathematica. But when it comes to

solving the coefficients Cn, it is necessary to discuss the

orthogonality of /nðYÞ.
For the case Pe ? ?, namely ignoring the influence of

the axial heat conduction, /nðYÞ are mutually orthogonal

and Cn can be calculated as follows

Cn ¼
R A2p�1

0
�h1 B1�p � Y2ð Þ/nY

pdY

N /ð Þ ð26Þ

where the normalization integrals Nð/Þ is expressed as

N /ð Þ ¼
Z A2p�1

0

B1�p � Y2
� �

/2
nY

pdY ð27Þ

Therefore, for CM,

Cn;c ¼
2A2 � A4ð Þ/ Að Þ

k2nA
2 A2 � 2ð ÞN /ð Þ

ð28Þ

For PPM,

Cn;p ¼
1� 3A2Bð Þ/n A�1ð Þ

2k2nN /ð Þ
ð29Þ

However, /nðYÞ are not mutually orthogonal when

considering the axial heat conduction. For this case, the

Gram-Schmidt orthogonal procedure is employed to fulfill

the orthogonalization process. The steps of the orthogonal

procedure are shown in ‘‘Appendix A’’.

After determining Cn, k
2
n, /nðYÞ, the temperature distri-

bution and the local Nusselt number are also determined.

For CM,

Nu xð Þc¼
2P1

n¼1

Fn;ce�2A2 2�A2ð Þk2nx� þ 4c
1þc

2�rT
rTPr

Knþ 3A4�16A2þ24

24 2�A2ð Þ2

ð30Þ

where

Fn;c ¼ Cn;c /n Að Þ � 4

A2 2� A2ð Þ

Z A

0

1� Y2
� �

/n Yð ÞYdY
� �

ð31Þ

x� ¼ x

DhPe
ð32Þ

For PPM,

Nu xð Þp¼
4P1

n¼1

Fn;pe
�k2n

32x�
3A3 þ 8c

1þc
2�rT
rTPr

Knþ 2
15A þ 2

105A2 þ 1
3

ð33Þ

where

Fn;p ¼ Cn;p /n

1

A

� ��

� 3A2

2

X1
n¼1

e�k2nX
Z 1

A

0

B� Y2
� �

/n Yð ÞdY
# ð34Þ

2.2 Constant wall temperature

When the wall temperature Tw is given, the non-dimen-

sional boundary conditions for the energy equation are as

follows

h 0; Yð Þ ¼ 1 ð35Þ

h 1; Yð Þ ¼ h1 ð36Þ

oh
oY

				
Y¼0

¼ 0 ð37Þ

h X;A2p�1
� �

¼ k
oh
oY

				
Y¼A2p�1

ð38Þ

where k is defined as

k ¼ � 23�pA2p�1c
1þ c

2� rT
rT

Kn

Pr
ð39Þ

Equations (37) and (38) are the second and third homo-

geneous boundaries respectively. The energy equation with

this kind of boundary has a solution of the following form

h ¼
X1
n¼1

Cne
�k2nX/n Yð Þ ð40Þ
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The eigenfunctions /nðYÞ meet the following differential

equation

� B1�p � Y2
� �

k2n/n ¼
1

Yp

d

dY
Yp d/n

dY

� �
þ 1

Pe
2
k4n/n ð41Þ

and the corresponding boundary conditions are

d/n

dY
¼ 0 ð42Þ

/n A2p�1
� �

� k
d/n

dY

				
Y¼A2p�1

¼ 0 ð43Þ

Since the form of /nðYÞ is similar to that under the

constant heat flux, the Kummer equation can still be

obtained through variable substitution, that is,

g
d2x
dg2

þ pþ 1

2
� g

� �
dx
dg

þ B1�pkn � p� 1þ k3n
Pe

2

� �
x
4

¼ 0

ð44Þ

Solving the boundary conditions will obtain the eigen-

values, which can be expressed as

1

A2p�1knk
þ 1

� �
F a; c; zð Þ � 4a

1þ p
F aþ 1; cþ 1; zð Þ ¼ 0

ð45Þ

Cn can be acquired by using the same procedure of that

under the constant heat flux. Therefore, for CM, the local

Nusselt number is

NuðxÞc ¼
�A3 2� A2ð Þ

P1
n¼1 Cn/n X;Að Þe�2A2 2�A2ð Þk2nx�

2k
P1

n¼1 Cne�2A2 2�A2ð Þk2nx�
R A
0

1� Y2ð Þ/nYdY

ð46Þ

For PPM, the local Nusselt number is

NuðxÞp ¼
�8
P1

n¼1 Cn/n X;Að Þe�
32

3A3
k2nx

�

3kA3
P1

n¼1 Cne
� 32

3A3
k2nx

� R A
0

1� Y2ð Þ/nYdY
ð47Þ

3. Model validation

3.1 Number of eigenvalues

Note that there are infinite series in the expression of the

local Nusselt number. But only limited eigenvalues need to

be intercepted for the actual calculation. The number of

eigenvalues that are a suitable compromise between the

reasonable accuracy and solution cost needs to be deter-

mined. The number of eigenvalues mainly affects the local

Nusselt number near the inlet, as shown in figure 3. When

comparing the results in figure 3(a) and figure 3(b), it is

found that the effect of N decreases as Kn increases.

Because the entrance effect is not obvious when increasing

the rarefaction effect. The maximum relative error between

N = 15 and N = 20 in figure 3(a) is 0.44%, but the error

between N = 15 and N = 20 in figure 3(c) is 3.37%,

implying that the effect of N increases as Pe decreases.

What’s more, it is obvious that more eigenvalues are

required to calculate Nu(x) in CM from figure 3(a) and

figure 3(d), and the maximum relative error between N = 20

and N = 25 in figure 3(d) is 1.58%. In this work, the first 20

eigenvalues are chosen to calculate Nu(x).

3.2 Validation of Gram–Schmidt
orthogonalization

In this work, the Gram–Schmidt orthogonalization was

used to solve the heat transfer problem including the axial

heat conduction. But the orthogonalization is an approxi-

mate method. The number of orthogonal functions needs to

be determined during the orthogonalization. As the local

Nusselt number can be obtained precisely when ignoring

the axial heat conduction. We treated the analytical solution

of Pe = ?, Kn = 0 as a benchmark to verify the Gram–

Schmidt orthogonalization, as shown in figure 4. What’s

more, Shah and London [3] also summarized the results of

the local Nusselt number in PPM with constant heat flux,

which are also used to verify the results. The number of the

orthogonal function also mainly affects the local Nusselt

number near the inlet. The results of Shah and London [3]

and the benchmark solution are almost overlapped. The

maximum relative error is 0.64% when comparing the

results of 20 orthogonal functions with the benchmark

solution or the data in Shah and London [3]. Therefore, 20

orthogonal functions are adopted in this work to enhance

the calculation accuracy.

3.3 Validation of analytic solutions

It is essential to verify the analytic solutions before dis-

cussing the heat transfer characteristics further. For the

extended Graetz problem in CM or PPM, there are some

available data that can be compared with the present results

as shown in figure 5. Figure 5(a) depicts the results in CM

with Pe = ? under the constant heat flux. Obviously, the

present results are consistent with that in Shah and London

[3] and Haddout et al [13], but some deviations are found

when compared with that in Ameel et al [6]. It can be

ascribed to the difference in the number of eigenvalues

because only 8 eigenvalues were employed in Ameel et al
[6]. Figure 5(b) describes the variation of the local Nusselt

number in CM and PPM with Kn = 0 under the constant

wall temperature. The data in Chalhub et al [12] and

Kalyoncu and Barisik [15] are also plotted to compare the

results. Good agreements can be found and the maximum
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relative errors between the present work and the literature

data are less than 0.4% and 2% in PPM and CM,

respectively.

4. Results and discussion

4.1 Constant heat flux

Figure 6 displays the influence of the rarefaction on the

local Nusselt number. The rarefaction is directly propor-

tional to the Kn. As expected, the Nusselt number decreases

as Kn increases in both the entrance region and the fully

developed region. The reduction is more apparent in the

entrance region, indicating the entrance effect is greatly

affected by the rarefaction. It is expected that the entrance

effect will disappear if Kn is large enough. Because the gas

is thinner with increasing Kn, which decreases the collision

frequency between the gas molecules. While the axial

conduction depends on the heat conduction between the gas

molecules. Therefore, increasing Kn would weaken the heat
transfer. Besides, the reduction is also distinct for low Pe.
Since the axial heat conduction is significantly diminished

when enhancing the rarefaction. The effect of the rarefac-

tion on the heat transfer is more prominent in PPM when

compared with that in CM, which maybe since the

boundary conditions have more effect on the double-con-

nected channel.

The influence of the axial heat conduction on the local

Nusselt number is shown in figure 7. The results indicate

0.001 0.01 0.1 10.0001

10

15

20

25

30

7

35

Pe = ∞   Kn = 0

N = 20
N = 15
N = 10
N = 5

N
u(

x)

x*

0.001 0.01 0.1 10.0001

4

4.4

4.8

5.2

3.6

5.6

Pe = ∞   Kn = 0.1

N = 20
N = 15
N = 10
N = 5

N
u(

x)

x*

(a) (b)

0.001 0.01 0.1 10.0001

20

50

10

7

001 001

Pe = 50   Kn = 0

N = 25
N = 20
N = 15
N = 10

N
u(

x)

x*

0.001 0.01 0.1 10.0001

5

10

15

20

25

4

28

Pe = ∞   Kn = 0

N = 25
N = 20
N = 15
N = 10

N
u(

x)

x*

(c) (d)

Figure 3. Effect of the number of eigenvalues on local Nusselt number with (a) Pe =?, Kn = 0, (b) Pe =?, Kn = 0.1, (c)Pe = 50, Kn =
0 in PPM; and with (d) Pe = ?, Kn = 0 in CM.
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that Nu(x) is inversely proportional to Pe, and the tendency

is manifest when Pe \ 250 with Kn = 0. The maximum

relative error of Nu(x) between Pe = 500 and Pe = 1000 are

3.1% and 0.08% when Kn = 0 and 0.1 respectively in CM,

and for PPM they are 6.0% and 0.1% respectively. The

influence of Pe can be thus omitted when Pe[500. Because

the speed of the axial heat conduction is far slower than that

of the heat convection if Pe is high enough, resulting in a

small axial temperature gradient and the axial heat con-

duction can be omitted. Besides, the axial heat conduction

only affects Nu(x) at the entrance region and the effect

gradually decreases along the streamwise direction. The

fully developed Nusselt number is independent of Pe,

which means the axial heat conduction only affects the

local Nusselt number in the thermal entrance region [47]. It

is worth noting that for the constant heat flux condition, the

fluid temperature linear changes along the axial direction,

which means the second derivative of the temperature

along the axial direction can be ignored in the fully

developed region. When comparing figure 7(a) and

figure 7(b), it is obvious that the influence of Pe is greatly

weakened as Kn increases. Similarly, the influence of Pe on
Nu(x) is more apparent in PPM in comparison with that in

CM.

The above results reveal that due to the entrance effect,

the heat transfer coefficient at the entrance region is much

higher than that of the fully developed region. Therefore, it

is necessary to determine the thermal entrance length to

clarify the influence range of the entrance effect. Based on

the definition of the thermal entrance length L�th [48], it can
be calculated with the following expression

NuðL�thÞ ¼ 1:05Nu1 ð48Þ

where Nu? is the fully developed Nusselt number.

The variation of the thermal entrance length is shown in

figure 8. The symbol mark in the figure is the calculated

value. The results in Shah and London [3], who gave the

thermal entrance length of ignoring the axial heat conduc-

tion and rarefaction, are also used to make a contrast. The

good result of the comparison supports the present work.

Moreover, Colin [49] have summarized the thermal entry

length without axial conduction for CM under constant heat

flux boundary condition, and the results are also plotted in

figure 8(b). The same trend can be found but some differ-

ences were also observed especially for low Kn. Note that

the results in Colin [49] come from Ameel et al [6]. The

0.001 0.01 0.1 10.0001

10

15

20

25

30

35

7

N = 5
N = 10
N = 20
Benchmark
 Shah and London [3]

N
u(

x)

x*

Figure 4. Effect of the number of the orthogonal function on

local Nusselt number.

0.001 0.01 0.1 10.0001

5

20

10

2

40
Kn = 0 - Shah and London [3]     

 Haddout et al. [13]          Ameel et al. [6]
Kn = 0 Kn = 0 Kn = 0.02
Kn = 0.06 Kn = 0.04 Kn = 0.06
Kn = 0.1 Kn = 0.08 Kn = 0.1

                                            Present results
 Kn = 0 Kn = 0.02
Kn = 0.04 Kn = 0.06
Kn = 0.08 Kn = 0.1N

u(
x)

x*

0.001 0.01 0.1 10.0001

10

100

3

CM-Pe = ∞

PPM-Pe = ∞

Shah and London [3]
Chalhub et al. [12]
Kalyoncu and Barisik [15]
Present results

N
u(

x)

x*

PPM-Pe = 50

(a) (b)

Figure 5. Validation of analytic solutions: (a) constant heat flux in CM and (b) constant wall temperature in CM and PPM.
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deviation can be ascribed to the fewer eigenvalues used in

Ameel et al [6], as mentioned in section 3.3. While the

Nusselt number at the entrance region is more sensitive to

the number of the eigenvalue for low Kn. Despite this, the

results in Ameel et al [6] or Colin [49] also verify our

results because the relative error of the thermal entry length

is within 3.8%. Besides, it is found that Pe has a distinct

influence on the thermal entrance length when Pe is low.

While the thermal entrance length hardly changes when Pe
[ 500. Note that the thermal entrance length increases for

increasing fluid axial heat conduction (i.e., decreasing Pe).
For example, in the case of the fluid heating situation, finite

axial heat conduction would reduce the temperature of the

fluid at any cross section, and hence a longer duct length

would be required to achieve the fully developed temper-

ature profile. In addition, the thermal entrance length, on

the whole, decreases as Kn increases and the reduction is

apparent for low Pe. When 0 B Kn B 0.1 and Pe C 50, the

correlations of the thermal entrance lengths are obtained by

using the curve fitting. For PPM,

L�th ¼ aþ bKnþ cKn1:5 þ dKn2 ð49Þ

The corresponding coefficients are shown in table 1. For

CM,

L�th ¼ �0:5913þ 0:5967Knþ 5:044Kn1:5 � 7:796Kn2
� �
�0:073� 2:767Pe�1:8
� �

ð50Þ

The results of the Eqs. (49) and (50) are shown by the

solid line in figure 8 and good agreements can be found

between the correlations and the calculated values.

4.2 Constant wall temperature

The influence of Kn on Nu(x) with the constant wall tem-

perature is shown in figure 9. Similar to the results under

the constant heat flux, Nu(x) is a decreasing function of Kn.
As Kn increases, the collision frequency between the gas

molecules becomes weak. And the entrance effect is greatly

affected by Kn, especially for low Pe, which is due to the

fact that the axial conduction enhances the entrance effect

and the effect of the rarefaction is more evident. The

influence of the rarefaction on the heat transfer perfor-

mance is more obvious in PPM compared with that in CM.

The influence of the axial heat conduction on the local

Nusselt number is shown in figure 10. The local Nusselt

number increases asPe decreases, especially when Pe\250.

The maximum relative error of Nu(x) between Pe = 100 and

Pe = 500 are 36.2%, 15.5%, and 1.6% in CM when Kn = 0,

0.02, and 0.1 respectively, indicating the effect of the axial

conduction is obvious when Pe[100, especially for low Kn.
And the maximum relative error of Nu(x) between Pe = 500

and Pe = 1000 in CM are 3.3%, 1.5%, and 0.1%whenKn = 0,
0.02, and 0.1 respectively, and for PPM they are 6.9%, 1.8%

and 0.1% respectively. Therefore, when Pe[100, the effect

of the axial heat conduction on the entrance effect cannot be

ignored in the slip regime untilPe[500, rather thanPe[100

0.02 0.04 0.06 0.080 0.1
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0.014

Pe = 50 Pe = 100 Pe = 250  
Pe = 500 Pe = 1000 Pe = ∞
Shah and London [3]   Eq. (49)
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Shah and London [3] Eq.(50)       
Colin [49]

L th
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(a) (b)

Figure 8. Variation of thermal entrance length in (a) PPM and (b) CM.

Table 1. Coefficients in Eq. (49).

Pe a b c d

50 0.0134 0.00550 -0.265 0.420

100 0.0122 0.0260 -0.330 0.485

250 0.0117 0.0330 -0.345 0.490

[500 0.0115 0.0384 -0.369 0.525
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Figure 9. Effect of Kn on Nu(x) in PPM with (a) Pe = 50, (b) Pe = 100, (c) Pe = ?; and in CM with (d) Pe = 50, (e) Pe = 100, (f) Pe =
?.
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Figure 10. Effect of Pe on Nu(x) in PPM with (a) Kn = 0, (b) Kn = 0.01, (c) Kn = 0.1 and in CM with (d) Kn = 0, (e) Kn = 0.01 and

(f) Kn = 0.1.
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in the existing literature. Likewise, the influence of the axial

heat conduction attenuates as Kn increases. Besides, the

influence is more obvious in PPM in comparison with that in

CM. But the difference decreases as Kn increases, indicating
that increasingKnwould downgrade the effect of the channel
shape on the heat transfer.

The influence of Pe on Nu(x) gradually decreases along

the streamwise direction. But it is worth noting that Pe
has an influence on Nu? under the constant wall tem-

perature, as shown in figure 11. Since the fully developed

Nusselt number with the constant wall temperature

strongly depends on the first eigenvalue, which is affected

by both Kn and Pe. However, the effect of Pe on Nu? is

small when Pe C 50, and the effect decreases as Kn
increases.

The effects of Pe and Kn on the thermal entrance length

are shown in figure 12. Different from the results under the

constant heat flux, the thermal entrance length increases

first and then decreases as Kn increases. The peak values of

L�th arise when Kn is 0.4 or 0.5. L�th is gradually getting

shorter as Pe increases and almost keeps unchanged when

Pe[ 500. Besides, L�th of CM is about 3–4 times that of

PPM. This is because two surfaces are in contact with the

fluid in PPM, the thermal boundary layer is thus formed

faster and shortens L�th. When 0 B Kn B 0.1 and Pe C 50,

the correlations of L�th are obtained by using the curve fit-

ting. For PPM,

L�th ¼ aþ bKnþ cKn1:5 þ dKn2 þ eKn2:5 ð51Þ

The corresponding coefficients are shown in table 2. For

CM,

L�th ¼ �0:0665þ 0:0038Kn� 0:9Kn1:5 þ 4:29Kn2
�
�4:14Kn2:5

�
�0:504� 33:33Pe�1:83
� � ð52Þ

The results of the Eqs. (51) and (52) are shown by the

solid line in figure 12 and a high degree of coincidence can

be found between the correlations and the calculated

values.

Figure 11. Variation of the fully developed Nu with Pe in PPM.
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Figure 12. Variation of thermal entrance length in (a) PPM and (b) CM.

Table 2. Coefficients in Eq. (51).

Pe a b c d

50 0.00945 0.0543 0.0489 -1.463

100 0.00845 0.0430 0.1160 -1.390

250 0.00808 0.0315 0.2600 -1.960

[500 0.00798 0.0298 0.2860 -2.056

Sådhanå          (2022) 47:219 Page 13 of 18   219 



4.3 Comparison of heat transfer under different
thermal boundaries

Figure 13 plots the influence of the rarefaction on the local

Nusselt number in PPM and CM with different boundary

conditions. The rarefaction effect has almost the same

effect on the local Nusselt number in the two microchan-

nels. Taking the results in PPM as an example, the local

Nusselt number decreases significantly with the increase of

Kn under the two thermal boundaries. When Kn = 0, the

curves of Nu(x) with the two boundary conditions are

almost parallel. As Kn increases, the two curves have an

intersection or even almost overlap at the entrance region.

The difference of the local Nusselt number with the two

boundary conditions almost disappears when Kn = 0.1 in

CM. But the difference is still obvious in the fully devel-

oped region in PPM, indicating the effect of the thermal

boundary condition on the heat transfer performance is

more important in PPM. The result indicates that the

rarefaction effect would diminish the difference in the heat
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Figure 13. Effect of Kn on Nu(x) under different boundary conditions in (a) PPM, and (b) CM.
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Figure 14. Effect of Pe on Nu(x) under different boundary conditions in (a) PPM and (b) CM.
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transfer performance between the two boundaries. At the

same time, the result demonstrates the change of Kn has a

greater influence on the heat transfer under the constant

heat flux when compared with that under the other

boundary.

In figure 14, the effect of the axial heat conduction on the

heat transfer is depicted in PPM and CM with different

boundary conditions. When the axial heat conduction is not

considered, that is,Pe??, the heat transfer coefficient with

the constant wall temperature is always lower. As Pe
decreases,Nu(x) under the constant wall temperature tends to

exceed that under the constant heat flux. The phenomenon

shows that the axial heat conduction would greatly enhance

the heat transfer performance at the entrance region, espe-

cially for the constant wall temperature. In addition, it can be

found that there is a fluctuation for Nu(x) near the inlet when
Pe = 50 under the constant wall temperature boundary, which

indicates that more eigenvalues are needed to calculate more

accurate results for this case.While adding an eigenvaluewill

double the amount of calculation, so using the numerical

methods to obtain the heat transfer coefficient of small Pe
may reduce the cost.

5. Conclusions

In this paper, the energy equations of the thermally devel-

oping flow in circular and parallel plates microchannels are

solved by using the separated variable method combined

with the Kummer function and Gram-Schmidt orthogonal-

ization. The temperature distribution is obtained, and the

expression of the dimensionless heat transfer coefficient is

derived. By analyzing the influence of the axial heat con-

duction and the rarefaction on the heat transfer character-

istic in microchannels with two boundary conditions, the

following conclusions are drawn:

(1) The number of eigenvalues mainly affects the results

near the inlet. With increasing Kn and Pe, the entrance

effect is not obvious and the effect of the number of

eigenvalues on the Nusselt number decreases as well.

More eigenvalues are needed to accurately calculate the

local Nusselt number in CM comparatively with that in

PPM. Besides that, more eigenvalues are required to

obtain the local Nusselt number accurately for the

constant wall temperature boundary condition when

compared with that for the constant heat flux.

(2) Considering the axial heat conduction will enhance the

heat transfer capacity at the entrance region, especially

when Pe\ 50. While the maximum relative errors of

Nu(x) between Pe = 500 and Pe = 1000 in CM and PPM

are within 7%, even within 0.1% for Kn = 0.1. The

effect of axial heat conduction on Nu can be thus

ignored when Pe[ 500. In the fully developed region,

the axial heat conduction does not affect the Nusselt

number under the constant heat flux but still has a small

influence on the heat transfer under the constant wall

temperature. In addition, enhancing the rarefaction

would weaken the entrance effect and then weaken

the influence of axial heat conduction on the heat

transfer as well.

(3) The thermal entrance length decreases with the increase

of Kn under the constant heat flux, but it increases first

and then decreases as Kn increases under the constant

wall temperature. The thermal entrance length

decreases as the axial fluid heat conduction fades away.

Besides, the thermal entrance length in CM is 3–4 times

that of PPM because PPM can be treated as a double-

connected channel. Finally, the correlations of the

thermal entrance length are proposed.

(4) The influence of thermal boundary conditions on the

heat transfer coefficient decreases as increasing Kn.
Considering these two boundary conditions, the

rarefaction effect has more influence on the heat

transfer under the constant heat flux, and the effect of

the axial heat conduction on the heat transfer is more

apparent under the constant wall temperature.

Appendix A: Steps of Gram-Schmidt
orthogonalization to obtain Cn

For the eigenfunctions sequence {/n}, assuming that the

orthogonalized function sequences are {gn}, the relation-

ship between the above two is as follows

g1 ¼ /1 ðA� 1Þ

g2 ¼ /2 � a21g1 ¼ /2 � a21/1 ðA� 2Þ

g3 ¼ /3 � a32g2 � a31g1 ¼ /3 � a32 /2 � a21/1ð Þ � a31/1

¼ /3 � a32/2 þ a32a21 � a31ð Þ/1

ðA� 3Þ

gn ¼ /n �
Xn�1

m¼1

anmgm ðA� 4Þ

For the orthogonal function sequences {gn}, there is the

following orthogonal property when i = j

Z 1

0

gigjdY ¼ 0 ðA� 5Þ

Substituting (A-1) and (A-2) into (A-5) yields

Z 1

0

g1g2dY ¼
Z 1

0

/1 /2 � a21g1ð ÞdY

¼
Z 1

0

/1/2dY � a21

Z 1

0

/1g1dY ¼ 0

ðA� 6Þ

then
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a21 ¼
R 1
0
/1/2dYR 1

0
/1g1dY

¼ \/1;/2 [
\/1; g1 [

ðA� 7Þ

More generally,

anm ¼ \/n; gm [
\gm; gm [

ðA� 8Þ

Based on the inlet boundary condition, setting the coef-

ficient of the eigenfunctions after the orthogonalization is

Bn, namely

X1
n¼1

Cn/nðYÞ ¼
X1
n¼1

BngnðYÞ ðA� 9Þ

and

X1
n¼1

BngnðYÞ ¼ hð0; YÞ ðA� 10Þ

The coefficient Bn can be obtained based on the char-

acteristics of the orthogonal function:

Bn ¼
R 1=A
0

hð0; YÞgndYR 1=A
0

g2ndY
ðA� 11Þ

According to (A-1)–(A-4), we have

X1
n¼1

BngnðYÞ ¼ B1/1 þ B2 /2 � a21/1ð Þ þ B3 /3 � a32/2ð

þa32a21/1 � a31/1Þ þ B4 /4 � a43/3 þ a43a32/2ð
�a43a32a21/1 þ a43a31/1 � a42/2 þ a42a21/1 � a41/1Þ

þ � � �Bn /n �
Xm�1

m¼1

anmgm

 !

ðA� 12Þ

After determining Bn, Cn can be calculated according to

(A-9), that is

C1 ¼ B1 � B2k1;2 � � � � � BNk1;N ¼ B1 �
XN
i¼nþ1

Bik1;i

..

.

Cn ¼ Bn � Bnþ1kn;nþ1 � � � � � BNkn;N ¼ Bn �
XN
i¼nþ1

Bikn;i

..

.

CN ¼ BN

ðA� 13Þ

where

kn;m ¼ am;nkn;n � am;nþ1kn;nþ1 � � � � � am;m�1kn;m�1 ¼ am;n

�
Xm�1

i¼nþ1

am;ikn;i

kn;n ¼ 1

ðA� 14Þ

List of symbols
cp Specific heat (J kg-1 K-1)

Cn Coefficient in Eq. (16)

Dh Hydraulic diameter (m)

h Convective heat transfer coefficient (W m-2 K-1)

k Parameter defined by Eq. (39)

Kn Knudsen number

Knu Modified Knudsen number = Kn(2–rv)/rv
Nu Nusselt number

p Geometry parameter

Pe Peclet number

Pr Prandtl number

Q Internal heat generation (W m-3)

q Heat flux (W m-2)

r R-Coordinate (m)

T Temperature (K)

u Fluid velocity (m s-1)

x X-Coordinate (m)

x* Non-dimensional length = x/(DhPe)
y Y-Coordinate (m)

Greek symbols
b Coefficient of thermal expansion (K-1)

c Ratio of specific heats

h Dimensionless temperature

j Fluid thermal conductivity (W m-1 K-1)

k Mean free path (m)

k2n Eigenvalue

l Dynamic viscosity (N s m-2)

q Fluid density (kg m-3)

rv Tangential momentum accommodation coefficient

rT Thermal accommodation coefficient

U Viscous dissipation function

/n Eigenfunction

Subscripts
? Fully developed region

c Microtube

m Mean

p Parallel plates microchannel

w Wall

in Inlet
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Abbreviation
CM Circular microchannel

PPM Parallel plates microchannel
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