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Abstract. Many online platforms have adopted a recommender system (RS) to suggest an actual product to

the active users according to their preferences. The RS that provides accurate information on users’ past

preferences is known as collaborative filtering (CF). One of the most common CF methods is matrix factor-

ization (MF). It is important to note that the MF technique contains several tuned parameters, leading to an

expensive and complex black-box optimization problem. An objective function quantifies the quality of a

prediction by mapping any possible configuration of hyper-parameters to a numerical score. In this article, we

show how a gird search optimization (GSO) can efficiently obtain the optimal value of hyper-parameters an MF

and improve the prediction of the collaborative recommender system (CRS). Specifically, we designed a 4 � 4

grid search space, obtained the optimal set of hyper-parameters, and then evaluated the model using these hyper-

parameters. Furthermore, we evaluated the model using two benchmark datasets and compared it with the state-

of-the-art model. We found that the proposed model significantly improves the prediction accuracy, preci-

sion@k, and NDCG@k over the state-of-art-the models and handles the sparsity problem of CF.

Keywords. Recommender system; collaborative filtering; hyper-parameter; grid search; SGD; ALS; random

search.

1. Introduction

A Recommender framework is an essential aspect of online

platforms, suggesting products (e.g., music, books, movies,

etc.) based on users’ choices. Recommender frameworks

are heavily deployed for suggesting films [1], songs [2],

books [3], e-commerce items [4], etc. RS techniques are

divided into two categories [5]: collaborative filtering (CF)

and content-based (CB). The CB technique requires

detailed profiles of users and items for suggesting an item to

an active user. On the other hand, the CF technique requires

only the user’s history to suggest a product. In this work,

we only focus on CF. The CF first creates a database of

user-item interactions (rating matrix). This matrix is very

sparse, with few users interacting with a few items. The

goal is to predict all missing values of the interaction

matrix. After the Netflix competition, the matrix factor-

ization (MF) method is successful among CF techniques

[1, 5–7]. MF predicts the missing interaction through the

latent features. In order to reduce the dimensionality of the

interaction matrix, latent features are extracted by finding a

low-rank approximation of the actual matrix using corre-

lations between columns (or rows). A minimization

problem is used to identify this approximation, whose goal

is to factorize the actual matrix into two low-rank matrices.

The approximation error determined the rank (i.e., K) of

decomposed matrix and was used as a hyper-parameter of a

model. Similarly, parameters such as regularization terms

are used to reduce the over-fitting and non-linearity effect

of the model. The learning rate hyper-parameter of

stochastic gradient descent (SGD) [5] is deployed to

retrieve a low-rank approximation of a matrix. It is very

difficult to know the best values of the above hyper-pa-

rameters a priori. Grid search optimization (GSO) [8] is a

recently used optimization technique in machine learning to

find the optimal values of the hyper-parameters.

The outline of our contributions are:

• We designed a 4 � 4 grid search space and tuned four

important hyper-parameters (nfactors, nepochs, learning

rate, and regularization term) that affect the perfor-

mance of the model-based collaborative recommenda-

tion system.

• Validate and compare the results with random search

and baseline MF [1, 9] on real-world movielens

datasets.
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• Verify the influence of sparsity and latent factors on

the performance of the proposed approach and com-

pare the result with the state-of-the-art algorithms.

The rest of the article is organized as: section 2 elaborates

on previous recommender systems and hyper-parameter

optimization. Section 4 describes our proposed methodol-

ogy. experiments, evaluation, and results analysis are pre-

sented in section 6. Conclusions are in section 8.

2. Related work

This section discusses the previous work from two per-

spectives: collaborative filtering (CF) and hyperparameter

(HP) optimization.

Collaborative filtering (CF): is one of the most widely

used recommender techniques among CF techniques [5].

As the CF approach is not domain-specific and generally

more accurate due to its ability to uncover hidden patterns,

it has gained much attention from research communities

[10]. It is used in many commercial applications [11]. CF

uses two primary techniques for constructing predictive

models based on previous behavioral data: neighborhood

algorithms and latent models. Neighborhood algorithms,

such as item-based approaches [5], estimate the relationship

among products and consumers, then used for recommen-

dation. Latent model, such as Singular Value Decomposi-

tion (SVD) [12], calculate feature vectors representing the

users and products. It is more accurate to model latent

factors than neighborhood models [13].

Goldberg et al [14], Behera and Nain [5] discussed

collaborative filtering (CF) based RS and found that this RS

is helpful for users to find the relevant information from a

corpus. RS retrieves relevant information from text docu-

ments and is used in various fields, from commercial

products to news, audio, video, etc. Deshpande and co [15]

discussed CF using kNN and computed the similarity

matrices using Pearson correlation. In recent years, matrix

factorization (MF) [1] has played a vital role in RS. MF

algorithms have become very much popular in real-life

applications like Netflix competition. MF decomposes the

user rating matrix into two latent factors, which are used to

predict missing values in the original matrix. Sarwar et al
[12] have proposed SVD to learn the feature matrices and

found that the MF model learned by SVD is prone to

overfitting. Thus Pan et al [16] and Hu et al [17] have

proposed regularized learning techniques using least square

optimization to reduce the negative examples. Hofmann

[18] proposed a probabilistic approach of latent factor

model (PMF) for item recommendation. While Wu Zhi-

peng et al [19] described the optimized MF recommenda-

tion algorithm on rating centrality. MF uses stochastic

gradient descent (SGD) to decompose the rating matrix into

item and user matrices. Therefore, an additional parameter

that characterizes SGD (learn rate a) needs to be optimized.

Zeng et al [20] have recognized the difficulty in parameter

setting for MF and proposed MF with scale-invariant

parameters that, once set, can be transferred to matrices of

different sizes. Which makes it easier for the selection of

models; still, finding the optimal parameter values remains

a challenge. This paper uses two scalable latent factor

modeling algorithms,SGD [1, 13] and ALS-WR [21].

Hyper-parameter optimization(HO):
Almost all CF techniques come with at least one

adjustable hyper-parameter, such as regularization, number

of latent factors, and learning rate. Choosing the appro-

priate values for these hyper-parameters play a vital role in

the generalizability and accuracy of your predictive model

[22]. Hyper-parameter optimization means finding a better

hyper-parameter value for a method to increase accuracy or

optimize a specific goal of the model. Multiple disciplines

have studied this problem, for instance, the application of

response surfaces [23] for tuning hyper-parameters in

statistics, while in machine learning (ML), advanced tech-

niques such as genetic algorithms have been proposed to

optimize hyper-parameters. However, a grid search [8] and

random search [24] are two techniques that are widely used

in industries. Grid search is an exhaustive search through a

subset of hyper-parameter space designed by the user.

Whereas random search selects a value according to a

probability distribution for every hyper-parameter.

Jones et al [25] explained EGO (Efficient Global Opti-

mization) technique to find the expected improvement by

combining stochastic Gaussian process (GP) with linear

regression. Bayesian optimization [26–28] is the most

widely used global optimization strategy for sensor net-

works and simulation optimization problems. Some of the

Bayesian optimization examples are found in [13, 29]. The

current study on CF, in general, uses trial and error to set

hyper-parameters. If we only need to optimize hyper-pa-

rameters once at the start, this approach may be acceptable.

However, it is impractical when we need continuous hyper-

parameter optimization when data is added repeatedly. In

this article, we use grid search technique for optimizing CF

algorithms.

3. Preliminaries and problem formulation

In this part, we have discussed preliminaries that are

associated with problem formulation as well as described a

list of notations that are used in this work. Table 1 shows a

list of notations.

3.1 Problem definition

Let U ¼ fu1; u2; � � � ; uMg and I ¼ fi1; i2; � � � ; iNg be con-

sists of m users and n items, respectively. Let rui 2 RM�N

represents the scoring matrix of uth user on ith item. Where

each user rates few items, hence the entries of scoring
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matrix are known only for a few index that is ðu; iÞ 2 T ,

with jT j � M � N. The set T is partitioned into training

TTrain and testing set TTest such that TTrain \ TTest ¼ ; and

TTrain [ TTest ¼ T . The goal of the CF is to predict for TTest
with the help of TTrain in such way that the performance of

the CF will be enhanced.

The idea behind MF methods is to factorize the R into

two low-rank matrices such as: R � pu � qTi , where pu 2
PM�K and qi 2 QK�N are user and item latent features with

K latent dimension. Generally, ðM;NÞ � K, and both pu
and qi contain real values, whereas R consists of integers

only. The MF is computed by reducing an error or loss on

TTrain as a function of the feature vectors ðpu; qiÞ. Therefore,

the optimization problem becomes.

L ¼ argmin
p;q

1

2

X

ðu;iÞ2TTrain
rui � r̂uið Þ2

h i
þ kr

X

k¼1

p2
uk þ q2

ki

� �
2
4

3
5

ð1Þ

Where r̂ui ¼
P

k¼1 puk � qTki is the predicted score of ith item.

kr � 0 represents regularization. While the loss function

defined in equation 1 is to learn to minimize the error. The

computation of error on the TTest signify that how good

could be that approximation is close to the actual ratings.

4. Grid search optimization (GSO) for hyper-
parameter optimization

4.1 Hyper-parameter optimization

Hyper-parameters (HP) are the parameters that are not

learned and set as input compared to learnable parameters.

However, hyper-parameters significantly affect the system

performance; hence to find the best set of HP, we need to

use optimization techniques that can enhance the perfor-

mance of the recommender system (RS). Some of the

algorithms are more sensitive to hyper-parameter settings,

so these algorithms need human experts. For example, k-

means require the setting of parameter k (number of cen-

troids), which affects clustering outcome. Sometimes

experts have no idea about good parameter values in

advance. Hence, they use hit and trial to find the appro-

priate parameter settings. An optimization method is

deployed to find the optimal set of hyper-parameters instead

of searching optimal parameters randomly. It is essential to

compare two or more optimization algorithms with differ-

ent settings of hyper-parameters. Let X and Y be two

optimization algorithms with different settings of hyper-

parameters, let HX and HY be the error measure obtained

after evaluation. Let HX\HY . When hyper-parameter tun-

ing is done by manually, it is tough to know whether the

error difference is due to X being better than Y or because

human experts tuned X better than Y. Hence, it is tough to

conclude that method X is reliable than Y, which is not

always possible. To marginalize the influence of an expert,

objective and fair tuning components are required. HP

optimization techniques play a vital role in tuning the

objective component. Let X be the learning algorithm, and f
be a function that minimizes the expected error L(y; f) over

i.i.d. Where y is a sample derived from a natural distribu-

tion Gy and X : Ytrain ! f . So that X produces f through the

optimization of training criterion w.r.t, h. Whereas actual X
is obtained after choosing kðhyper � parametersÞ and is

denoted by Xk, and f ¼ XkðYtrainÞ for a training set of Ytrain.

We need to choose k to minimize the error

Ey	Gy
½Lðy;XkðYtrainÞÞ
. Finding accurate values of k is the

problem of hyper-parameter optimization, defined in

equation 2.

k� ¼ argmin
k2K

Ey	Gy
½LðY ;XkðYtrainÞÞ
 ð2Þ

Further, equation 2 is addressed in terms of cross-validation

as it is very difficult to evaluate the expectation over Gy,

which is defined in equations 3 to 5.

k� ’ argmin
k2K

mean
y2Yvalid

½LðY ;XkðYtrainÞÞ
 ð3Þ

� argmin
k2K

WðkÞ ð4Þ

Table 1. List of notations.

Notations Description

U Set of M users

I Set of N items

T Total number elements in the

dataset

X, Y Two optimization algorithm

HX ;HY Errors generated from X and Y

l Global bias

bu User bias

bi Item bias

r̂ui Predicted rating

rui Actual rating

pu User latent factor

qi Item latent factor

K Latent Dimension

kr Regularization term

g Learning rate

k, h Set of hyperparameters

L() Loss Function

Gy Natural Distribution

k�, h� Optimized parameter

K Search space

w Hyperparameter response function
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ffi argmin
k2 k1;k2;���ksf g

WðkÞ � k̂ ð5Þ

Where W is the response function that optimizes the

parameter WðkÞ over k 2 K and K is the search space. We

partially adopted Bergstra and Bengio’s [24] notations for

the formulation of our optimization problem in collabora-

tive recommender system. RS is a tool that can handle the

information overload problem. The main goal of RS is to

predict relevant items for active users. RS applies to Net-

flix, commercial products, scientific articles, websites,

medications, etc. Like other algorithms (k-means, Support

vector classifier), RS is also sensitive to finding the correct

set of parameters. Therefore, we use the grid search opti-

mization process to find the best set of hyper-parameters in

our work.

4.2 Grid search optimization (GSO)

Let X be a target algorithm with k parameters to be tuned,

and parameter hi be a value within the interval ½xi; yi
 in

parameter search space H ¼ ½x1; y1
 � � � � � ½xk; yk
. H :
H ! R be a performance measurement function that maps

h to a numeric score. The error H is computed on cross-

validation, and H consists of four CF parameters: nepochs,

nfactors, learningrate, and kr.
Figure 1 represents a visualization of the grid and ran-

dom search (RS) techniques [8, 24]; grid search tries to

evaluate every combination of the hyperparameters and

note the accuracy. Once all combinations are evaluated,

then the model provides the set of parameters with the best

accuracy. Whereas RS is similar to grid search but, it tries

to combine the parameters randomly. An example of the

grid and random search optimizing with 3 � 3 sets of

parameters is shown in

Figure 2, which illustrates how 9 trial points are to be

tested using both random and grid search techniques and is

found that random search is the best technique compared to

grid search for lower dimensional data as the time taken to

find the best set of parameters are less with less number of

iteration.

Let K be a set indexed of K configuration variables. The

grid search(GS) needs to obtain the optimal values from a

set of values on each variable ðL1; L2; � � � ; LkÞ, so that

number of trials in a GS is S ¼
Q

k¼1 jLkj elements.

5. Proposed method

In this study, we have designed a two-stage collaborative

model using grid search optimization to improve RS’s

accuracy, as shown in figure 3.

In the first stage, we find the best set of hyper-parameters

from H for a targeted algorithm using grid search opti-

mization and assume that these hyper-parameters can

improve the prediction accuracy of an RS. Regular

parameters such as user feature vector (pu) and item feature

vector (qi) characterize the MF model and are estimated by

training the model using predefined data, whereas, hyper-

parameters such as learning rate (g), regularization (k),

number of epochs, and number of latent factors (K) control

how the above feature vectors (pu and qi) are estimated.

Finding appropriate settings for these hyperparameters is

crucial since they strongly influence the prediction perfor-

mance of a collaborative recommender system (CRS) using

MF techniques.

In this work, grid search optimization (GSO) technique,

is utilized to find the best hyperparameters which can be

expressed as follows.

Figure 1. Visualization of grid search and random search.
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h� ¼ argmin
h

Lðpvu; qvi ; rvui;Mðptru ; qtri ; rtrui; hÞÞ ð6Þ

The performance of CRS on a set of hyperparameters

mentioned in table 2 is evaluated by the objective function

defined in equation 7.

Lðptu; qti; rtui;Mðptrþv
u ; qtrþv

i ; rtrþv
ui ; h�ÞÞ ð7Þ

Where L and M represent the cost and model function

respectively; ptru and qtri are the user and item latent features

of training data respectively. pvu and qvi are the validation

feature vectors of user and item and ptu and qti are the

feature vectors of test data whereas h is the set of

hyperparameters.

The pseudo-code of grid search is shown in algorithm 5.

In the second stage, these optimal sets of hyper-parameters

are used for finding the prediction score. We named these

optimized techniques GSVD for grid search SVD and

GPMF for grid search PMF.

Algorithm 1: Evaluation Procedure of Grid search
Optimization

Input: Dataset (D); Algorithm (A); Θ (hyper parameter
      Space), GS (Grid Search)
Output: Optimized Parameters
res← { };
for i to N do
   θ ← select hyperparameter(GS, A, Θ)
   Model← train(A,θ,D train)
 res ← eval(Model,D test)
end
Θ ← Ad just(Θ, eval(res))

A grid of 4 � 4 search space is designed, in which the

grid takes the hyperparameters: learning rate (lrall), number

of factors (nfactors), regularization term (krall ), and several

epochs (nepochs) for GSVD and GPMF algorithms. Table 2

describes details of hyper-parameters.

In order to minimize the error, the loss function defined

in Equation 1 is to learn the feature matrices of both users

and items. The Two most popular derivative techniques:

Figure 2. Random and grid search optimizing 9 trials. With grid search there are only three distinct places to test the 9 trials. Where as

random search explores all 9 trials.

Figure 3. Framework of proposed model: In the first stage,

model search the best hyper parameters. In the second stage it

evaluates and recommend using the optimal parameters.

Table 2. Hyper parameters for GSVD and GPMF.

Hyper parameters Description Values

nfactors # of the latent space [10,100]

nepochs # of Iterations [20,100]

lrall Learning rate [0.001,0.005]

krall Regularization to prevent over-

fitting

[0.01,0.05]
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SGD (Stochastic gradient descent) and ALS (Alternating

Least Square), are used to handle the optimization problem

along with hyper-parameter optimization.

5.1 Stochastic gradient descent (SGD)

SGD initializes both item and user feature vectors with

random values and computes the cost function of the gra-

dient. It also updates each feature with steps in the negative

direction of the gradient [1, 9]. A biased SGD [30] is used

in this work so that prediction accuracy is improved. Tak-

ing the derivatives w.r.t each variable and adding bias terms

for both user and item (because some users might rate all

movies high or rate consistently low), the prediction is

defined in Equation 8.

r̂ui ¼ lþ bu þ bi þ pTu � qi ð8Þ

Where l :global bias, bi; ðbuÞ : item and user bias respec-

tively. The error function defined in Equation 1 is redefined

as in Equation 9.

L ¼
X

ui

ðrui � r̂uiÞ2 þ krub
X

u

buk k2þkrib
X

i

bik k2

þ kpuk
X

u

puk k2þkqki
X

i

qik k2
ð9Þ

Here two more bias regularization terms are added to

overcome the over-fitting, then we update each feature. For

example, user bias is updated as shown in the Equation 10.

bnewu ¼ bu � g
oL

obu
ð10Þ

Where g is the learning rate, after taking the derivative of

cost function defined in Equation 9 w.r.t bu, the updated bu
is shown in Equation 11.

bnewu ¼ bu þ gðeui � krubbuÞ ð11Þ

Similarly, the remaining features are updated and are

shown in the Equations 12, 13, and 14, respectively.

bnewi ¼ bi þ gðeui � kribbiÞ ð12Þ

pnewu ¼ pu þ gðeuiqi � kruk puÞ ð13Þ

qnewi ¼ qi þ gðeuipu � krkiqiÞ ð14Þ

Where eui denotes the prediction error. In this technique we

need to tune two hyper parameters: g and kr, that is learning

rate and regularization terms.

5.2 Alternating least squares(ALS)

ALS initializes user and item feature vectors with a random

values and updates these features using ALS in such way

that the quadratic cost/loss function [21], as shown in

Equation 1 is minimized. However, an ALS approach’s

computational cost is more expensive than SGD, whereas

ALS requires fewer iterations to obtain similar prediction

accuracy as SGD. Furthermore, ALS requires fewer hyper-

parameter settings to minimize the loss function. In ALS,

we must keep one set of latent vectors constant and com-

pute the derivatives w.r.t other vectors then equate to zero.

The user and item feature vectors are represented in

Equations 15 and 16, respectively.

puk ¼ruiqikðqkiqTik þ kpuk IkkÞ
�1 ð15Þ

qik ¼rikpukðpukpTku þ kqki IkkÞ
�1 ð16Þ

The only hyper-parameter to be tunned in ALS is k that is

regularization term to prevent overfitting.

6. Experimental evaluation

In this Section, we have discussed the experimental eval-

uation process and analyze the results over all datasets and

make a comparison with the state-of-the-art techniques.

6.1 Datasets

We have used two benchmark datasets for evaluation pur-

poses in this work, namely movielens-1M (ML-1M) 1 and

100K (ML-100K) 2. The ML-100K corpora contains

100K ratings given by the 943 users to 1682 movies, and at

least each user has interacted with 20 movies. In contrast,

the ML-1M corpora contains 1000209 ratings for 3900

movies given by 6040 users. The detailed description of

datasets is shown in table 3.

6.2 Evaluation metrics

The prediction accuracy of a Recsys indicates the per-

centages of deviation from the actual prediction. RecSys,

predicts user preferences based on predictive models that

retrieve the prediction score of unseen user-item pairs. The

score lies within the interval [0, 1]. A high score signifies

that the user is more likely to buy the product. In our work,

we have used evaluation measures, such as Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE) [31].

RMSE is defined in Equation 17. Also, we investigate top-k

recommendations by computing ranking metrics like nor-

mal discounted cumulative gain (NDCG), mean average

precision (MAP), precision@k, and recall@k here; we have

considered k ¼ 10, that is top-10 recommendations.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

i¼1

ðrai � r̂pi Þ
2

vuut ð17Þ

Where rai : is the actual rating value and r̂pi is the predicted

1http://grouplens.org/movilens/ml-1m.zip.
2http://grouplens.org/movielens/ml-100k.zip.
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rating value. The lower the prediction error indicates, the

better or accurate the predictive model. Similarly, MAE is

defined in Equation 18.

MAE ¼ 1

T

XT

i¼1

rai � r̂pi
�� �� ð18Þ

precision@k and recall@k are defined in Equations 19

and 20, respectively, where precision@k indicates the

percentage of items recommended for top-k recommen-

dations. precision@k and recall@k are defined in Equa-

tions 19 and 20 respectively. Where precision@k indicates

the percentage of items recommended for top-k
recommendations.

Precision@k ¼#Relavant items at top k

#Retrived item
ð19Þ

Recall@k ¼#Relevant items at top k

#Relevant item
ð20Þ

NDCG and MAP [32] are defined in Equations 21 and 23

respectively.

NDCG ¼ Actual DCG

Ideal DCG
ð21Þ

DCG (Discounted cumulative gain) for a ranking document

is the total accumulated gain at a particular rank p and

defined in Equation 22.

DCGp ¼ rel1 þ
Xp

i¼2

reli
logðiÞ ð22Þ

Where rel1 is the first relevant item, 1
logðiÞ is the discount at

rank i and p represents pth rank.

MAP ¼ 1

P

Xp

r¼1

AveragePrecisionr ð23Þ

7. Result analysis

In this section, we explored the results. We split the data-

sets randomly into 80% and 20% as train-test set respec-

tively and evaluate the experiment with the optimal set of

hyper-parameters.

7.1 Impact of latent factor

In order to examine the proposed approach and compare

with the baseline methods such as SVD [33], PMF [34], and

ALSWR (weighted alternating least squares) [21] along

with random search techniques [24] of (RSVD, RPMF) in-

depth under different K (latent factors) varying from 20 to

100. Table 4 shows the percentage of deviation of loss in

terms of RMSE of the proposed method, i.e., GSVD and

GPMF for ML-100K dataset, and found that our method

has reduced loss at least by 0.002 from the state-of-the-art

method. Similarly, compared to other methods, our method

reduced loss by 1:4%, 2:8%, and 4:6% than SVD, PMF, and

ALS, respectively. Prediction error in terms of MAE, our

approach produces a lower prediction error than the base-

line method. That is, loss or prediction error is reduced at

least by 0.002 value than RSVD and reduced the prediction

error of 1%, 2%, and 3% than SVD, PMF, ALS,

respectively.

Table 5 represents the comparison of top-k recommen-

dations of the proposed method with baseline algorithms

and found that the proposed technique improves the pre-

cision@k, at least 3:8% from SVD, 2:1% from PMF, 6:4%
from ALS, and 4:8% from RSVD. Furthermore, the NDCG

of the proposed method significantly improves over the

benchmark methods at least by 2% on the ML-100K

dataset.

Table 6 shows the percentage of deviation of loss or

prediction error in terms of RMSE of the proposed

approach and other benchmark methods on the ML-1M

dataset. It is found that the proposed technique has obtained

a lower prediction error than benchmark methods. The

prediction error is reduced at least by 0.002, 0.023, and

0.033 values from RSVD, SVD, and PMF, respectively, on

ML-1M. Similarly, GSVD and GPMF have produced a

lower prediction error in MAE than the baseline method, at

least by 0.003 to the RSVD. In contrast, prediction error of

the proposed method is reduced by 0.025, 0.026, and 0.045

values than SVD, PMF, and ALS, respectively.

Further Table 7 shows a comparison of the top-k rec-

ommendation of the proposed method and benchmark

algorithms and found that the proposed technique improves

the precision@k at least by 0.019 from SVD, 0.009 from

PMF. Similarly, the NDCG of our model is significantly

improved over the benchmark methods, at least by 0.009

value from the benchmark methods on the ML-1M dataset.

Figure 4a shows prediction error in terms of RMSE of

the proposed method decline with an increase of latent

Table 3. Detail description of experimental datasets.

Datasets # of users # of items # of interaction % of Sparsity

ML-100K 943 1682 100,000 93.70%

ML-1M 6040 3952 1,000,209 95.81%
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factor and decrease by 0.002 than second the best method

(RSVD). Figure 4b shows that MAE of GSVD and GPMF

are declined with the increase of K on the ML-100K

dataset. Figure 4a shows prediction error in terms of RMSE

of the proposed method decline with an increase of latent

factor and decrease by 0.002 than second the best method

(RSVD). Figure 4b shows that MAE of GSVD and GPMF

is declined with the increase of K for ML-100K.

Figure 5a shows a loss in terms of RMSE of different

methods on the ML-1M dataset and found that the proposed

method decreases prediction error at least by 0.0029 than

the second-best method. Figure 5b shows that loss in terms

of MAE of GSVD and GPMF declined with the increase of

K that is reduced at least 0.003 MAE value than a second-

best method, which indicates our approach is better than the

benchmark. Figures 4 and 5 show the performance of 100K

and 1M datasets under different K and found that with an

increase of K, the proposed method declined and

maintained stability with lower MAE and RMSE than

benchmark methods on both datasets.

7.2 Impact of sparsity

The performance of recommender systems is strongly

influenced by lack of sparsity [20, 35–38]. We conduct

several experiments by varying the training ratio (a) from

50% to 80% and seeing the effect of sparsity on the per-

formance of recommender models.

Tables 8 and 9 represent the experimental outcome on

ML-100K and ML-1M corpora, respectively. It can be

noted that the performance of the recommender model is

greatly affected due to the sparseness of datasets. Table 8

depicts the results of the ML-100K dataset. It is found that

the RMSE of the proposed model is smaller as compared

with other models when a varies from 50% to 80%. Even

though the proposed approach offers a small improvement

Table 4. Comparison of accuracy for 100K.

Metric SVD PMF NMF ALSWR RSVD RPMF GSVD GPMF

RMSE 0.9353 0.9491 0.9755 0.9671 0.9214 0.9351 0.9209 0.9287
MAE 0.7364 0.7423 0.7671 0.7583 0.7245 0.7402 0.7224 0.7350

Table 5. Comparison of top k recommendation for 100K.

Metric SVD PMF ALSWR RSVD RPMF GSVD GPMF

Precision@k 0.0781 0.0945 0.0519 0.0758 0.0986 0.0828 0.1161
Recall@k 0.0313 0.0453 0.0175 0.0334 0.0471 0.0361 0.0557
NDCG@k 0.0852 0.1063 0.0474 0.0845 0.1102 0.0908 0.1319
MAP@k 0.0126 0.0193 0.0057 0.0134 0.0197 0.0146 0.0253

Table 6. Comparison of accuracy on ML� 1M dataset.

Metric SVD PMF NMF ALSWR RSVD RPMF GSVD GPMF

RMSE 0.8760 0.8855 0.9201 0.8866 0.8554 0.8568 0.8525 0.8557

MAE 0.6964 0.6974 0.7267 0.7167 0.6743 0.6791 0.6711 0.6755

Table 7. Comparison of top k recommendation on ML� 1M dataset

Metric SVD PMF ALSWR RSVD RPMF GSVD GPMF

Precision@k 0.0816 0.0921 0.0136 0.0830 0.1018 0.0846 0.1011

Recall@k 0.0271 0.0326 0.0058 0.0298 0.0376 0.0302 0.0380

NDCG@k 0.0916 0.1030 0.0155 0.0925 0.1133 0.0935 0.1124

MAP@k 0.0114 0.0142 0.0024 0.0125 0.0163 0.0126 0.0165
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of performance, it is still substantially better than bench-

mark models. Table 9, it is seen that our model outperforms

overall methods under different sparsity levels. When

a ¼ 50%, the RMSE of the proposed model is 0.008

smaller than ALSWR and 0.0221 smaller than that of PMF.

Similarly, the MAE of the proposed model is improved

significantly with the increase of a overall methods.

Figure 6a and b describes the influence of the different

sparsity ratio on the performance of the models on both

datasets. We can see that with an increase in training ratio,

the performance of the model is improved.

(a) RMSE vs n factors on 100K dataset (b) MAE vs n factors on 100K dataset

Figure 4. Performance comparison of various models under different latent factors (K) on ML� 100K dataset.

(a) RMSE vs n factors on 1M dataset (b) MAE vs n factors on 1M dataset

Figure 5. Performance comparison of various models under different latent factors (K) on ML� 1M dataset.

Table 8. Performance of different model on ML-100K dataset under different sparsity ratio.

Metric a SVD PMF ALSWR RSVD RPMF GSVD GPMF

RMSE 50 0.9597 0.9751 1.0112 0.9454 0.9565 0.9465 0.9412

60 0.9517 0.9557 0.9918 0.9365 0.9485 0.9412 0.9398

70 0.9445 0.9512 0.9791 0.9278 0.9412 0.9325 0.9312

80 0.9353 0.9491 0.9671 0.9214 0.9351 0.9209 0.9287

MAE 50 0.7642 0.7811 0.7709 0.7624 0.7551 0.7536 0.7542

60 0.7501 0.7612 0.7725 0.7425 0.7565 0.7422 0.7545

70 0.7412 0.7521 0.7635 0.7344 0.7498 0.7331 0.7426

80 0.7364 0.7423 0.7583 0.7245 0.7402 0.7224 0.7350
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8. Conclusions and future work

In our work, we designed a grid search optimization

procedure for a collaborative recommender system to

improve the performance of CF. Specifically, we obtained

the optimal set of hyper-parameters through GSO and then

used these hyper-parameters in the next stage of the model

to improve prediction accuracy. We found that the optimal

values are lrall ¼ 0:005, kall ¼ 0:002, nfactors ¼ 100, and

nepochs ¼ 100, respectively. The experimental outcomes

indicate that the proposed approach (GSVD and GPMF)

has lower prediction errors than benchmark methods (e.g.,

SVD, PMF, ALS, RSVD, and RPMF). Further, we

investigated top-k recommendations and found that pre-

cision and NDCG are significantly improved over

benchmark methods. As latent factors control the dimen-

sion of latent space, that is, the size of user vector pu and

item vector qi, which affects prediction quality. Hence, we

investigated the impact of latent factors on prediction

error. We found that the proposed method’s prediction

error (RMSE and MAE) declines gradually with the

increase of K from 20 to 100 on both datasets and obtains

less prediction error than benchmark methods, hence

improving recommendation accuracy. In the future, we

will extend the work with the help of advanced opti-

mization procedures to improve the accuracy of the rec-

ommender system.
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