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Abstract. Pelvic bone is a complex and robust load-bearing skeletal structure in the human body, the evo-

lution of which might have been influenced by mechanical loads of daily activities like walking, upright

standing, and running. Since the main function of skeletal bones is to provide rigidity to the body and provide

hard surfaces for muscle attachment as well, in this work we propose a compliance minimization problem to

determine whether material distribution guided by topology optimization yields a skeletal structure similar to the

pelvic bone under same boundary conditions and volumetric constraints. As bone growth occurs in response to

the mechanical loads acting on it, we consider the maximal loads that the pelvic bone may experience for a

continued period of time, namely during running. The running gait cycle is divided into seven phases, and the

objective function is a weighted combination of these seven phases. The optimal geometries are compared with

the natural hemi-pelvis by measuring shape similarity using Procrustes analysis. Results show that the optimal

geometries have good shape similarity in stance phases. We also explore the design space by considering a

combination of sequence of phases which is an alternative to the weighted multiple load-case objective function.

In all cases, the optimal geometries are stiffer than the hip bone. To validate this result, we conducted com-

pression test experiments on selected optimal geometries and natural hemi-pelvis model of same material and

found that the experimental results prove that topology optimization based optimal geometries are indeed more

stiff than the natural hemi-pelvis geometry.
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1. Introduction

The main mechanical function of bone is to provide rigid

support to muscle against pull forces during activity and to

remain as light as possible for efficient locomotion [1]. To

achieve this, bone must adopt the shape, topology and

internal micro-structure to efficiently use the material [2].

Since [3] proposed that external forces influence bone

micro-structure adaptation, many researchers developed

bone re-generation and growth models by considering dif-

ferent factors which can be categorized into three groups:

biomechanical models, structural optimization models, and

optimal response models. Biomechanical researchers

mostly addressed the mechanism of stimulus sensing and

tissue remodeling to develop new frameworks through

experimental data [4–9]. Structural optimization research-

ers developed regulatory mechanisms by minimizing an

objective function such as strain energy density to analyze

the effect of various parameters on bone adaptation or to

design prosthesis [10–15]. The models derived based on the

optimal response hypothesis assumes that bone adaptation

is a continuous process and highly affected by temporal

conditions [16, 17].

One of the most studied bone to which above bone

micro-structure growth models have been applied is the

femur, compared to which other equal load bearing bones

like the pelvic bone have received less attention [11, 18].

Most researchers focused on developing models to under-

stand the micro-structure growth of the bone, whereas the

design of the global geometry of the bone has received little

attention probably due to the complexity of the problem.

Although the pelvic bone has not been the active target

of bone micro-structure growth models, Finite Element

(FE) analysis of the pelvic bone is an active area of research

[19–23]. Starting from the early works of Goel et al [19, 24]
to calculate stresses in the pelvic bone using 3D linear

isoparametric elements, FE analysis has been used to study

multiple conditions affecting the mechanical behavior of

the pelvic bone [22, 23, 25]. However, it remains an open

problem to determine the extent to which the pelvic bone

geometry is an optimal structure to resist deformation under

mechanical loads acting on it. We think that the most*For correspondence
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suitable way to test this is to design a structure having the

similar material, boundary, and loading conditions as the

pelvic bone and then compare the geometries of the

designed structure and the pelvic bone. Using structural

optimization principles, the suitable approach of designing

such an optimal structure is by posing a compliance or

strain energy minimization problem with appropriate

loading and boundary conditions and under the constraint

of an upper limit on the mass (or volume for constant

density) of the designed structure. Since the pelvic bone

geometry is quite complicated (an irregularly shaped spread

out bone with a hole in it) compared to other bones like the

femur, instead of using shape optimization we use topology

optimization (TO) to determine the geometry of an optimal

structure under same loading and boundary conditions of

the pelvic bone under a chosen activity. Our recent work

demonstrates that optimally stiff structures similar to the

pelvic bone can be designed using TO under mechanical

loads of walking [26]. TO has already been used to design

optimally stiff prostheses [15, 27], and the methodology

adopted in this work may be extended in designing of

pelvic prosthesis that require replacement of the entire

hemi-pelvis [28, 29].

This work explores the design space of the hemi-pelvis

under running gait cycle loads to understand the influence

of the mechanical loads on the evolution of the shape and

topology of the hemi-pelvis. Running gait cycle is chosen

since muscles are more activated in running than in

walking, implying greater body support forces in running

[30–32]. Our previous work on walking [26] finds the

optimal geometries of the hemi-pelvis under the loads of

eight phases of walking gait cycle, which gives eight

optimal geometries for a single walking cycle. Identifying

a best optimal geometry among the eight for a possible

prosthesis application is difficult, since all eight geome-

tries are optimal solution for each phase. This motivated

us to solve a multiple-load case optimization problem that

considers the effect of the loads of all phases simultane-

ously. The aim of the current work is to obtain a optimal

geometry for a running gait cycle using multiple-load

case formulation. Experiments are conducted to verify

simulation results of the pelvic bone obtained using

OptiStruct�.

2. Methods

2.1 Topology optimization formulation

Topology Optimization (TO) presents the most generalized

structural optimization approach as it has capability of not

only exploring varied shapes and sizes, but different

topologies as well for a given design domain [33]. Com-

pliance minimization with volume constraint formulation of

Table 1. Magnitude of muscle and hip joint forces acting on pelvic bone during seven phases of running gait cycle using the OpenSim

model of [37] for a human of weight 650 N.

S. No Muscle Name
Forces (N) acting on the pelvic bone during running phases

P1 P2 P3 P4 P5 P6 P7

1 Tensor fascia latae 127 0 200 0 69 32 100

2 Sartorius 88 0 120 0 58 30 49

3 Rectus femoris 540 0 1023 0 1278 112 187

4 Pectineus 53 6 93 20 64 42 77

5 Adductor longus 37 0 93 187 287 123 170

6 Gracilis 27 47 55 36 28 51 104

7 Adductor brevis 37 25 79 53 30 130 172

8 Adductor magnus 96 360 130 79 44 801 386

9 Obturator externus 295 25 388 0 236 546 355

10 Quadratus femoris 158 16 103 120 130 48 137

11 Semimembranosus 46 500 95 186 0 155 820

12 Gemellus superior 98 0 69 0 37 26 114

13 Piriformis 106 45 103 0 39 88 375

14 Psoas 865 0 1316 324 633 143 145

15 Obturator internus 572 0 625 0 266 381 596

16 Semitendinosus 0 248 75 140 0 219 354

17 Gemellus inferior 98 0 69 0 37 26 114

18 Iliacus 805 0 1296 265 547 145 159

19 Gluteus minimus 141 116 302 0 146 608 603

20 Gluteus medius 358 754 518 0 55 1624 1269

21 Gluteus maximus 294 986 262 0 0 620 935

22 Hip joint force 1320 3770 2264 1070 509 358 470
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TO gives the possible stiffest structure under specified

loading and boundary conditions for a given volume [34].

Compliance of a structure is defined as the total work done

due to the external forces acting on it [33] and the opti-

mization formulation is given as:

minimize: c ¼ fTu

subject to: V �Vmax

Ku ¼ f

ð1Þ

where c is compliance, f is force vector, K is stiffness

matrix, u is displacement vector, V is the volume of the

structure and Vmax is the maximum allowable volume

[35]. For this work, Vmax is equal to the volume of the

natural hemi-pelvis. Force vector f contains both hip

joint reaction force and muscle forces acting on the

pelvic bone during running. The running gait cycle is

divided into seven phases [36] based on the contact of

heel with ground and shown in figure 1. First phase of

running is when the heel is in contact with ground, and

the stance phases are second and third. The heel is just

off from the ground in fourth phase, while the fifth and

sixth phases are swing phases. The last phase where heel

makes contact with ground is seventh phase. The

mechanical forces on the pelvic bone during these seven

phases of the running is not available in literature

directly; hence, we use Opensim 3.0 software to obtain

them. The OpenSim model of Hamner et al [37] is used
to calculate the forces during these seven phases,

whereas to obtain the direction of these forces a plugin

called ‘MuscleForceDirection’ is used [38, 39].

Joint angles are calculated using inverse kinematics to

minimize the error between experimental marker positions

and modeled markers in the simulation. Joint moments are

computed with residual reduction algorithm using inverse

dynamics. A static optimization problem is formulated to

compute the muscle forces that minimized the sum of

square of each muscle activation. The accuracy of the

OpenSim model was tested by [37] by comparing joint

angles, joint moments and ground reaction forces with the

literature [40, 41], and muscle forces and activations with

the Electromyography data. We used this model without

any modifications for obtaining the muscle forces of seven

phases of running. The direction of muscle forces is

obtained from the ‘MuscleForceDirection’ plugin in

OpenSim [38, 39]. Table 1 presents the forces acting on the

pelvic bone during the seven phases of running. More

details regarding the creation and validation of the Open-

Sim model can be found in [37].

Equation 1 gives one optimal geometry for each phase,

and a total of seven optimal geometries for one running gait

cycle. However, if a designer has to design a structure

experiencing a number of loading conditions, then to con-

sider the simultaneous effect of all the loading cases,

multiple-load case optimization formulation is used

[11, 42]. The objective function in multiple-load case

optimization is weighted compliance of the load cases and

instead of one set of governing equation constraints, there

Figure 1. Seven phase of the running gait cycle. The corresponding muscle and hip joint forces are given in table 1.

Table 2. Weights used for multiple-load case optimization.

Case Formula Weights
Remarks

i wi ¼ 1
n

[0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143] Equal weights

ii wi ¼ DtiP
i
Dti

[0.070, 0.090, 0.170, 0.170, 0.170, 0.170, 0.160] Duration of the phase

iii wi ¼ FiP
i
Fi

[0.135, 0.386, 0.232, 0.110, 0.050, 0.037, 0.048] Hip joint force

iv wi ¼ FiDtiP
i
FDti

[0.076, 0.278, 0.316, 0.149, 0.068, 0.050, 0.062] Impulse

v
wi ¼

Fi
DtiP
i

Fi
Dti

[0.213, 0.474, 0.151, 0.071, 0.032, 0.024, 0.033] Force sensitivity
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are as many sets of governing equation constraints as the

number of load cases. The multiple-load case problem

formulation is:

minimize: cm ¼
XNL

q¼1

wqf
T
quq

subject to: V �Vmax

Kuq ¼ fq; q ¼ 1; 2; :::;NL

ð2Þ

where cm is weighted compliance, fq, uq,wq are force vector,

displacement vector and weight factor corresponding to the

qth phase respectively, NL is the number of phases in the gait

cycle. The weight factors should satisfy the condition
PNL

q wq ¼ 1 [11]. In multiple-load case formulation, the

objective function is dependent on the specification of

weights. In this work, we are motivated to define the weights

on some physical basis and choose different criteria to cal-

culate the same. The most trivial set of weights is uniform

distribution, i.e., average of the phases in running gait cycle,

case (i) in table 2. Since the running gait cycle is divided into

seven phases [36], the fraction of the gait cycle at which each

stance occurs can be calculated. We then calculate the frac-

tion-gap between each stance and consider it as the duration

of each phase. This duration forms the second set of weights,

case (ii) in table 2. The normalized hip joint forcemagnitudes

at the acetabulum [37] during each stance form the third set of

weights, case (iii) in table 2. Next, we calculate the product of

duration of phase and the hip joint force, i.e., the impulse

which is physically relevant considering the momentum

change during running. Hence the normalized impulse forms

the fourth set of weights, case (iv) in table 2. Finally, con-

sidering the jerking movement during running, i.e., sudden

change in accelerations, we are also interested to incorporate

this factor in the weights. Hence, we consider the force sen-

sitivity with respect to time, and the normalized force sen-

sitivity forms the last set of weights, case (v) in table 2.

2.2 Material modeling

Material modeling is required to define the stiffness and

density (design variable) of the structure by using an

interpolation technique. This work uses Solid Isotropic

Material Penalization (SIMP) method [43]. The structure is

discretized into finite elements and a penalization factor

penalizes the density of each element to a continuous

variable (that varies from 0 to 1) from a discrete variable

(either 0 for void or 1 for solid). Using SIMP, the stiffness

matrix can be defined as:

ke ¼ qpk0; 0\qmin � q� 1 ð3Þ

where ke is modified elemental stiffness matrix, k0 is initial
elemental stiffness matrix, p is penalization factor and q is

design variable. The compliance using SIMP is given as,

cme ¼
XNL

q¼1

wqðfTe ueÞq ¼
XNL

q¼1

wqðuTe keueÞq

¼
XNL

q¼1

wqq
pðuTe k0ueÞq

ð4Þ

where cme is the elemental weighted compliance, ðfTe Þq is

force vector of the eth element for qth phase and ðuTe Þq is

displacement vector of the eth element for qth phase.

2.3 Sensitivity analysis

TO requires the calculation of sensitivities since many TO

algorithms are based on convex optimization techniques

[44]. Sensitivity analysis provides the variation of the

objective function, i.e., compliance due to small change in

the design variable, i.e., density and is defined as:

ocm

oq
¼

XNL

q¼1

wqf
T
q

ouq
oq

¼
XNL

q¼1

wqu
T
qK

ouq
oq

ð5Þ

From equation 2, the sensitivity of weighted compliance

and weighted elemental compliance with respect to the

design variable q is given as,

oK

oq
uq þK

ouq
oq

¼ 0 ) ouq
oq

¼ �K�1 oK

oq
uq

) ocm

oq
¼ �

XNL

q¼1

wqu
T
q

oK

oq
uq

ð6Þ

and
ocme
oq

¼ �
XNL

q¼1

wqðuTe Þq
oke
oq

ðueÞq ð7Þ

Using SIMP method (equation 3), the sensitivity of the

compliance cme with respect to the design variable q is,

Figure 2. Natural hemi-pelvis bone along with its components

(iliac-crest and obturator foramen) and three joints (sacro-iliac

joint, acetabulum and pubic symphysis).
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ocme
oq

¼ �
XNL

q¼1

wqpq
p�1
e ðuTe Þqk0ðueÞq ð8Þ

2.4 Filtering techniques

TO has numerical instabilities like mesh dependency and

checker board problems [45, 46]. Filtering techniques are

widely used to prevent these instabilities. This work uses

the following filtering technique by modifying the sensi-

tivities that are obtained from Eq. 8.

o �ce
m

oqi
¼ 1

qi
PN

l¼1 wl

XN

l¼1

wlql
ocme
oql

ð9Þ

The weight factor wl is defined as:

wl ¼ rmin � distði; lÞ;
fl 2 N j distði; lÞ� rming; l ¼ 1; :::;N

ð10Þ

where o �ce
m

oqi
is the modified sensitivity of the ith element that

is obtained after using filtering technique,
ocme
oql

is original

elemental sensitivity of the lth element, ql is lth element

density, N is the total number of elements in the structure,

dist(i, l) is the distance between the ith and lth elements and

rmin is the filtering radius [33].

2.5 Design domain, boundary conditions,
and optimization solver

Pelvic bone is connected to three other bones through the

sacro-iliac joint (with the sacrum), the acetabulum (with the

femur) and the pubic symphysis (with the other pelvic

bone) and these three joints are shown in figure 2. The

design domain for topology optimization is shown in

figure 3. The arrows represent the forces acting on the

pelvic bone. In general, the topology optimization input is

an arbitrary domain, but it is avoided in the current prob-

lem. The traction forces on the pelvic bone, i.e., muscle

forces and hip joint force, are exerted through multiple

muscle attachment areas and the acetabulum respectively

(figure 3). Initial geometry of any arbitrary shape (for

example, a cuboid) is avoided due to the following reasons:

• Modeling the muscle attachment areas inside the

cuboid involves the modeling of the replica surface

of these muscle attachment areas; this increases the

complexity of modeling; and meshing of these com-

plex modeled areas is difficult.

• The application of traction boundary conditions on

inner elements is not allowed. The inner elements can

take only body forces, while the boundary elements

can take traction.

• To avoid the convergence to a local optimal solution

since OptiStruct�solver uses a convex optimization

technique.

As explained earlier, the design domain (figure 3) is highly

restricted by Dirichelt (fixed) and Neumann (force)

boundary conditions. The Dirichelt boundary conditions are

applied at the pubic symphysis and sacro-iliac joint since

the joint deformations are negligible compared with that of

the acetabulum. Neumann boundary conditions include two

parts, i.e., hip joint force and muscle forces. The hip joint

force is applied at the acetabulum [47]. Muscle applies

active forces on pelvic bone through the muscle attachment

areas and these areas also restrict the design domain. The

muscle forces are obtained using the OpenSim running gait

model of Hamner et al [37]. The direction of muscle forces

are obtained from the ‘MuscleForceDirection’ plugin in

OpenSim [38, 39]. The running gait cycle consists of seven

phases [36]. Similar to our previous work [26, 48], the

muscle attachment areas and iliac-crest are posed as non-

design domains to prevent material removal from unwanted

areas.

The geometric model of the design domain from our

previous works [49, 50] is used in the current work. The

design domain is meshed with tetrahedral elements using

Altair HyperMesh�software. Figure 4 presents the mesh

convergence details of the design domain of the topology

optimization. Based upon results from mesh convergence

study, the design domain contains a total of 978, 112

tetrahedral elements and 163, 273 nodes. This work uses

Altair OptiStruct �software to solve Eqs. 1 and 2 [51]. The

output from OptiStruct�is a density map over the design

domain with densities for elements varying between 0-1, 0

for void, and 1 for a homogeneous isotropic solid. The final

geometry is decided by the designer by selecting a

threshold density below which everything is converted to

Figure 3. Design domain with boundary conditions, i.e., fixed

boundary conditions (‘Cu’ shown in red hash), hip joint force (‘Cs’

shown in black dotted line), and muscle forces (‘balck dotted

closed curves’). The muscle attachment areas (‘balck dotted

closed curves’) and iliac-crest (‘Xn shown in black solid curve),

are non-design domains. The arrows represent forces acting on the

pelvic bone (arrows are neither scaled to magnitude, nor show

actual direction).
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void and above which everything is converted into solid.

More details on the calculation of the threshold density are

given in our previous work [26].

2.6 Procrustes analysis

Thiswork uses ProcrustesAnalysis (PA) to calculate the shape

similarity between two shapes (optimal geometry and natural

hemi-pelvis) [52]. PA uses coordinate information of both

optimal geometry and natural hemi-pelvis. The coordinates

are obtained by meshing both the optimal geometry and nat-

ural hemi-pelvis. The coordinate data of either optimal

geometry or natural hemi-pelvis is transformed as follows: 1)

Removing translation component: The coordinates of the

selected geometry (say optimal geometry) is subtracted by the

meanof the coordinates. 2)Removing scaling component:The

translated coordinate information is divided by the root mean

squared distance of the coordinates to remove the scaling

component. 3) Removing the rotational component: The

coordinates obtained after removing the translation and scal-

ing components is rotated with an optimal angle ‘h’ such that
the sum of squared distance is the minimum between trans-

formed optimal geometry and natural hemi-pelvis. The dis-

similarity index ‘D’ is given as the normalized sum of squared

distance between them. The compliment of ‘D’ is the simi-

larity index ‘S’ and given as S ¼ 1� D. The shape similarity

value of the initial design domain is equal to 46.13%.

2.7 Combination of phases

In our previous work [26] we explored the design space of

hemi-pelvis for walking gait loads by a user-feedback based

design procedure which we termed as ‘‘combination of

phases’’. In this user-guided approach, the hemi-pelvis is

considered an optimal structure that is the goal of

optimization, and among the designs using topology opti-

mization on each phase of gait cycle, the user selects those

designs having high shape similarity with natural hemi-

pelvis, and then applies loads of some other phase of gait

cycle to get a new optimal design. In this work, we use the

same procedure of combination of phases for seven phases

of running gait cycle. Although, we had stated in our pre-

vious work [26] that achieving high shape similarity with

natural hemi-pelvis is the objective for formulating an user-

guided design procedure like ‘‘combination of phases’’, a

more physically reasoned explanation behind this design

procedure is as follows: the timescale of the bone growth

are in years whereas the timescale of activities of daily

living like running are in seconds. During bone growth, the

activities can occur many many times. It may be possible to

have high influence of a few phases of an activity like

running on bone growth compared to other phases of run-

ning, and these phases need not be sequential as the activity

of running might occur many times over the period of bone

growth. One can even extend this to specific phases of

different activities that might occur many times during the

overall period of bone growth. Thus, each of the seven

phases of running lead to seven optimal geometries, among

which the designer may select any one and apply load of

remaining six phases to get a new geometry using opti-

mization, and then further apply load of remaining five

phases to get another optimal geometry, and so on. In this

way, there can be 7! ¼ 5040 load sequences, from which

only a very small set is selected based on high shape sim-

ilarity of optimal geometries with the natural hemi-pelvis.

2.8 Summary of Methods

The pictorial summary of the methodology adopted in this

work is presented in figure 5. The input design domain

along with the boundary conditions are supplied to TO

solver OptiStruct�. After successful convergence to a local

optimum, OptiStruct�generates the optimal density plot as

an output containing different values of the density ranging

from void (q ¼ 0:001 � 0) to solid (q ¼ 1). The optimal

geometry is obtained from the optimal density plot by

selecting a threshold density value (qth) below which

Optistruct�converts parts of the design to void and above

which parts are converted to solid (q ¼ 1). qth is decided

such that the volume of the optimal geometry is same as the

volume of the hemi-pelvis. The obtained optimal geometry

is compared with naural hemi-pelvis by measuring shape

similarity between them using Procrustes analysis.

3. Results and discussions

This section presents the optimal design of pelvic bone for

running gait cycle using topology optimization. The simu-

lations are performed on a desktop computer with an
Figure 4. Mesh convergence study of the input domain (figure 3)

for topology optimization.
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Intel(R) Core i7, 3.60 GHz processor and 32 GB of RAM

that consumes approximately 8 hours to converge to an

optimal solution. In this work, material property of bone is

assumed to be that of cortical bone with Young’s modulus

= 17 GPa and Poisson’s ratio = 0.3.

3.1 Optimal design obtained from seven phases
of running gait cycle

Figure 6(a) and (b) shows the optimal geometries and the

stress distributions of the seven phases of the running gait

cycle. Table 3 enlists the shape similarity index, compli-

ance, maximum stress and maximum displacement of both

the pelvic bone and optimal geometries. Phase I has the

highest shape similarity index (70.88%), whereas phase II

has the lowest shape similarity index (48.57%). Phases I, III

and V create a hole in the lower portion of the pelvic bone

and the remaining phases remove a layer of material.

Phases I, III and V have a high magnitude of the hip joint

force and the upper muscles (rectus femoris, iliacus, psoas

and gluteus muscles), while the lower muscles (gemellus,

semimembranosus, semitendinosus and adductor muscles)

are inactive or have low magnitude. This creates high

stresses in the upper portion than the lower portion

(figure 6b). Hence, material removal occurs in the lower

portion by creating a hole.

Compliance of optimal geometries are lower than the

pelvic bone, implying that optimal geometries are stiffer

than the pelvic bone. Phase III has a high compliance value

(405.91 N-mm) and phase II has a low compliance value

(10.76 N-mm). Since phase III is a stance phase, the

muscles and hip joint force are highly active and generates

high-stresses throughout the optimal geometry, whereas the

muscles are less active in phase IV and generates less

number of high stress zones. From figure 6(b), it is clear

that phase III and V have more high-stress zones (above 10

MPa) since these two are in stance phase, transfer of forces

through the pelvic bone is high, resulting in high compli-

ance values, whereas phase IV has less high-stress zones

and produce low compliance. The hip joint force is low in

phase V but compliance is high and the hip joint force in

phase II is high but compliance is less. This is due to the

Figure 5. Schematic representation of the methodology used in this work. The input geometry and boundary conditions are supplied to

topology optimization. Topology optimization generates the optimal geometries and these optimal geometries are compared with pelvic bone

by measuring the shape similarity using Procrustes analysis. The top row shows the main steps (in bold boxes) involved in this work: Modeling

input geometry and its boundary conditions, performing topology optimization, and measuring shape similarity using Procrustes analysis. The

middle row shows inputs or outputs and formulations used in each step. The bottom row shows the pictorial representation of each step.
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Figure 6. (a) The optimal geometries of the pelvic bone obtained from topology optimization for each phase of running gait cycle. The

red arrow represents the leg corresponding to which the muscle forces are calculated. (b) von-Mises stress distribution of the seven

optimal geometries. The values in legend are in MPa.

Table 3. Shape similarity index, compliance, maximum stress and maximum displacement of the seven optimal geometries and the

pelvic bone during running gait cycle.

Phase

Shape
Similarity
index (%)

Compliance of
Optimal

geometry (N-
mm)

Compliance
of pelvic
bone (N-
mm)

Maximum
stress in
optimal
geometry
(MPa)

Maximum
stress in the
pelvic bone

(MPa)

Maximum
displacement in
optimal geometry

(mm)

Maximum
displacement in
the pelvic bone

(mm)

I 70.88 147.67 166.98 197.4 207.8 0.508 0.524

II 48.57 91.71 104.51 128.7 137.3 0.36 0.391

III 65.19 405.91 461.27 324.3 341.7 0.838 0.865

IV 51.36 10.76 12.44 172.7 188.7 0.089 0.093

V 63.74 396.66 452.39 335.4 353.5 0.745 0.778

VI 57.92 226.84 264.84 248.1 256.8 0.541 0.558

VII 56.28 171.2 206.62 195.1 198.1 0.374 0.373
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presence of more high stress regions (red colour zones

� 8:9� 10 MPa) in phase V and phase II has more number

of low-stress zones (blue colour zones � 0� 1 MPa). As

explained earlier, the hip joint force and the muscles are

highly active in phases III and V that induces highest

stresses in the optimal geometry, while phases II and IV has

less number of active muscles and resulting in lowest val-

ues for both maximum stress and maximum displacement.

3.2 Multiple-load case optimization

The five optimal geometries obtained using the multi-load

approach are shown in figure 7. The

shape similarity and compliance of the five optimal

geometries using different weights in multi-load case

optimization with the pelvic bone is presented in table 4.

From the results (figure7, table 4), the optimal geometry

obtained from case (ii) has the highest shape similarity

(71.43%), whereas case (iii) has the lowest shape similarity

(58.94%). For individual phases, I (70.88%), III (65.19%)

and V (63.74%) have high shape similarity and weights of

these phases are high in case (ii) that creates a hole in the

lower portion. Even though case (iv) and (i) have a hole in

the lower portion, the shape similarity is less than the case

(ii) design due to the following reasons: Case (iv) design

has a high number of surface dents in the ilium bone and,

case (i) design hole is smaller in size than case (ii) hole.

Case (ii) has the highest compliance (411.09 N-mm) and

case (v) has the lowest compliance (164.75 N-mm). Com-

pliance of the optimal geometry is also dependent on the

weights of the phases. Phase III (405.91 N-mm) and V

(396.66 N-mm) have high compliance values than the other

phases. Since case (ii) has high weights for both phase III

and phase V, it inherits higher compliance than all other

cases.

3.3 Optimal design from combination of phases

We found that phases I, III, and V produce high shape

similarity (70.88%, 65.19 %, and 63.74 % respectively) in

Figure 7. Five optimal geometries of the pelvic bone obtained from multiple-load case optimization of running gait cycle.

Table 4. Shape similarity and compliance of the optimal geometries obtained from multiple-load case optimization along with the

pelvic bone.

Case Shape Similarity index (%) Compliance of Optimal geometry (N-mm) Compliance of the pelvic bone (N-mm)

(i) 64.84 209.73 221.40

(ii) 71.43 411.09 438.61

(iii) 58.94 186.31 192.57

(iv) 68.08 218.94 224.76

(v) 60.31 164.75 169.83
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the optimal geometries. In the ‘‘combination of phases’’

user-guided design approach, we select the design from one

of the above phases (say phase I) and apply a load of

another phase (say phase III) after patching the surface

dents in the upper portion of the input to avoid convergence

to local minimum [26]. For the running gait cycle, we have

selected these three designs which give six loading

sequences that are listed below:

• (a): Phases I-III

• (b): Phases I-V

• (c): Phases III-I

• (d): Phases III-V

• (e): Phases V-I

• (f): Phases V-III

The procedure for combination of phases I-III is explained

pictorially in figure 8 which applies the loads of phase III

on the output obtained from the loads of phase I. Figure 9

shows the six optimal geometries obtained from the com-

bination of the phases (a)–(f). The shape similarity and

compliance of both optimal geometries and the pelvic bone

are presented in table 5. All six designs create a hole in the

lower portion of the design since the individual phases I,

III, and V have a hole in the optimal geometries. Phases

I-III has high shape similarity value (76.23%). This might

be because phase I and phase III have high shape similarity

for individual loads. Phases V-I and phases V-III have low

shape similarity values compared to other optimal geome-

tries due to the presence of a large dent in the upper portion

of the optimal geometries. The optimal geometry obtained

from phases I-III has high compliance (403.52 N-mm) and

phases III-I has low compliance (145.73 N-mm) since

phase III and phase I generate high and low compliance

respectively among the three phases (table 3 and figure 6b).

Figure 8. Pictorial summary of optimal design under combina-

tion of phases I-III, i.e., loads of phase III are applied on the

modified input obtained from phase I. The red arrow represents the

leg corresponding to which the muscle forces are calculated. The

shape similarity values are presented above the optimal

geometries.

Figure 9. (a)-(f) are the six optimal geometries of the pelvic bone obtained from the combinations of phases of running.
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4. Experimental Validation

So far a computational procedure has been presented for

optimal geometry of the pelvic bone for running gait. A

detailed experimental validation using similar material,

loading, and boundary conditions may be substituted by

testing the hypothesis that the conclusions drawn using the

computational procedure remain valid also in experiments.

The testing hypothesis is:

‘‘All the designs are based on compliance minimization

and claim that these are stiffer than the pelvic bone

geometry of same material.’’

The chosen design for experimental testing is the optimal

geometry given in figure 9(a) which we test for geometric

stiffness and compare with the same of a pelvic bone model

under the same loading and boundary conditions. Experi-

ments are conducted on the Universal Testing Machine

(UTM) for compression testing to measure the displace-

ment for a given applied force. The details of the UTM

(Model: SHIMADZU – AG-X plus) used in this work is as

follows:

• Loading Capacity: 50 kN

• Load cells available: 50 kN

• Testing speed range: 0.0005 to 1000 mm/min

• Cross-head stroke measurement resolution: 1/48 lm
• Size (width � depth � height in mm): 955 � 579 �
1720

From the above specifications, it is clear that SHIMADZU

– AG-X plus allows us to measure small displacements

(order of microns) precisely. It is assumed that the cross-

head stroke measurement to be a representative of defor-

mation of the specimen under the loads.

Table 5. Shape similarity and compliance of the optimal geometries obtained from combination of phases along with the pelvic bone.

Phase
Shape Similarity index

(%)
Compliance of Optimal geometry (N-

mm)
Compliance of the pelvic bone (N-

mm)

Phases I-III 76.23 403.52 461.27

Phases I-V 67.43 395.21 452.39

Phases III-I 68.25 145.73 166.98

Phases III-V 65.38 394.91 452.39

Phases V-I 64.17 147.18 166.98

Phases V-III 62.89 401.47 461.27

Figure 10. Experimental setup for measuring stiffness of

(a) pelvic bone and (b) optimal geometry (figure 9a). The fixed

boundary conditions are imposed with cement mould at the upper

part of the pelvic bone and load from the load cell is applied on the

lower part of the pelvic bone.

Figure 11. Force vs. displacement plot for experimental data and

simulation data using OptiStruct�for optimal geometry (figure9a)

and the pelvic bone models made of PLA material.
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The test specimens of the pelvic bone and optimal

geometry (figure 9a) are fabricated with polylactic acid

(PLA) using additive manufacturing (AM) with 100% infill

density and 0.2 mm as the primary layer thickness. The

experimental setup is shown in figure 10(a and (b) for

pelvic bone and optimal geometry (figure 9a) respectively.

The specimen is rigidly fixed at the upper part of the pelvic

bone (near iliac-crest) by using a cement mould. The pro-

cess of mould preparation is similar to mould preparation of

casting process, except one difference. In casting, we keep

the entire model (pattern) inside the sand mixture for

making the exact replica of the model, whereas here only

part of the model (where the fixed boundary conditions are

applied) is kept inside the cement mixture.

A compression load of 12 N with 0.5 N/min as loading

rate is applied from the UTM to the lower part of the pelvic

bone. The same boundary condition and load are applied to

both the pelvic bone and optimal geometry to measure the

displacement. The experimental setup of this work is

similar to the experimental setup of [21]. The measured

displacement values are plotted against the applied force to

calculate total stiffness which is the slope of the force vs.

displacement (F-S) plot. Simulations are performed using

OptiStruct�with the same loading and boundary conditions

on both pelvic bone and optimal geometry (figure 9a) with

PLA material properties. The F-S plots obtained from

experiments are shown in figure 11 for both the pelvic bone

and optimal geometry (figure 9a) after approximation with

a straight line using linear regression analysis. The straight-

line equation for pelvic bone is F ¼ 178:83S, and for the

optimal geometry (figure 9a) the equation is F ¼ 254:06S.
The overall stiffness value from the simulation and exper-

iment for pelvic bone is 185.72 N-mm and 178.83 N-mm

respectively, whereas for optimal geometry (figure 9a) total

overall stiffness value is 274.21 N-mm and 254.06 N-mm

for simulation and experiment respectively. The ratio of

overall stiffness value between experiment and simulation

is 0.93 for optimal geometry (figure 9a) and 0.96 for pelvic

bone. The simulation results are in good agreement with

experiments for both the optimal geometry (figure 9a) and

the pelvic bone. From the results. it is concluded that the

simulations are in good agreement with experiments, and

the testing hypothesis ‘‘optimal geometries are stiffer than

the natural pelvic bone geometry’’ is successfully verified.

5. Conclusions and future work

This work is the first attempt to explore the influence of

mechanical loads on the evolution of shape and topology of

the pelvic bone for running gait cycle. We try to understand

this by posing a stiff structure design problem using TO.

Our work is also among the first attempts to compare

synthesized designs with its natural counterpart by mea-

suring shape similarity. Two optimal design strategies are

followed, the multiple-load case approach and the combi-

nation of phases approach. Our results show that optimal

stiff structures can be designed having good shape simi-

larity with the pelvic bone (highest shape similarity being

76.23%) and new topologies can be generated under run-

ning gait loads. The claim of optimal stiffness is validated

using compression test experiment.

Future research will focus on following issues: Our

immediate concern is to explore how to incorporate bone

micro-structure models into our TO formulation. Current

work is limited by capabilities of OptiStruct�software

which uses a SIMP model from which the final geometry is

obtained by converting all material to full solid above a

user defined threshold density. In this method, all hetero-

geneity in the optimal designs are lost, which is contrary to

bone micro-structure that is mostly heterogeneous. An

alternative homogenization based approach may yield bet-

ter results for hemi-pelvis bone micro-structure design.

Thus, a combined local bone micro-structure optimization

along with bone global geometry optimization as presented

in current work would lead to more realistic exploration of

the influence of mechanical loads on shape and topology of

the pelvic bone. Further, different biologically relevant

objective functions like metabolic cost which are not

available in the standard objective function library of

OptiStruct�software should be explored to consider more

realistic design objectives. Combining the loads of different

activities such as walking and running with suitable weights

can also be explored to study the influence of muscle forces

on evolution of global geometry of the pelvic bone.
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