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Abstract. In this article, we consider the logotropic system of gasdynamics with a Coulomb-type friction to

explore all possible collisions of elementary waves. We discuss the elementary waves and their properties in the

phase plane to describe the exact Riemann solution. Further, we analyze all possible cases of the elementary

wave interactions between same and different families of waves in the phase plane employing the solution of the

Riemann problem.
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1. Introduction

The theory of hyperbolic quasilinear conservation laws has

variety applications in the field of gas dynamics, oil

industries, applied science, engineering physics, multiphase

flows and etc. It can be noted that the conservation of mass,

momentum and energy form a common starting point of

this study. However, in terms of field variables these reduce

to partial differential equations (PDEs) under quite natural

assumptions. In most of the cases, these PDEs are either

quasilinear or nonlinear with source terms. Therefore, it is

not easy to understand the solution and their properties as in

the context of linear theory. Conservation laws are system

of PDEs which can be written in the form of divergence.

There are many physical phenomena which are modeled by

the systems of conservation laws those are hyperbolic in

nature. Hence, it is very interesting and challenging task to

study the mathematical theory of hyperbolic conservation

laws. Nowadays, the study of Riemann problem and wave

interactions becomes very much popular in the theory of

hyperbolic quasilinear PDEs.

The Riemann problem is a particular case of the Cauchy

problem where the initial data is piecewise constant and

having a single jump discontinuity. In order to construct the

solution to the general initial value problem by exploiting

the random choice method [1], the solution of local Rie-

mann problem plays a very important role. In general, the

solution of Riemann problem consists of shock wave, rar-

efaction wave and contact discontinuity which are called as

elementary waves. The study of Riemann problem exhibits

some fundamental properties of the elementary waves and

detailed picture of solution. Therefore, this study has its

own significance due to its wide practical applications. So,

the researchers are attracted towards this topic and analyze

the solution to the Riemann problem for the system of

conservation laws and it becomes a very important topic in

the context of quasilinear hyperbolic conservation laws.

In the last few decades, many researchers have been

attracted towards the study of wave interactions for

hyperbolic system of conservation laws due to its wide

practical applications. Minhajul et al [2] studied the Rie-

mann problem and collision between weak shocks in two-

phase flows which describes isentropic drift-flux model.

Kuila and Raja Sekhar [3] established Von Neumann’s

result related to overtaking of two weak shocks belong to

same family in the context of drift-flux isothermal multi-

phase flows. Raja Sekhar and Sharma [4] discussed the

existence of vacuum state and wave interactions briefly in

isentropic magnetogasdynamics. By exploiting character-

istic analysis methodology, elementary wave interactions in

ideal magnetogasdynamics have been analyzed by Liu and

Sun [5]. Sen et al [6] discussed stability of Riemann

solutions and their asymptotic behaviour for system of

strictly hyperbolic conservation laws. Collision of weak

discontinuity with contact discontinuity and shock in

isothermal drift-flux model have been analyzed in [7].

There are several interesting ways to study the problem

of wave interactions among which phase plane analysis and

characteristic analysis are widely adopted by the research-

ers. For example, elementary wave interactions for diverse

practical problems [8, 9] have been analyzed using the

phase plane analysis. The collision of elementary classical*For correspondence
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waves and stability analysis of Riemann solution for vari-

ous physical problems have been investigated in [10, 11]

using the method of characteristic analysis. For basic con-

cepts on analysis of nonlinear waves in the context of

hyperbolic quasilinear systems we refer [12–14]. Sun [15]

constructed solutions for one-dimensional traffic flow

problem when initial data consist of three constant states.

Singh and Jena [16] computed transmitted and reflected

wave amplitudes after the interaction between strong shock

and acceleration wave in reacting polytropic gases. Classes

of exact solutions to generalized Riemann problem for

traffic flow model have been developed in [17] by using

differential constraint method. A class of double wave

solutions to nonlinear model of extended thermodynamics

with six fields is determined and nonlinear wave interac-

tions have been illustrated by Curro and Manganaro [18].

Chaudhary and Singh [19] established existence and

uniqueness of Riemann solution for isentropic dusty gas

flows and wave interactions are discussed. Stability of

Riemann solutions are proved in [20] for the chromatog-

raphy system under the small perturbations of local

Riemann data. Sen et al [21] studied stability of Riemann

solution, which consists of classical waves and delta shock,

for strictly hyperbolic conservation laws system. Nonlinear

wave interactions for a Temple-class hyperbolic system of

conservation laws consisting of three scalar equations have

been analyzed by Wei and Sun [22]. Zhang and Zhang [23]

constructed the global structure of solutions through the

nonlinear wave interactions investigation.

In the current study, we are concerned with the ele-

mentary wave interactions for Euler system with logarith-

mic equation of state and Coulomb type friction terms. The

system of PDEs can be expressed by balance laws of the

following form [24]

oq
ot

þ o

ox
ðqvÞ ¼ 0;

o

ot
ðqvÞ þ o

ox
ðqv2 þ A ln qÞ ¼ gq;

ð1Þ

where the independent variables x and t denote the space

and time, respectively, while the dependent variables q and

v, respectively, denote the density and velocity of the gas.

Here, A and g are positive constant parameters. When

g ¼ 0, the system of PDEs has been introduced in the area

of astrophysics to study various properties of molecular

clouds which may not be well understood in general for the

case of isothermal distribution.

The logarithmic equation of state is used to investigate

the logotropic dark fluid as a unification of dark matter and

dark energy [25–27]. The system (1) can be reduced to

homogeneous conservative form through a new state

variable wðx; tÞ ¼ vðx; tÞ � gt as done in [28] and the cor-

responding conservative form is given by

oq
ot

þ o

ox
ðqðwþ gtÞÞ ¼ 0;

o

ot
ðqwÞ þ o

ox
ðqwðwþ gtÞ þ A ln qÞ ¼ 0:

ð2Þ

The Riemann initial data for the system (2) is given by

ðq;wÞðx; 0Þ ¼
ðql;wlÞ; if x\0;

ðqr;wrÞ; if x[ 0;

�
ð3Þ

where ql, wl, qr and wr are constants. For the system (2)-

(3), an exact Riemann solver has been developed in [24].

Recently, the authors in [29] discussed the limiting beha-

viour of the solution to the Riemann problem (1) and (3).

The solution of the original Riemann problem (1) and (3)

can be determined from the solution of (2) and (3) by

substituting the value of new variable ðq; vÞðx; tÞ ¼
ðq;wþ gtÞðx; tÞ. In the present work, our main objective is

to study various possible wave interactions of the elemen-

tary waves of (2) in the phase plane. The motivation of this

study is to analyse the wave interactions problems to the

nonhomogeneous hyperbolic system with the logotropic

equation of state because of its various practical applica-

tions in the field of aerodynamics, cosmology, engineering

physics and astrophysics. To the best of our knowledge, no

one has attempted this type of wave interactions for the

system (1) till now.

Organization of the rest of this paper is as follows. In

section 2, we recall the elementary waves of (2) and their

properties very briefly. In section 3, we discuss in detail

about the interactions between elementary waves for all

possible cases in the phase plane. Finally, a brief conclu-

sions are drawn in section 4.

2. Preliminaries

The quasilinear form of the system (2) can be written as

oV

ot
þ AðVÞ oV

ox
¼ 0: ð4Þ

Here, the primitive variable V and the Jacobian matrix A(V)
are, respectively, given by

V ¼
q

w

� �
; AðVÞ ¼

wþ gt q
A

q2
wþ gt

0
@

1
A�

The eigenvalues of the Jacobian matrix A(V) are given by

k1 ¼ wþ gt �
ffiffiffi
A

q

s
and k2 ¼ wþ gt þ

ffiffiffi
A

q

s
: ð5Þ

The respective eigenvectors corresponding to the eigen-

values are
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r1 ¼ �q;

ffiffiffi
A

q

s !Tr

and r2 ¼ q;

ffiffiffi
A

q

s !Tr

ð6Þ

where Tr denotes the transposition. It can be noted that both

the characteristic fields are genuinely nonlinear as

rki � ri 6¼ 0 ði ¼ 1; 2Þ. Hence, the solution of the Riemann

problem consists of either shock wave (bounded discon-

tinuous solution) or rarefaction wave (continuous solution).

The Riemann invariants corresponding to these character-

istic fields are, respectively, given by

1� Riemann invariantP1 ¼ w� 2

ffiffiffi
A

q

s
; ð7Þ

2� Riemann invariantP2 ¼ wþ 2

ffiffiffi
A

q

s
: ð8Þ

We have already seen from the characteristic analysis that

the solution of the Riemann problem consists of shock and

rarefaction waves. Now, we discuss some properties of

these two elementary waves very briefly. For more details

about the elementary waves corresponding to the system

(2), one can refer [24].

2.1 Shock waves

Shock wave is a discontinuous solution of the system (2)

satisfying the Rankine-Hugoniot jump conditions and Lax

entropy conditions. Suppose r denotes the speed of shock

then the Rankine-Hugoniot jump conditions across the

shock wave are given by

r½q� ¼ ½ðqðwþ gtÞÞ�;

r½qw� ¼ ½qwðwþ gtÞ þ A ln q�;
ð9Þ

where ½V� ¼ Vl � Vr, Vl ¼ VðxðtÞ � 0; tÞ and

Vr ¼ VðxðtÞ þ 0; tÞ, denotes the jump of V across the shock.

Suppose V ¼ ðq;wÞ and Vl ¼ ðql;wlÞ indicate the right and
left-hand states respectively. If r ¼ 0, then we get the

trivial solution V ¼ Vl. So, we assume r 6¼ 0 and the

1-shock curve passing through Vl is denoted by S1ðVlÞ
which satisfies the following

S1ðVlÞ : ¼
w ¼ wl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1

ql
� 1

q
Þðln q� ln qlÞ

r
;

r ¼ qw� qlwl

q� ql
þ gt;

w\wl; ql\q:

8>>>><
>>>>:

ð10Þ

Similarly, 2-shock curve passing through Vl is represented

by S2ðVlÞ which is given by

S2ðVlÞ : ¼
w ¼ wl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1

ql
� 1

q
Þðln q� ln qlÞ

r
;

r ¼ qw� qlwl

q� ql
þ gt;

w\wl; ql [ q:

8>>>><
>>>>:

ð11Þ

One can easily prove the following properties of the

shock curve and we explore these properties in the suc-

ceeding sections.

Lemma 1 The 1-shock curve, S1, is monotonically
decreasing and convex whilst the 2-shock curve, S2, is
monotonically increasing and concave.

2.2 Rarefaction waves

Using the property of Riemann invariants (7)-(8) across the

rarefaction wave region, the 1-rarefaction wave curve

through Vl is denoted by R1ðVlÞ and represented by

R1ðVlÞ : ¼

w ¼ wl � 2

ffiffiffiffi
A

ql

r
þ 2

ffiffiffi
A

q

r
;

dx

dt
¼ k1 ¼ wþ gt �

ffiffiffi
A

q

s
;

w�wl; ql � q:

8>>>>>><
>>>>>>:

ð12Þ

In the same manner, the 2-rarefaction wave curve through

Vl is represented by R2ðVlÞ and expressed as

R2ðVlÞ : ¼

w ¼ wl þ 2

ffiffiffiffi
A

ql

r
� 2

ffiffiffi
A

q

r
;

dx

dt
¼ k2 ¼ wþ gt þ

ffiffiffi
A

q

s
;

w�wl; ql � q:

8>>>>>><
>>>>>>:

ð13Þ

One can easily prove the following properties of the rar-

efaction wave curve and these can be exploited in the

succeeding sections.

Lemma 2 The 1-rarefaction curve, R1, is convex and
monotonically decreasing whilst the 2-rarefaction curve,
R2, is concave and monotonically increasing.

Using the properties of elementary waves we can easily

prove the following theorem.

Theorem 1 The curves of shock and rarefaction waves of
same family, say, S1 and R1 (respectively, S2 and R2) have
the second order contact at Vl.

2.3 Solution structure of Riemann problem

Let us consider the Riemann problem for (2) with initial

data given by
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Vðx; 0Þ ¼
Vl; if x\0;

Vr; if x[ 0:

�
ð14Þ

It is observed from figure 1 that the elementary waves

divide the phase plane into four disjoint regions namely, I,

II, III and IV. Depending on the position of Vr, the solution

of Riemann problem can be constructed for a given Vl. For

example, if Vr lies in region I, then Vl can be connected to

Vr by a 1-shock S1ðVlÞ followed by a 2-rarefaction wave

R2ðVlÞ, i.e., the Riemann solution involves 1-shock and

2-rarefaction wave. Similarly, if Vr 2 II, solution of Riemann

problem contains a 1-shock followed by a 2-shock. Conse-

quently, if Vr 2 III then the solution of Riemann problem

consists of a 1-rarefaction followed by a 2-shock wave.

Finally, if Vr 2 IV then the Riemann solution possess of a

1-rarefaction followed by a 2-rarefaction wave. Therefore, we

can state the following theorem without proof.

Theorem 2 If Vl;Vr 2 Rþ � R with Vl fixed and Vr is
allowed to vary then the Riemann problem is solvable if and
only if Vr lies on any one of the four regions I, II, III and IV.

3. Elementary wave interactions

In order to determine all possible cases of wave interactions

for the system (2), we consider the following initial data

with three piecewise constant states

Vðx; 0Þ ¼
Vl; �1\x\x�;

Vm; x�\x\xþ;

Vr; x[ xþ;

8><
>: ð15Þ

where x�, xþ are arbitrary real numbers and we choose Vm

and Vr with reference to Vl. Therefore, with this choice of

data (15) with system (2) leads to two Riemann problems

locally at x� and xþ. An elementary wave of the first

Riemann problem may interact with an elementary wave of

the second Riemann problem and at the time of interaction

a new Riemann problem is formed. In this article, the

symbol S2R1 ) R1S2 indicate that a 2-shock, S2, associated
with the first Riemann problem which connects Vl to Vm,

collide with 1-rarefaction wave, R1, corresponding to the

second Riemann problem which connects Vm to Vr and the

collision generates a new Riemann problem with a left hand

state Vl and a right hand state Vr and the solution of this

new Riemann problem consists of a 1-rarefaction wave, R1,

and a 2-shock wave S2 (i.e., R1S2). There are four possible

cases of collisions of elementary waves corresponding to

various families which are R2R1, R2S1, S2R1, and S2S1
whilst there are six possible cases of collisions of elemen-

tary waves corresponding to the same family which are

R1S1, S1S1, S1R1, S2S2 R2S2 and S2R2.

3.1 Wave interactions between different families
of elementary waves

(i) Collision of two shocks (S2S1):
Let us assume that Vl and Vm are connected

by S2 associated with the Riemann first problem

and Vm and Vr are connected by S1 corresponding
to the second Riemann problem. Therefore,

for a fixed given Vl, we choose Vm and Vr in such a

way that qm\ql, wm ¼ wl � Fðq; qlÞ and

qm\qr;wr ¼ wm � Fðqr; qmÞ where Fða; bÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A 1

a � 1
b

� �
ðln b� ln aÞ

q
. One can verify from the

Lax entropy condition that

r2ðVl;VmÞ[ k2ðVmÞ[ k1ðVmÞ[ r1ðVm;VrÞ:
ð16Þ

Therefore, 2-shock corresponding to first Riemann

problem moves faster than the 1-shock of the second

Riemann problem. Hence, interaction will take

place and S2 overtakes S1 after a finite time. In order

to solve this problem, we need to determine the

region in which Vr lies with respect to Vl. Now, we

show that for any given arbitrary state Vl, the curve

S1ðVlÞ lies above the curve S1ðVmÞ which implies

that the state Vr 2 II. In order to prove this, it is

enough to show that Fðqm; qlÞ þ Fðqm; qÞ �
Fðql; qÞ[ 0 for q\ql and qm\q.
We assume that Fðqm; qlÞ þ Fðqm; qÞ � Fðql; qÞ
� 0 and we prove the inequality by method of

contradiction. Therefore, we have

F2ðqm; qlÞ þ F2ðqm; qÞ
þ 2Fðqm; qlÞFðqm; qÞ�F2ðql; qÞ

which implies that

ρ

w

Vl

R2(Vl)

S1(Vl)

R1(Vl)

S2(Vl)

I

II

III

IV

Figure 1. Elementary waves in ðq;wÞ-plane.

   52 Page 4 of 10 Sådhanå           (2022) 47:52 



A
1

ql
� 1

qm

� ��
ln qm � ln q

�
þ A

1

q
� 1

qm

� �

�
ln qm � ln ql

�
þ 2Fðqm; qlÞFðqm; qÞ� 0:

ð17Þ

For q[ ql [ qm, the left hand side of (17) is posi-

tive, which is a contradiction and therefore

Fðqm; qlÞ þ Fðqm; qÞ � Fðql; qÞ[ 0. Further, if

ql [ q[ qm then also the left hand side of inequality

(17) is positive as A 1
ql
� 1

qm

� 	�
ln qm � ln q

�
[ 0 and

A 1
q � 1

qm

� 	�
ln qm � ln ql

�
[ 0. Therefore, Vr lies in

the region II and hence the interaction result is

S2S1 ) S1S2. The graphical representation for this

case is drawn in figure 2.

(ii) Interaction of 2-shock and 1-rarefaction ðS2R1Þ:
Here, we consider Vm and Vr with reference to a given

Vl in such a way that Vm 2 S2ðVlÞ and Vr 2 R1ðVmÞ.
It follows that, qm\ql , wm ¼ wl � Fðq; qlÞ and

qr � qm, wr ¼ wm � 2
ffiffiffiffi
A
qm

q
þ 2

ffiffiffiffi
A
qr

q
. One can evaluate

that r2ðVl;VmÞ � k1ðVmÞ ¼ qlðwl�wmÞ
ql�qm

þ Affiffiffiffi
qm

p [ 0.

Therefore, 1-rarefaction has less speed compare to 2-

shock which leads S2 to overtake R1 after a finite time.

In order to prove that Vr lies in the region III, it is

enough to show that Fðq; qlÞ � 2
ffiffiffi
A
ql

q
þ 2

ffiffiffiffi
A
qm

q
[ 0

for q\qm � ql which is in fact true as left hand side is
always positive for q\qm � ql. Therefore, R1ðVmÞ
lies below the curve R1ðVlÞ and hence Vr lies in region

III. So, the result of interaction is S2R1 ) R1S2 as

depicted in figure 3.

(iii) Interaction between two rarefaction waves (R2R1):

In this case, Vm 2 R2ðVlÞ and Vr 2 R1ðVmÞ. There-
fore, for a given fixed Vl, we choose Vm and Vr in

such a way that q� ql, wm ¼ wl þ 2
ffiffiffi
A
ql

q
� 2

ffiffiffiffi
A
qm

q

and qr � qm, wr ¼ wm � 2
ffiffiffiffi
A
qm

q
þ 2

ffiffiffiffi
A
qr

q
. Since,

k2ðVmÞ[ k1ðVmÞ, the tail of 2-rarefaction wave of

first Riemann problem has greater speed than the

head of 1-rarefaction wave of second Riemann

problem. Hence, interaction will take place after a

finite time. Here, we prove that curve R1ðVlÞ lies

below R1ðVmÞ. As, 4
ffiffiffi
A
ql

q
�

ffiffiffiffi
A
qm

q� 	
[ 0 whenever

qm � ql, hence R1ðVlÞ lies below the curve R1ðVmÞ
for any qr satisfying qm � ql � qr or ql � qr � qm.
Therefore, we can conclude that the result of

interaction is R2R1 ) R1R2 and the computed result

is illustrated in figure 4.

(iv) Collision of 2-rarefaction and 1-shock (R2S1):
Here, Vm 2 R2ðVlÞ and Vr 2 S1ðVmÞ. Hence, we set

Vm and Vr with reference to a given Vl in such a

manner that qm � ql, wm ¼ wl þ 2
ffiffiffi
A
ql

q
� 2

ffiffiffiffi
A
qm

q
and

qm\qr;wr ¼ wm � Fðqr; qmÞ. From Lax entropy

condition we have, k2ðVmÞ[ r1ðVm;VrÞ, which

follows that the trailing end of R2 corresponding

ρ

w

VlVm S1(Vl)

S2(Vl)

R1(Vl)

R2(Vl)

S1(Vm)

Figure 2. Collision of S2S1.

ρ

w

Vl

S2(Vl)

R2(Vl)

R1(Vl)

S1(Vl)
Vm

R1(Vm)

Figure 3. Collision of S2R1.

ρ

w

Vm

Vl

R2(Vl)

S1(Vl)

S2(Vl)

R1(Vl)

R1(Vm)

Figure 4. Collision of R2R1.
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to the Riemann first problem has more speed

compare to S1 associated with Riemann second

problem. Thus, R2 overtakes S1 and interaction will

take place after a finite time. Now for a given Vl, we

show that Vr 2 I. In order to prove this, it is

sufficient to show that 2
ffiffiffi
A
ql

q
� 2

ffiffiffiffi
A
qm

q
þ Fðq; qlÞ �

Fðq; qmÞ[ 0: Clearly, 2
ffiffiffi
A
ql

q
� 2

ffiffiffiffi
A
qm

q
[ 0 for

qm � ql and an easy computation yields

Fðq; qlÞ � Fðq; qmÞ[ 0. Therefore, S1ðVmÞ lies

above the curve S1ðVlÞ and hence the result of

interaction is R2S1 ) S1R2 and the computed result

is exhibited in figure 5.

3.2 Interaction of elementary waves of same
family

(i) 1-rarefaction overtakes 1-shock (R1S1):
In this case, Vl and Vm are connected by a 1-rar-

efaction of first Riemann problem while the

states Vm and Vr are connected by 1-shock of second

Riemann problem. In other words, for a given Vl,

we choose Vm and Vr in such a way that qm � ql,

wm ¼ wl � 2
ffiffiffi
A
ql

q
þ 2

ffiffiffiffi
A
qm

q
and qm\qr, wr ¼ wm�

Fðqm; qrÞ. From Lax entropy inequality, we have

k1ðVmÞ[ r1ðVl;VmÞ which indicates that the trailing

end of R1 corresponding to Riemann first problem

has more speed compare to S1 associated with

Riemann second problem. So, R1 collides with S1 and
interaction occurs after a finite time. Now, we show

that the curve S1ðVmÞ lies below the curve R1ðVlÞ for
qm\q� ql. In order to complete the argument, it is

sufficient to establish that

2

ffiffiffiffiffiffi
A

qm

s
�

ffiffiffi
A

q

s !
� Fðq; qmÞ\0; ð18Þ

for qm\q� ql which is equivalent to the

inequality

2

ffiffiffiffiffiffi
q
qm

r
� 1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

qm

� �
ln
qm
q

s
\0: ð19Þ

In order to prove (19), let y ¼ q
qm

then qm\q� ql
implies 1\y� ql

qm
. Therefore, we have to prove that

2ð ffiffiffi
y

p � 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� 1Þ ln y

p
\0 for y[ 1. One can

show that ln y\y� 1 for y[ 1 using the mono-

tonicity of the function g1ðyÞ ¼ y� ln y. Further, by
applying Lagrange mean value theorem on the

interval [1, y] to the function g2ðyÞ ¼
ffiffiffi
y

p
, we obtainffiffi

y
p �1

y�1
\ 1

2
and which implies the inequality (19) and

hence (18) for qm\q� ql.
Next, we prove that the curve S1ðVlÞ lies above the

curve S1ðVmÞ whenever qm\ql � q. In order to prove
this it is sufficient to show that

2

ffiffiffiffiffiffi
A

qm

s
�

ffiffiffiffi
A

ql

s !
� Fðq; qmÞ þ Fðq; qlÞ\0: ð20Þ

In order to prove (20), let

g3ðqÞ ¼ 2
ffiffiffiffi
A
qm

q
�

ffiffiffi
A
ql

q� 	
� Fðq; qmÞ þ Fðq; qlÞ.

Then from (18), it is clear that g3ðqlÞ\0. Moreover,
dg3
dq ¼ dF

dq ðq; qlÞ � dF
dq ðq; qmÞ\0 as Fðq; qmÞ is a

decreasing function of qm for qm\q. Therefore,

g3ðqÞ\g3ðqlÞ\0 which proves the inequality (20)

and hence S1ðVmÞ lies below the curve S1ðVlÞ for

qm\ql � q.
Lastly, we prove that S1ðVmÞ intersects S2ðVlÞ
at some point, say, V1 ¼ ðq1;w1Þ with qm\q1 � ql.
To prove this, let us consider the function

g4ðqÞ ¼ 2
ffiffiffiffi
A
qm

q
�

ffiffiffi
A
ql

q� 	
� Fðq; qmÞ þ Fðq; qlÞ with

ql � q� qm. Therefore, g4ðqlÞ\0 and g4ðqmÞ[ 0

and hence by applying monotonicity and the inter-

mediate value theorem of the function we can find a

unique q1 such that g4ðq1Þ ¼ 0 satisfying

qm\q1 � ql. Therefore, the point of intersection

between S1ðVmÞ and S2ðVlÞ is uniquely obtained.

Now, based upon the choice of qr , there will be three
possible cases which are

(a) When qr\q1 then Vr 2 III and the result of

interaction is R1S1 ) R1S2.
(b) When qr ¼ q1 then Vr 2 S2ðVlÞ and the inter-

action results as R1S1 ) S2, i.e., the wave of

second family occurs after the collision of two

1-family waves.

ρ

w

Vl

R1(Vl)

Vm

S1(Vl)

S2(Vl)

R2(Vl)
S1(Vm)

Figure 5. Collision of R2S1.
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(c) When qr [ q1 then Vr 2 II and consequently

the interaction leads to R1S1 ) S1S2. The

corresponding configuration of wave interac-

tions are illustrated in figure 6.

(ii) 1-shock overtakes 1-rarefaction (S1R1):

In this case, Vl is connected to Vm by 1-shock of first

Riemann problem and Vm is connected to Vr by a 1-

rarefaction wave of second Riemann problem.

Therefore, for a given Vl, we choose Vm and Vr are

such that ql\qm, wm ¼ wl � Fðql; qmÞ and qr � qm,

wr ¼ wm � 2
ffiffiffi
A
ql

q
þ 2

ffiffiffi
A
q

q
. Lax entropy condition for

1-shock of first Riemann problem is given by

k1ðVmÞ\r1ðVl;VmÞ\k2ðVmÞ which follows that the

trailing end of R1 associated with Riemann second

problem has less velocity compare to the velocity of

S1 corresponding to the Riemann first problem.

Consequently, 1-shock collides with 1-rarefaction

wave and interaction occurs after a certain time.

Here, we prove that S1ðVlÞ lies above the curve

R1ðVmÞ whenever ql\q\qm. To establish this, it is

enough to show that

Fðqm; qlÞ � Fðq; qlÞ þ 2

ffiffiffiffiffiffi
A

qm

s
� 2

ffiffiffi
A

q

s
[ 0: ð21Þ

To prove (21), let us consider the function g5ðqÞ ¼

Fðqm; qlÞ � Fðq; qlÞ þ 2
ffiffiffiffi
A
qm

q
� 2

ffiffiffi
A
q

q
such that

g5ðqmÞ ¼ 0. An easy computation yields

dg5
dq

¼
ffiffiffi
A

p

q2
ffiffiffi
q

p þ
ln

ql
q þ ð1� q

ql
Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1q � 1

ql
Þ ln ql

q

q
0
B@

1
CA: ð22Þ

Now, we claim that dg5
dq \0 for ql\q\qm. In order

to prove our claim, let us take n ¼ q
ql
[ 1 and it is

sufficient to prove that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ ln n

p
� ln nþ ð1� nÞ\0: ð23Þ

Applying the property of arithmetic mean (A. M.)

and geometric mean (G. M.) between the two posi-

tive real numbers n� 1 and ln n, we get ðn� 1Þ þ
ln n[ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ ln n

p
(as A:M:[G:M:) which leads

to the inequality (23). Therefore, g5ðqÞ is decreasing
function of q and hence g5ðqÞ[ g5ðqmÞ ¼ 0 which

implies that R1ðVmÞ lies below the curve S1ðVlÞ for

ql\q\qm.
Now, we show that R1ðVmÞ lies below the curve

R1ðVlÞ for q\ql\qm. To prove this it is sufficient to

establish that 0\Fðqm; qlÞ þ 2
ffiffiffiffi
A
qm

q
� 2

ffiffiffi
A
ql

q
for

q\ql\qm. The right hand side of this inequality is

same as g5ðqmÞ which is established already as pos-

itive quantity.

Finally, we prove that the curve R1ðVmÞ intersects

with S2ðVlÞ at some unique point say ðq2;w2Þ. To
establish this, we have to show that g5ðqÞ ¼ 0 has a

unique root at q ¼ q2 satisfying q2\ql. Clearly,

g5ðqlÞ[ 0 and g5ðqÞ is negative when q is near zero.

Hence by applying the monotonicity and intermedi-

ate value theorem to the shock and rarefaction wave

curve there exist a unique root of q ¼ q2 with q2\ql.
Now, depending upon the choice of qr, there will be

three possibilities which are

(a) When qr\q2 then Vr 2 III and the result of

interaction is S1R1 ) R1S2.
(b) When qr ¼ q2 then Vr 2 S2ðVlÞ and the

interaction results as R1S1 ) S2, which means

that after collision of two waves of 1-family

provides a new wave of the other family.

(c) When qr [ q2 then Vr 2 II and consequently

the interaction leads to S1R1 ) S1S2. The

configuration of wave interactions are

depicted in figure 7.

ρ

w

Vl

Vm

S1(Vl)

S2(Vl)

R2(Vl)

S1(Vm)

R1(Vl)

Figure 6. R1 overtakes S1.

ρ

w

Vl

Vm S1(Vl)

S2(Vl)

R1(Vl)

R2(Vl)R1(Vm)

Figure 7. S1 overtakes R1.
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(iii) 1-shock overtakes 1-shock (S1S1):
In this case, for a given Vl, we choose Vm and Vr in

such a way that Vl is connected to Vm by 1-shock of

first Riemann problem and Vm to Vr are connected by

1-shock of second Riemann problem. In other words,

ql\qm, wm ¼ wl � Fðql; qmÞ and qm\qr,
wr ¼ wm � Fðqm; qrÞ. From Lax entropy condition

one can easily verify that r1ðVl;VmÞ[ k1ðVmÞ[
r1ðVm;VrÞ and hence 1-shock of first Riemann

problem overtakes 1-shock of second Riemann

problem and interaction occurs after a finite time.

Now, we show that the curve S1ðVmÞ lies above the

curve S1ðVlÞ for ql\qm\q. In order to prove this, it

is sufficient to show that

Fðq; qlÞ � Fðqm; qlÞ � Fðq; qmÞ[ 0; ð24Þ

for ql\qm\q. In order to prove (24), let us con-

sider the function g7ðqÞ ¼ Fðq; qlÞ � Fðqm; qlÞ �
Fðq; qmÞ such that g7ðqmÞ ¼ 0. Differentiating g7ðqÞ
with respect to q gives

dg7
dq

ðqÞ ¼ dF

dq
ðq; qlÞ �

dF

dq
ðq; qmÞ: ð25Þ

Since, dF
dq is a decreasing function of q for q[ ql

which implies that dg7
dq ðqÞ[ 0 and hence

g7ðqÞ[ g7ðqmÞ[ 0 which proves the inequality (24)

for ql\qm\q. Therefore, Vr 2 I and the result of

interaction is S1S1 ) S1R2: The computed result is

established in figure 8.

(iv) 2-shock overtakes 2-shock (S2S2):
Here, for a given Vl, we choose Vm and Vr in such a

way that Vl and Vm are connected by a 2-shock of

first Riemann problem and Vm and Vr are connected

by 2-shock of second Riemann problem. It can be

proved in a same manner as in previous case that

Vr 2 III and the result of interaction is S2S2 ) R1S2.
The computed result is characterized in figure 9.

(v) 2-rarefaction overtakes 2-shock (R2S2):
In this case, we choose Vm and Vr with respect to Vl

in such a way that Vm 2 R2ðVlÞ and Vr 2 S2ðVmÞ. In
other words, we have qm � ql, wm ¼ wl þ 2

ffiffiffi
A
ql

q
�

2
ffiffiffiffi
A
qm

q
and qr\qm, wr ¼ wm � Fðqr; qmÞ. From Lax

entropy condition, we have k2ðVmÞ[ r2ðVl;VmÞ
which implies that R2 overtakes S2 after a finite

time. First we prove that R2ðVlÞ lies above S2ðVmÞ for
ql � q\qm. In order to show this, it is sufficient to

prove

2

ffiffiffiffiffiffi
A

qm

s
� 2

ffiffiffi
A

q

s
þ Fðq; qmÞ[ 0 ð26Þ

for ql � q\qm. The inequality (26) can be written as

ffiffiffi
A

q

s
2

ffiffiffiffiffiffi
q
qm

r
� 1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

qm

� �
ln
qm
q

s" #
[ 0:

ð27Þ

Now, let s ¼ q
qm
\1. To prove (27), it is sufficient to

show that g8ðsÞ ¼ 2ð
ffiffiffi
s

p
� 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 1Þ ln s

p
[ 0

for s\1. Now, one can easily prove that g8ðsÞ is a

decreasing function of s on the interval ½s; 1�. Hence,
we obtain that g8ðsÞ[ g8ð1Þ ¼ 0 which implies our

required inequality (27).

Next, we show that S2ðVmÞ lies below the curve

S2ðVlÞ for q� ql\qm. In order to prove this it is

sufficient to show that

2

ffiffiffiffiffiffi
A

qm

s
� 2

ffiffiffi
A

q

s
þ Fðq; qmÞ � Fðq; qlÞ[ 0 ð28Þ

for q� ql\qm. To prove (28), let g9ðqÞ ¼ 2
ffiffiffiffi
A
qm

q
�

2
ffiffiffi
A
q

q
þ Fðq; qmÞ � Fðq; qlÞ such that g9ðqlÞ is

ρ

w

Vl

S1(Vl)

R1(Vl)

S2(Vl)

R2(Vl)

S1(Vm)
Vm

Figure 8. S1 overtakes S1.

ρ

w

Vl

S1(Vl)

R1(Vl)

S2(Vl)

R2(Vl)

S2(Vm) Vm

Figure 9. S2 overtakes S2.
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nothing but the left hand side of the inequality (26)

which is already shown to be positive, i.e.,

g9ðqlÞ[ 0. Now,

dg9
dq

ðqÞ ¼ dF

dq
ðq; qmÞ �

dF

dq
ðq; qlÞ: ð29Þ

Since, dF
dq is a decreasing function of qm for qm [ ql

which implies that dg9
dq ðqÞ\0. Therefore,

g9ðqÞ[ g9ðqlÞ[ 0 which implies the inequality.

Finally, we prove that S2ðVmÞ intersects with S1ðVlÞ
uniquely at some point, say, ðq3;w3Þ with ql\q3
\qm. This can be proved using the same argument as

done in preceding cases. Here also, depending upon

the choice of qr, there will be three cases which are

(a) When qr\q3 then Vr 2 II and the result of

interaction is R2S2 ) S1S2.
(b) When qr ¼ q3 then Vr 2 S1ðVlÞ and the inter-

action results as R2S2 ) S1, i.e., after interac-
tion of two waves of 2-family gives rise to a

wave of the 1-family.

(c) When qr [ q3 then Vr 2 I and the result of

interaction is R2S2 ) S1R2. The computed

results are interpreted in figure 10.

(vi) 2-shock overtakes 2-rarefaction (S2R2):

Here, Vl is connected to Vm by a 2-shock of the first

Riemann problem and Vm is connected to Vr by a 2-

rarefaction wave of the second Riemann problem,

i.e., Vm 2 S2ðVlÞ and Vr 2 R2ðVmÞ. It follows that, for
qm\ql, wm ¼ wl � Fðql; qmÞ and for qr � qm,

wr ¼ wm þ 2
ffiffiffiffi
A
qm

q
� 2

ffiffiffiffi
A
qr

q
. Since r2ðVl;VmÞ[

k2ðVmÞ, 2-shock overtakes 2-rarefaction after a finite

time. First we show that the curve S2ðVlÞ lies above
the curve R2ðVmÞ for qm\q\ql. In order to prove

this, it is enough to show that

2

ffiffiffiffiffiffi
A

qm

s
� 2

ffiffiffi
A

q

s
þ Fðq; qlÞ � Fðqm; qlÞ[ 0; ð30Þ

for qm\q\ql. Now, we set a new function

g10ðqÞ ¼ 2
ffiffiffiffi
A
qm

q
� 2

ffiffiffi
A
q

q
þ Fðq; qlÞ � Fðqm; qlÞ such

a way that g10ðqmÞ ¼ 0. Moreover, one can prove

that dg10
dq ðqÞ[ 0 which implies that

g10ðqÞ[ g10ðqmÞ ¼ 0 and hence the inequality (30).

Thus, S2ðVlÞ lies above the curve R2ðVmÞ for

qm\q\ql. Now, we prove that R2ðVmÞ lies below

the curve R2ðVlÞ for q[ ql [ qm. To show this it is

sufficient to prove that 0\2
ffiffiffiffi
A
qm

q
� 2

ffiffiffi
A
ql

q
� Fðqm;qlÞ

for q[ ql � qm. But, the left hand side of the

inequality is nothing but g9ðqmÞ which is already

shown to be positive. Thus, R2ðVlÞ lies above the

curve R2ðVmÞ for qm\ql\q.
Finally, we prove that R2ðVmÞ intersects uniquely

with S1ðVlÞ at some point, say, ðq4;w4Þ with

qm\ql\q4. In order to show this, it is sufficient to

prove that 2
ffiffiffiffi
A
qm

q
� 2

ffiffiffi
A
q

q
þ Fðq; qlÞ � Fðqm; qlÞ ¼ 0

has a root for qm\ql\q which can be proved sim-

ilarly as done in preceding cases. Again, there will be

three possible cases which are given by

(a) When qr\q4 then Vr 2 II and the result of

interaction is S2R2 ) S1R2.

(b) When qr ¼ q4 then Vr 2 S1ðVlÞ and the interac-

tion results as S2R2 ) S1, i.e., after interaction of

two waves of 2-family gives rise to a wave of the

1-family.

(c) When qr [ q4 then Vr 2 I and the result of

interaction is S2R2 ) S1R2. The computed results

are represented in figure 11.

ρ

w

Vl
Vm

S1(Vl)

R1(Vl)

S2(Vl)

R2(Vl)

S2(Vm)

Figure 10. R2 overtakes S2.
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w

Vl

Vm

S1(Vl)

S2(Vl)
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R2(Vm)

Figure 11. S2 overtakes R2.
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4. Conclusion

We studied characteristic analysis of logotropic system of

gasdynamics with a Coulomb-type friction and established

the properties of shocks and rarefaction curves of one-pa-

rameter family. For a given arbitrary state, we constructed

the Riemann solution in phase plane. Further, we developed

locally two Riemann problems by considering appropriate

initial data and analyzed all possible interactions between

shocks and rarefactions in the phase plane which provide

the basic features of solution with rich geometric structure.

It is observed that Riemann problem is uniquely solvable

and no vacuum occurs in the solution.
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