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Abstract. Saturated hydraulic conductivity (Kfs) is the major parameter that affects the movement of water

and solutes in soil strata. Although one can estimate the Kfs directly by using various field or laboratory methods,

they turn out to be more time-consuming and painstaking while characterizing the spatial variability of Kfs. For

this reason, some recent researches employ indirect approaches such as pedotransfer functions (PTF) and surface

modeling methods for estimating Kfs of several scales. Pedotransfer functions are often developed by relating the

Kfs with readily available soil properties such as bulk density, porosity, sand content, silt content, and organic

material. The present research explores the suitability of Extreme Learning Machine (ELM) in developing PTF’s

for Kfs by using basic soil properties. In-situ field tests and laboratory experiments on collected samples were

performed to acquire the datasets necessary for the analysis. Three competitive soft computing approaches,

namely the ELM, Support Vector Machine (SVM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) based

on Fuzzy C-means Clustering optimized by Genetic Algorithm were exercised for developing the Kfs models.

Further, the performance of these approaches in modeling Kfs was evaluated using various statistical mertics.

The performance of ELM was found to be good in comparison to the other two models, with sufficiently good

NSE values. The ELM model provided Kfs predictions at the Murarji Peth and Punanaka sites with an NSE of

0.90 and 0.83, respectively, while at the Mulegoan site, the ANFIS model was better with R = 0.80 and NSE =

0.64.
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1. Introduction

Hydraulic conductivity is an essential and predominant soil

property for perceiving and replicating various soil-water

interaction processes such as infiltration, contaminant

plume in the vadose zone, and subsurface drainage [1, 2].

Appropriate knowledge of field-scale soil hydraulic con-

ductivity is also crucial for estimating primary consolida-

tion settlements of foundation [3], seepage loss from

earthen dams [4], drainage filter design [5], and assessing

bearing capacity for ground improvement [6]. It is also a

coordinating factor influencing root zone processes and soil

surface macro-porosity in irrigated fields. The hydraulic

conductivity of natural field soils govern the variations in

groundwater residence and travel time (inflow and outflow

rates), modifying or altering the quantity of subsurface flow

to the nearby streams or underlying aquifer [7, 8].

Several anthropogenic factors influence the soil’s phys-

ical, chemical, and biological properties in a significant

way. One such anthropogenic impact includes changes in

land use and land cover, which are the most dynamic

phenomenon influenced by land use for various purposes,

directed by cultural, social, and economic interactions.

Changes in land use result from human demands arising

from changed natural, economic or geo-political issues. The

consequences are either modification or conversion from

one land-use type to another. Land-use changes largely

influence the hydraulic conductivity as it is responsible for
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altering the pore space geometries of the soil [8]. In contrast

to land that is covered with vegetation, barren terrain has a

lower saturated hydraulic conductivity [9]. Impervious

surfaces (such as roads, footpaths) created as a result of

urbanization either by ramming or consolidating the land-

scape affect the hydraulic conductivity of soil and cause

flooding [10].

Soil horizons or terrain is another morphometric factor

that influences local soil properties significantly. Sloping

terrains are commonly seen in the Indian subcontinent.

Researchers have reported that slope influences hydraulic

properties such as moisture distribution, infiltration rate,

cumulative infiltration, and hydraulic conductivity.

Hydraulic conductivity in the hill slope is a deciding factor

for slope stability. Having the knowledge of hydraulic

conductivity is essential for landslide and soil stability

analysis [11].

Saturated hydraulic conductivity is a scale-dependent

parameter [12, 13]; hence, many observations are required

to characterize a given site. Both in-situ and laboratory

methods are troublesome, laborious, and tedious. Also, the

outcomes may not be precise because of inherent variability

(spatial and temporal) in soil hydraulic properties. All these

factors have prompted the evolution and boundless use of

indirect methods (pedotransfer functions PTF) that estimate

Kfs from easily, universally available, and routinely mea-

sured basic soil properties such as percentage of sand, silt,

clay, bulk density, and organic matter within the soil vol-

ume [14–16]. The development of PTFs have helped in the

widespread application of models for simulating various

soil properties.

The researchers developed and used several PTFs to

model Kfs of soils [17]. The strategies run from simple

lookup tables to complex data-driven techniques like

regression analysis [18], neural networks [19, 20],

Support vector machines [21, 22], Adaptive neuro-

fuzzy interface system [23], group method of data

handling, and regression trees [24]. Lookup

tables contain tabular relations between soil textural

soil class and related hydraulic properties [25, 26].

Complex methods like regression analysis investigate

relations between dependent and independent variables

for developing PTF’s [27, 28]. The artificial neural

networks (ANN), which use the computational model

of the human brain and pattern recognition approach to

map the input and output data relations, were found

effective in modeling soil hydraulic properties [29, 30].

Few researchers developed hybrid structures such as

neuro-fuzzy systems that take advantage of both ANN

and Fuzzy logic to model field-scale soil hydraulic

conductivity [31, 32]. The group method of data han-

dling (GMDH), which works by generating analytical

function in a feedforward multilayer neural network

(FFMLNN) based on a quadratic node transfer func-

tion, is also being recently used by several researchers

[33, 34] for developing PTFs. The ANN models

minimize prediction errors by implementing the

empirical risk minimization principle, due to which

there exists a possibility of solutions trapping into

local minima. The SVM, which operates on the

structural risk minimization principle, is known to

overcome this disadvantage. Several SVM-based PTFs

performed superior to conventional regression and

ANN-based PTFs while estimating the soil Kfs

[35, 36]. Other techniques like regression trees have

also been used by many researchers [37] for develop-

ing PTFs. Regression-based PTFs were used exten-

sively in the past owing to their simplicity. However,

the PTFs based on the pattern recognition approach

(neural networks) have been popular in the last decade.

The widely used soft computing based PTFs, model

soil hydraulic properties without considering the phy-

sics involved in the processes. However, their inherent

ability to adapt to complex input-output relationships

produces sufficiently better estimates of the soil

parameter of interest. ELM, introduced by Huang et al
[38], has gained the attention of researchers owing to

its properties like quick learning, superior generaliza-

tion capability, inherent competence to set its internal

parameters, and robustness. The ELM based PTFs to

model soil hydraulic properties (specifically soil

hydraulic conductivity) is rarely available in the

literature.

As tropics enfold approximately 40% of the earth’s

land surface and since the tropical semi-arid regions

worldwide are becoming agriculturally less productive,

the edaphological issues of soils of tropical environ-

ments need to be considered for sustainable manage-

ment protocols [39]. Hence, modeling the field

saturated soil conductivity (Kfs) of tropical semi-arid

soils supports the rational management of soil proper-

ties to get a better yield of crops from agriculture.

Modeled Kfs data could also benefit in modeling water

transport and waste contaminant migration through the

soil. This research intends to explore the suitability of

ELM in the development of PTF’s for modeling Kfs by

using basic soil properties such as bulk density,

porosity, and soil texture as model parameters. Further,

the ELM-based PTF model performance is compared

with that of SVM and ANFIS based PTFs in modeling

field-scale saturated hydraulic conductivity (Kfs).

2. Theoretical overview

2.1 Extreme learning machine

It was observed that a single-layered feedforward system

(SLFN) could be effectively trained with randomly adopted

input weights [40, 41], leading to the development of

extreme learning machines. ELM belongs to the category of

a single hidden neural network trained with the Moore-
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Penrose generalized inverse learning algorithm, which

adjusts the weights of the output layer analytically even

though the input weights and hidden biases are chosen

randomly. The basics of the ELM algorithm are very briefly

given below.

For N arbitrary distinct inputs ðxi; yiÞ with xi 2 Rd

and yi 2 R; a standard SLFN with N hidden nodes and

activation function f can be modeled as

XN

i¼1

bif wixj þ bi
� �

; j 2 1; 2; 3; . . .;Nf g; ð1Þ

where wi are the input weights to the ith neuron in the

hidden layer, bi the biases, and bi are the output weights

[42–44]. It has advantages like extremely fast training

speed, no over-fitting problem, and good generalization

performance [45]. ELM trains the SLFN in the following

stages; firstly, it maps the feature randomly and then

solves it for linear parameters. This strategy makes the

ELM algorithm work faster than the SLFN algorithm.

2.2 Support vector machine

SVM is a robust and reliable regression paradigm that

performs excellently even with a limited amount of data.

SVM is based on statistical learning theory, which refers

to a vast set of mathematical implementations for

understanding data [46]. The SVM includes a statistical

framework that avoids posterior computing probabilities

while building a decision machine from a dataset. The

model is based on support vectors which represents a

vector subset of data taken from the training set. Fol-

lowing equation is balanced form of the considered

support vectors.

f xð Þ ¼
Xn

i¼1

a�i � ai
� �

K x; x j
� �

þ b ð2Þ

where a�i and ai are the Lagrange multipliers and the

expression K x; x jð Þ is the kernel function. SVM formulates

a solution using a quadratic optimization problem with

linear inequality constraints. When used for regression, the

SVM leads to a globally optimal solution and has high

generalization ability. In any kernel-based learning method,

choosing a suitable kernel is crucial for achieving good

performance. More importantly, when the learning method

deals with multiple heterogeneous data sources, it must

consider multiple kernels [47, 48]. The approaches such as

artificial neural networks minimize the empirical risks,

whereas SVM uses a structural risk minimization (SRM)

principle, which aims at minimizing an upper bound on the

generalization error. Thus, SVM has higher prediction

capabilities on the unseen dataset [49–52].

2.3 ANFIS based on Fuzzy C-means Clustering
optimized by Genetic Algorithm

ANFIS was proposed by Jang et al [53], wherein the

fuzzy if-then rules (between input and outputs) in a

fuzzy network are constructed using neural networks.

Hence, ANFIS can be considered as a fuzzy inference

system equipped with the advantages of neural net-

works. An ANFIS model combines the transparent and

linguistic representation of a fuzzy system with the

learning ability of ANN. Fuzzy C-means (FCM) is a

data clustering technique in which a dataset is grouped

into different clusters. The datasets are grouped such

that every data point belongs in a cluster to a certain

degree. For example, if a particular point lies at the

center of a cluster, it will have a high degree of

membership or belonging to that cluster. Whereas, if it

lies far away from the cluster’s center, the degree of

membership will be low to that cluster. Dunn, [54]

initially developed this FCM method which marks the

mean location of each cluster based on initial guesses.

Then the centers are moved to suitable locations by

iteratively updating the cluster centers and membership

grades. The iteration is based on minimizing an

objective function presented in [55] that represents the

distance from any given data point to a cluster center

weighted by that data point’s membership grade. To

optimize the weighting exponent in the FCM, Genetic

Algorithm (GA) was used in this study.

Genetic algorithm (GA) is a stochastic search itera-

tive method based on the evolutionary theory. It is

generally used to optimize nonlinear problems and is

based on Darwin’s evolution theory [56]. Conceptually

Genetic Algorithm implements genetic operators like

crossover, mutation, and selection for up-gradation and

searches for the best population by artificially imitating

the natural evolution process. The genetic algorithm is

initiated with an initial population of possible solu-

tions, called individuals. The evolution theory aims to

compute its fitness function and then determine whe-

ther an individual can enter the next generation.

The fitness value F of an individual can be expressed

as:

Fi ¼ k
Xn

i�1

abs Pi � Oið Þ
 !

ð3Þ

where Pi is the predicted value, and Oi is the desired value

of an individual. Then selected individuals are then

manipulated using crossover and mutation. This process is

continued till the GA search is converged or the termination

criterion is satisfied. This idea is based on the theory that

better parents may probabilistically generate better

offspring.
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3. Study area and data analysis

Vertisol soils occupy 22% of the total geographic area of

India (figure 1). These soils are present in western

(Maharashtra state) and central (Madhya Pradesh) parts of

the country. Vertisols are soils with a high content of clay

minerals that shrink and swell with the change in water

content. The clay minerals adsorb water and increase in

volume (swell) when wet and then shrink as they dry,

forming large, deep cracks. Measuring the hydraulic con-

ductivity of Vertisols is a difficult task, as the pore size

changes with moisture content. In the present study, the

saturated hydraulic conductivity of Vertisol soil was

determined through Guelph Permeameter from three

diverse soil profiles within the study area – Solapur,

Maharashtra state, India, shown in figure 2 geographically

located at 17.65̊ N Latitude and 75.90̊ E Longitude. The

Solapur district is located at 483 m above mean sea level,

and the mean annual rainfall is around 723 mm (highest

1292 mm and lowest 270 mm). The rainfall is scanty,

erratic and ill-distributed, due to which water scarcity

conditions prevail in this place. May is the hottest, and

December is the coldest month of the year. In general, the

climate of the study area can be classified as ‘‘semi-arid.‘‘

The soil in this area is derived from basalt and is underlain

by partially disintegrated rock locally called ’murum.’ The

three sites selected for this study enfold three diverse soil

profiles; the Mulegoan site was an agricultural land during a

fallow period; the Punanaka site was barren land with

sloping terrain, and the Murarji Peth site was a pastureland

(grass cover) with mild downward slope followed by

undulated terrain.

A sampling at all these sites was done in a 0.76 ha area

(190 m 9 40 m). Every site was divided into small grids of

10 m 9 10 m, as shown in figure 3. In-situ saturated

hydraulic conductivity (Kfs) was determined by using

Guelph permeameter (Model: 2800K1). The Kfs measure-

ments were taken from every grid point at a depth of 15 cm,

30 cm, and 45 cm. The Guelph measurement was used for

estimating a quasi-steady discharge Q of water infiltrating

into a vertical borehole of radius a (3 cm) in which the

water level is maintained at a constant height H (5 cm/10

cm) above the bottom of the borehole. The steady-state

water level change (rates) in the Guelph reservoir is

established to find the saturated hydraulic conductivity of

the soil under investigation [57]. Every in-situ Kfs mea-

surement by Guelph permeameter took over two hours of

time and overall about 100 Kfs measurements were made at

Figure 1. Vertisol soil distribution in India.
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each depth at all three locations. Thus, in total, 300 Kfs

measurements were gathered from each site location. The

summary of raw dataset is reported in highlight Appendix 1

to give a sense of values and its ranges.

Soil samples were collected from all three depths after

sampling Kfs using a permeameter to carry out laboratory

analysis [58]. All the soil samples were collected carefully

using two cylindrical cores (100 mm diameter and 125 mm

depth). Soil samples of the first cylindrical core were used

to determine dry bulk density, particle density [59], and

organic matter content. Samples of the second core were

used to determine soil texture using hydrometer analysis.

3.1 Data preprocessing

The Kfs dataset was tested for the normal distribution by

using statistical techniques. From the quantile-quantile (Q-

Q) plot, it was found that they were not normally dis-

tributed. To get normally distributed data, they were log-

transformed. An example of the Q-Q plot before and after

data transformation is presented in figure 4. A summary of

statistics of soil parameters sampled at all three sites and all

three depths (15 cm, 30 cm, and 45 cm) is presented in

table 1. Each dataset was normalized between 0.05 and 0.95

using min-max normalization to allocate initial weights

based on the distribution of the parameter rather than its

magnitude. The output obtained by the modeling technique

was then denormalized for comparison with the original

data.

4. Methodology

4.1 Selection of input parameters

Based on the literature, it was observed that factors like

bulk density (BD), porosity (n), sand % (S), silt % (Si), clay

% (C), particle density (G), and organic matter (OM) affect

Kfs [14–16]. While dealing with multivariate regression,

multicollinearity of independent variables is a general

problem that the researchers face. This occurs when two or

Figure 2. Location of Study area.
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more independent variables in a regression model are

moderately or significantly correlated. Multicollinearity

affects only the coefficients and P-values; and does not

influence the accuracy of the model predictions, and the

goodness-of-fit statistics. Statistician Jim Frost [60]

believes that if the primary objective is to make only

predictions, and there is no need to understand the role of

each independent variable, then it is not mandatory to

reduce severe multicollinearity. Hence, in the present

case study, amongst all the parameters, the most influ-

ential parameters were determined by using step-wise

regression having significance at P \ 0.01. The input

parameters selected for modeling Kfs of various sites are

presented in table 2.

4.2 Model development

The division of the data set into training and testing sets

is an essential component of AI model development.

Various models were tested for determining the best

distribution of data sets into training and testing data

sets. Several random training and testing data partitions

(70:30, 67:33, and 90:10) were experimented to find the

best proportion for training the models. The optimal data

proportion for training was 70% for models of Mulegoan

site, 67% for models of Punanaka site, and 90% for the

models of Murarji Peth site. While solving the optimal

model complexity, the machine learning models behave

differently from one case to another under varied data

divisions. Hence, the attained data division of datasets is

very normal considering the optimal performance of the

developed models.

The ELM model consisted of input, hidden, and output

layers, as shown in figure 5. The input parameters used are

presented in table 2. The output layer had one neuron

representing the estimated Kfs. In the hidden layer, a

maximum of 100 neurons was tested for each model. The

number of neurons in the hidden layer was varied between

2 and 100, with Radial Basis Function as the kernel for all

ELM models tested.

The SVM model developed includes the optimization of

its hyper-parameters. The Radial Basis Function (RBF)

kernel was used during the development of SVM models.

During the training stage, hyperparameters: C (cost func-

tion), kernel width (c), and epsilon-insensitive loss function

(e) were optimized by using a grid search optimizer. As

these parameters are interdependent, the grid search oper-

ation was performed in two stages. During the first stage, a

coarse grid was used (keeping a wide range for the

parameters with considerable increment). Furthermore, a

refined grid was used to determine the optimum values of

C, c, and e. The combination of hyperparameters, which

Figure 3. Sampling scheme grid at Murarji Peth, Mulegaon and

Punanaka sites.

Figure 4. Q-Q Plot for saturated hydraulic conductivity.

(a) Before transformation and (b) After transformation.
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resulted in a minimum mean square error value, was taken

as optimal hyperparameters. To avoid overfitting, a four-

fold cross-validation approach was used during the training

phase.

In the Fuzzy C-means clustering-based ANFIS model,

the number of clusters was determined based on a trial-

and-error approach. The optimal number of clusters were

searched in the range of 2–20 with a step size of one.

Genetic algorithm was employed to optimize the

weighting exponent (m). A larger ‘m’ value is known for

making FCM more robust to noise as well as outliers.

However, larger ‘m’ values greater than the theoretical

upper bound will make the sample mean a unique opti-

mizer. Hence, genetic algorithm was employed to search

the optimal value of ‘m’, which is neither less than one

and greater than the theoretical upper bound value of the

sample data [61].

4.3 Model evaluation criteria

The following performance metrics were employed to

evaluate the model efficiencies.

i. Coefficient of correlation (R)

R ¼
PN

i¼1 Oi � Oavg

� �
Pi � Pavg

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Oi � Oavg

� �� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Pi � Pavg

� �2q

ð4Þ

ii. Root mean square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1 O� Pð Þ2

N

s

ð5Þ

and Normalized root mean square error (NRMSE) is

Table 1. Summary of statistics of soil parameters (log Transformed) sampled at all three sites and all three depths (15 cm, 30 cm and 45

cm).

Mean SD Kurtosis Skewness Minimum Maximum

MP 2.067 0.804 -0.505 -0.231 0.002 3.638

MU Kfs (m yr-1) 2.576 0.621 -1.073 -0.167 0.506 3.647

PN 2.610 0.598 -0.575 -0.330 1.098 3.842

MP 1.622 0.073 -0.954 0.030 1.504 1.761

MU Porosity (%) 1.668 0.053 -0.962 0.174 1.504 1.773

PN 1.699 0.055 -0.243 -0.292 1.517 1.786

MP 1.265 0.319 -0.453 0.458 0.699 1.944

MU % Sand 1.394 0.281 -0.600 0.636 0.778 1.944

PN 1.492 0.296 -1.043 0.000 0.845 1.940

MP 1.472 0.389 2.108 -1.296 0.000 1.924

MU % Clay 1.407 0.392 0.494 -0.904 0.000 1.914

PN 1.311 0.417 0.034 -0.690 0.000 1.914

MP 1.461 0.305 -0.495 -0.513 0.301 1.903

MU % Silt 1.440 0.313 1.448 -0.935 0.000 1.863

PN 1.415 0.306 1.473 -0.969 0.000 1.863

MP 3.152 0.044 -0.619 -0.785 3.053 3.203

MU BD (kg m-3) 3.128 0.044 -1.443 -0.162 3.047 3.202

PN 3.099 0.040 -0.690 0.263 3.042 3.201

MP 0.923 0.287 20.751 -3.684 -1.495 1.174

MU OM (g kg-1) 0.981 0.118 6.767 -1.589 0.273 1.144

PN 0.391 0.227 1.002 -1.085 -0.541 0.712

MP 0.396 0.015 -1.194 -0.362 0.370 0.427

MU G (g/cm3) 0.406 0.010 0.493 -0.155 0.369 0.437

PN 0.408 0.017 -1.007 0.561 0.372 0.452

The values of all soil parameters are log transformed, MP—Murarji Peth site, MU—Mulegaon site & PN—Punanaka

Table 2. Input parameters selected based on step-wise regression for various dataset.

Sl. No. Dataset Input parameters

1 Murarji Peth Porosity (n), Sand % (S), clay % and bulk density (BD).

2 Mulegaon Porosity (n), Sand % (S), clay % and bulk density (BD).

3 Punanaka Porosity (n), Sand % (S), Silt % (Si) and bulk density (BD)

Sådhanå           (2022) 47:26 Page 7 of 15    26 



NRMSE ¼ RMSE

Omax � Omin
ð6Þ

iii. Mean relative error (MRE)

MRE ¼ 1

N

XN

1

O� P

O

� �
ð7Þ

iv. Nash–Sutcliffe model efficiency coefficient (NSE)

NSE ¼ 1�
PN

1 O� Pð Þ2
PN

1 O� Oavg

� �2

" #
ð8Þ

where O—the observed value of the variable, P—the

predicted value of the variable, Omax—maximum

value of the observed variable, Omin—minimum

value of the observed variable, Oavg—average value

of the observed variable, and Pavg—average value of

the predicted variable, N—the number of

observations.

5. Results and discussion

The results obtained from the field experimentation

and various models developed have been analyzed

and discussed here. In the first part, the statistical

analyses of the soil dataset at each of the three loca-

tions are discussed, and the second part presents a

performance analysis of the models developed for each

station.

5.1 Statistical analysis

The soil parameters tested in the laboratory and the field

include saturated hydraulic conductivity (Kfs), bulk den-

sity (BD), porosity (n), sand % (S), silt % (Si), clay %

(C), particle density (G), and organic matter (OM). The

statistical indices such as mean value, standard deviation,

the minimum and maximum value of each soil parameter

are presented in table 1. The maximum value of log

transformed saturated hydraulic conductivity (lnKfs) was

observed at Punanaka (3.842 m/yr), and the minimum

value was at the Murarji Peth site (0.002 m/yr). The

standard deviation of lnKfs was more at the Murarji Peth

site (0.804) than the other two sampling stations. The

correlation coefficient of various soil parameters with the

saturated hydraulic conductivity (logarithmic terms) is

presented in table 3. It could be observed that porosity

had a more significant influence on Kfs with a correlation

coefficient of 0.9 compared to other parameters. The next

factor controlling Kfs was bulk density; it was negatively

correlated with the Kfs, thereby showing a contrasting

response. The soil water content differences intensify

with decreasing bulk density. The other parameters, OM,

and G held negligible correlation; and the parameters S,

C, and Si were moderately correlated with the Kfs at all

three locations, namely Murarji Peth, Mulegoan, and

Punanaka. Previous studies have shown reduced Kfs

values in soils with higher bulk density [62]. At the

Murarji Peth site, the bulk density of soil was higher and

minimum value of Kfs were observed at this location.

This may be due to soil compaction by the cattle

movement (grazing). Considering the barren land at the

Punanaka site, two different soil mass classes were found

at the top and bottom of the terrain. This may be due to

the sloping topography of the site. At the higher eleva-

tions of the terrain, high Kfs values were observed

because of the coarse-grained soil profile; and at the

bottom stretch of the terrain, the soil with less Kfs value

was found due to the accumulation of silt and other fine

organics deposited by runoff.

5.2 Performance evaluation of models

Performances of all machine learning models developed

were assessed using various statistical metrics as mentioned

in section 4.3. The performance metrics of the models in

both training and testing phases of all three locations are

presented in tables 4, 5 and 6. Scatter and box plots of

ELM, SVM, and ANFIS model predictions of the test phase

are shown in figures 6, 7 and 8.

5.2.1 Murarji peth site: The ELM model provided Kfs

predictions with an NSE = 0.90 in the testing phase. The

performance of ELM was found to be exceptionally good in

Figure 5. Architecture of ELM model.
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comparison with the other two models. The error statistic,

MRE of the ELM model in the training phase was 0.02

(*0) and 0.18 in the testing phase (table 4). In terms of

NRMSE also, the performance of ELM was excellent

during both the training and the testing phase. The

correlation coefficient (R) of SVM and ANFIS models

was relatively good during the training phase. However, in

the testing phase, both the models underperformed in

comparison to the ELM model. The scatterplot of observed

v/s predicted Kfs values of the testing phase is shown in

figure 6. The predicted Kfs values by the ELM method were

closer to the 1:1 line when compared to other two methods.

The predictions by the SVM method during testing were

below the 1:1 line indicating the underfitting of the values.

Even though the performance of the ANFIS model was

better than that of SVM, the predictions are unsatisfactory.

The box plots of observed and predicted Kfs values by all

three models are depicted in figure 6. The median of

observed Kfs predicted by all three models is close to the

first quartile, and most of the points are in between the

lower quartile and median. More points were concentrated

towards the first quartile, which implies that the predictions

from all models were virtuous/superior when the magnitude

of Kfs was low, but for higher values of Kfs prediction, the

capability of the ELM model was relatively decent. The

ELM also predicted the outliers with reliable accuracy, and

the data distribution was similar to that of observed Kfs.

The spread of data predicted by ANFIS was reasonably

agreeable with that of observed Kfs; however, the prediction

of the SVM model was poor, and most of the data points

were within the third quartile, its upper whisker is very

short in comparison with that of other two models.

5.2.2 Mulegaon site: In terms of all performance

statistics, the performance of ANFIS was found to be

satisfactory compared to the SVM and ELM models, as

depicted in table 5, during both the training and testing

phase. The NSE values of SVM and ELM models were

relatively less than that of ANFIS predictions during the

testing phase. Although the NRMSE of ANFIS and ELM

predictions were equal, there exists a significant

difference in MRE values of both models. The ANFIS

model provided generalized predictions during the testing

phase compared to the other two models. Figure 7

presents the scatterplot of observed v/s predicted Kfs

values. The majority of the predicted Kfs values by the

Table 3. Correlation Coefficient of various soil parameters with saturated hydraulic Conductivity sampled at Murarji Peth (MP),

Mulegaon (MU) and Punanaka (PN).

Kfs

(m yr-1)

Porosity

%

Sand

%

Clay

%

Silt

%

BD

(kg m-3)

OM

(g kg-1) G

MP 1.00 0.90 0.76 -0.43 -0.14 -0.87 0.28 0.73

MU 1.00 0.88 0.58 -0.42 -0.28 -0.90 -0.05 0.23

PN 1.00 0.70 0.73 -0.59 -0.36 -0.71 0.10 0.58

All soil parameters are in logarithmic terms, MP – Murarji Peth site, MU – Mulegaon site & PN – Punanaka site

Table 4. Performance of models for the data of Murarji Peth site

(90% training data and 10% testing data).

Model

Training Testing

ELM SVM ANFIS ELM SVM ANFIS

R 0.97 0.77 0.78 0.96 0.52 0.58

MRE 0.02 0.07 0.06 0.18 0.60 0.58

RMSE (m yr-1) 73.01 257.12 217.52 219.03 771.37 652.55

NRMSE 0.02 0.07 0.06 0.06 0.21 0.18

NSE 0.95 0.56 0.60 0.90 0.18 0.15

Table 5. Performance of models for the data of Mulegaon site

(70% training data and 30% testing data).

Model

Training Testing

ELM SVM ANFIS ELM SVM ANFIS

R 0.94 0.80 0.87 0.88 0.74 0.80

MRE 0.05 2.29 1.08 0.88 1.60 0.63

RMSE (m yr-1) 332.23 978.60 495.34 411.91 631.70 378.04

NRMSE 0.07 0.22 0.11 0.09 0.14 0.09

NSE 0.87 0.48 0.72 0.58 0.34 0.64

Table 6. Performance of models for the data of Punanaka site

(67% Training data and 33% testing data).

Model

Training Testing

ELM SVM ANFIS ELM SVM ANFIS

R 0.99 0.85 0.85 0.94 0.63 0.78

MRE 0.07 1.91 0.90 0.71 1.41 1.44

RMSE (m yr-1) 161.99 627.76 460.74 464.83 904.75 733.03

NRMSE 0.02 0.09 0.07 0.07 0.13 0.11

NSE 0.97 0.59 0.78 0.83 0.37 0.59
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ANFIS model were close to the 1:1 line compared to the

other two methods. The predictions by the SVM model

were not satisfactory (over predicted). A bulk of ELM

model predictions are scattered above 1:1 line

signposting the over-prediction of Kfs values. The

ANFIS model better predicted the smaller values of

Kfs. Box plots for observed and predicted Kfs values by

various methods are shown in figure 7. The median of

observed Kfs was found lower than the median of

predicted Kfs by all three models. The lower whisker of

the observed Kfs is small, indicating lower 25% values of

Kfs were closely spaced (variability in lower 25% value

is relatively less). Upper whiskers of observed Kfs and

predicted Kfs is large, indicating a more significant

variation in Kfs values in the last (upper) quartile.

Predictions of the ANFIS model were relatively good

since its box plot approximately matches with the box

plot of observed Kfs. This may be because of the

sensitivity of influencing parameters considered for

modeling the hydraulic conductivity. The agricultural

activities that cannot be accounted for during modeling

may play an important role in developing a good data

driven model for modelling hydraulic conductivity.

5.2.3 Punanaka site: During the training and testing

phase, the NSE of the ELM model was found to be 0.97 and

0.83, respectively, which is a sign of good model

performance (table 6). The ANFIS model held a

satisfactory NSE=0.78 during the training phase;

however, its performance during testing (NSE = 0.62)

was not at par with that of the training phase. The ELM

model had lower RMSE (about 48.62% and 36.58%)

compared to SVM and ANFIS models, respectively.

Barring a few outliers, all the predicted Kfs values of the

Figure 6. Scatter plot and Box plot of ELM, SVM and ANFIS models in testing of Murarji Peth site.
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ELM model of the testing phase (figure 8) are closely

spread along the 1:1 line. SVM was found to overestimate

the Kfs values, whereas the ANFIS prediction was found

closely spread around the 1:1 line on either side of the line,

but for higher Kfs values, it was found underestimating. The

Box plots of observed Kfs against predicted Kfs values by

ELM, SVM, and ANFIS, are depicted in figure 8. Median

of observed and predicted Kfs values by the ELM model is

approximately the same; the length of lower whisker, upper

whisker, the distance between median and quartiles (lower

quartile and upper quartile) is almost similar, implying that

the spread of data is identical. However, the predictions are

either on the higher or, the lower side of the observed

values.

Lim and Kolay [63] predicted the hydraulic con-

ductivity of tropical soils using different ANN archi-

tectures. They used bulk density, moisture content, dry

density, void ratio, liquid limit, plastic limit, gravel,

sand, silt, and clay percentages as input parameters and

could predict hydraulic conductivity with a model

efficiency NSE = 0.72 during the test phase. In another

study by Arshad [64], the data from 175 soil profiles

from different parts of Khuzestan province were

modeled using ANFIS, ANN, and multiple linear

regression (MLR) models. They obtained model effi-

ciencies (Coefficient of determination) R2= 0.71, 0.66,

and 0.5, respectively, during the test phase. They used

percentages of clay, silt, sand, and bulk density as

model input parameters. In the present case, the ELM

model provided an efficiency NSE=0.90 (Murarji Peth

site) during the test phase while predicting the satu-

rated hydraulic conductivity of the same tropical soils.

The obtained modeling results portray ELM as a reli-

able learning machine to model highly variable and

non-stationary data, as demonstrated in the current

study. In general, the length of data used for training

the model has a considerable effect on the accuracy of

the predictions.

Figure 7. Scatter plot and Box plot of ELM, SVM and ANFIS models in testing of Mulegaon site.
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6. Conclusions

The current study aimed to predict the saturated

hydraulic conductivity of tropical semi-arid zone soils

using three well-recognized machine learning paradigms.

Based on the analysis, it was found that porosity, sand

content, bulk density, and clay/silt content were the

influential parameters to model the saturated hydraulic

conductivity of the soil. Porosity and sand content have

shown a positive influence, and the bulk density and clay

content have shown a negative correlation with the sat-

urated hydraulic conductivity of the soil. A maximum

value of 3.842 m/year (saturated hydraulic conductivity

in the logarithmic scale) was observed at the Punanaka

site, and a minimum value of 0.002 m/year was observed

at the Murarji Peth site. The performance of the ELM

model was found to be better than that of SVM and

ANFIS models at Murarji Peth and Punanaka sites. The

performance of the ELM model was not up to the

expectation at the Mulegaon site, and the possible reason

for this could be any extrinsic influencing parameters

which are not accounted for, such as macro-hole distri-

bution due to roots and biological activities that exist in

agricultural lands. The multicollinearity of inputs could

be one more reason for reduced efficiencies and has been

reported as a limitation of the current study. The sensi-

tivity of every parameter on the output variable is rec-

ommended to be reflected in future research.

Figure 8. Scatter plot and Box plot of ELM, SVM and ANFIS models in testing of Punanaka site.

   26 Page 12 of 15 Sådhanå           (2022) 47:26 



Appendix 1

Abbreviations
Kfs Saturated Hydraulic Conductivity

lnKfs Log Transformed Saturated Hydraulic

Conductivity values

PTF Pedotransfer Functions

ELM Extreme Learning Machine

SVM Support Vector Machine

ANFIS Adaptive Neuro-Fuzzy Inference System

GMDH Group Method of Data Handling

FFMLNN Feedforward Multilayer Neural Network

SLFN Single-Layered Feedforward Network

SRM Structural Risk Minimization

FCM Fuzzy C-means

GA Genetic Algorithm

Q-Q Quantile-Quantile

BD Bulk Density

n Porosity

S Sand %

Si Silt %

C Clay %

G Particle Density

OM Organic Matter

RBF Radial Basis Function

R Coefficient of Correlation

RMSE Root Mean Square Error

NRMSE Normalized Root Mean Square Error

MRE Mean Relative Error

NSE Nash–Sutcliffe Efficiency
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