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Abstract. A new simulation package, GSEIM (General-purpose Simulator with Explicit and Implicit Methods),

for solving a set of ordinary dierential equations (ODEs) is presented. A novel feature of GSEIM is the provision for

solving a set of ODEs using explicit or implicit schemes. The organisation of the program is illustratedwith the help

of a block diagram. Various features of GSEIM are discussed. Twoways of incorporating new elements in GSEIM,

viz., as a template and as a subcircuit, are explained by taking a specific example. The flexibility provided to the user

to incorporate new elements together with the open-source nature of GSEIM is expected to make it a viable

alternative for simulation of practical systems involving ODEs. Simulation examples are described, which validate

GSEIM and bring out its capabilities.
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1. Introduction

A wide variety of engineering applications require numer-

ical solution of a set of ordinary differential equations

(ODEs), satisfying some given initial conditions. This need

is currently addressed by commercial [1, 2] as well as

open-source [3] software packages. Although the numerical

methods for solving ODEs are well known (see, e.g.,

[4–9]), different packages have different strengths and

weaknesses, based on their performance, ease of use,

capability of adding new library elements, cost, user sup-

port, and legacy issues. The purpose of this paper is to

present a new ODE solver called GSEIM (General-purpose

Simulator with Explicit and Implicit Methods) and illustrate

its working process through examples. The open-source

nature of GSEIM [10], the flexibility offered to the user for

incorporating new elements, and the possibility of using

explicit or explicit methods are expected to make GSEIM

an attractive alternative for various applications.

The paper is organised as follows. In Section 2, we

briefly review the advantages and limitations of explicit and

implicit methods for solving ODEs. We then describe, in

Section 3, the block-level organisation of GSEIM. A key

feature of GSEIM is the flexibility with which the user can

add new elements to the library. We describe this aspect in

Section 4 where we point out, using a few examples, how

computations related to explicit and implicit methods are

incorporated in the element templates. In Section 5, we

look at how a subcircuit (hierarchical block) can be added

to GSEIM, using the example of an induction machine

model. One important requirement in many engineering

applications is accurate handling of abrupt changes. We

describe in Section 6 how that is implemented in GSEIM.

In Section 7, we present two simulation examples to

illustrate the capabilities of the new platform. Finally, in

Section 8, we present our conclusions and comments on

future directions.

2. Explicit and implicit methods

There are several well-known explicit and implicit methods

for solving ODEs (see, e.g., [5]). In order to illustrate the

advantage of an explicit method over an implicit method,

let us consider a single ODE of the form

dx

dt
¼ f ðt; xÞ ð1Þ

The discretised form of this ODE using the improved Euler

method (an explicit method) is given by

xnþ1 ¼ xn þ
h

2
f ðtn; xnÞ þ f ðtn þ h; xn þ h f ðtn; xnÞÞ½ � ð2Þ

where xn and xnþ1 correspond to the numerical solutions at

times tn and tnþ1, respectively, and h ¼ tnþ1 � tn is the time

step. Since tn and xn are known, computing xnþ1 involves

only evaluation in this case.

Consider now the discretised form of equation (1) when

the backward Euler method (an implicit method) is used:
*For correspondence
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xnþ1 ¼ xn þ h f ðtnþ1; xnþ1Þ ð3Þ

Because xnþ1 is also involved on the right-hand side,

obtaining xnþ1 in this case requires the solution of

equation (3).

For a system of ODEs, an explicit method would still

involve function evaluations, i.e., the process of updating

the system variables by evaluating functions of their past

values. An implicit method, on the other hand, would give

rise to a system of equations that has to be solved. If the
system of equations is nonlinear, an iterative procedure

such as the Newton–Raphson method would be required

with the associated complication of convergence difficul-

ties. Clearly, from the perspective of work per time step, an

explicit method would be advantageous over an implicit

method of the same order. However, implicit methods are

superior in terms of stability, as illustrated by the following

example.

Consider an RC circuit, as shown in figure 1. We are

interested in the variation of V1 and V2 when a step input

voltage VsðtÞ is applied.
For solving the circuit equations numerically, we first

rewrite them as a system of ODEs:

dV1

dt
¼ 1

R1C1

ðVs � V1Þ �
1

R2C1

ðV1 � V2Þ

dV2

dt
¼ 1

R2C2

ðV1 � V2Þ
ð4Þ

We expect V1 and V2 to start changing as the input step is

applied and eventually settle down to their steady-state

values. For this problem, rather than using constant time

steps for the entire interval of interest, it is far more effi-

cient to use small time steps when the variations are rapid

and large time steps when they are slow. We consider two

methods which employ such adaptive time step computa-

tion: (a) the Runge–Kutta–Fehlberg (RKF45) method, an

explicit method which employs Runge–Kutta methods of

order 4 and 5 in each time step [8], and (b) the trapezoidal–

backward difference formula (TR–BDF2) method, an

implicit method which employs the TR and BDF2 methods

in each time step [11].

In each of these methods, an estimate of the local trun-

cation error (LTE) is obtained in each time step. If the LTE

is small, the current time step is accepted, and the next time

step is allowed to be larger. If the LTE is larger than a

specified value, the current time step is rejected and a

smaller time step is tried. As the circuit approaches steady

state, the LTE tends to zero, allowing the algorithm to take

larger time steps, limited eventually only by an upper limit

set by the user.

Figure 2 shows the results for R1 ¼ R2 ¼ 1 kX and

C1 ¼ C2 ¼ 1 lF. Both RKF45 and TR–BDF2 methods

perform as expected. As the circuit approaches steady state,

they make the time steps larger, leading to fewer time steps

overall and therefore a faster simulation.

When C2 is changed from 1 to 0:1 lF, the two methods

show very different behaviour (see figure 3). The TR–

BDF2 method continues to increase the time step as the

circuit approaches the steady state. The RKF45 method

does increase the time step up to a certain point, but at

t � 5:1 ms, it forces a small time step. After that, it once

again starts increasing the time step, but only up to

t � 10:8 ms, and so on. This behaviour is related to the

stability of the RKF45 algorithm. The explicit Runge–Kutta

methods employed in the RKF45 algorithm are condition-

ally stable. They require the time step to be smaller than a

certain multiple of the smallest time constant in the sys-

tem [9]. With R1 ¼ R2 ¼ 1 kX, C1 ¼ C2 ¼ 1 lF, the time

constants are s1 ¼ 2:6 ms and s2 ¼ 0:38 ms. With

C2 ¼ 0:1 lF, the time constants are s1 ¼ 1:1 ms and

s2 ¼ 0:09 ms, and the largest time step allowed by the

RKF45 algorithm is correspondingly reduced. For the TR–

BDF2 method, which is A-stable, there is no such restric-

tion, and therefore it allows large time steps as steady state

is approached, thus reducing the computation time

significantly.

Figure 1. RC circuit with two time constants.

Figure 2. Numerical solution of equation (4) using the TR–

BDF2 and RKF45 methods. The parameter values are

R1 ¼ R2 ¼ 1 kX and C1 ¼ C2 ¼ 1lF. Crosses show the simulator

time points.
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From the above discussion, it is clear that, from the

efficiency perspective, the choice of the method (explicit or

implicit) would depend on the problem being solved. For

this reason, GSEIM incorporates explicit as well as implicit

methods. The implementation details can be found in [10].

3. GSEIM organisation

The block diagram of the GSEIM program is shown in

figure 4. The schematic entry graphical user interface

(GUI) block is adapted from the GNURadio package [12].

It enables the user to prepare a schematic diagram of the

system of interest and produces a high-level netlist. A

parser program takes the high-level netlist as an input,

performs parsing of node names and computation of ele-

ment parameters (if required). As its output, the parser

program produces a low-level netlist. The solver takes the

low-level netlist as its input, and using information from the

library, it prepares and solves the set of ODEs corre-

sponding to the user’s system, creating output files

requested by the user. Finally, the plotting program reads

the output files and displays the plots in an interactive

manner.

GSEIM has been designed to completely decouple the

element library from the solver, which makes it possible for

the user to add new elements to the library (if required). For

each element (say, xyz), the library contains two files:

(a) xyz.xbe which contains information about the vari-

able names, parameter names and values, and equations

related to that element and (b) xyz.yml which specifies

how the element would appear in the schematic entry GUI.

A detailed description of these files would be presented in

the GSEIM manual. In Section 4, we will take a brief look

at the xbe files for a few elements.

The salient features of the GSEIM package can be

described as follows:

(a) The solver, which handles the most intensive compu-

tation, viz., numerical solution of the ODEs, is written

in C?? because of its high performance.

(b) For all other purposes, viz., schematic capture, parsing,

parameter computation, and plotting, python is used

because of the flexibility and ease of programming it

offers.

(c) Output parameters, which determine what data gets

stored in the output files during simulation, are specified

without having to add extra elements—such as the

‘scope’ in Simulink [1] and Xcos [3]—to the schematic

diagram. This helps in avoiding clutter.

(d) Subcircuits (hierarchical blocks) can be used for

simplifying the schematic.

(e) Explicit as well as implicit numerical methods are

incorporated in the solver. Currently, the following

methods are made available:

(i) explicit (fixed time step): improved Euler, Heun,

and Runge–Kutta (4th order);

(ii) explicit (auto time step): RKF45, Bogacki, and

Shampine (2,3);

(iii) implicit (fixed time step): backward Euler and

TR;

(iv) implicit (auto time step): backward Euler-auto,

TR-auto, and TR–BDF2.

The backward Euler-auto and TR-auto methods are

used only for nonlinear problems. In these methods, the

time step is adjusted depending on the number of

Newton–Raphson iterations required at a given time

point.

(f) GSEIM provides a GUI for plotting the variables

specified by the user. The plotting GUI, shown in

figure 5, allows the user to select the output file of

interest, the x-axis variable (typically time), and the y-

Time

Figure 3. Numerical solution of equation (4) using the TR–

BDF2 and RKF45 methods. The parameter values are

R1 ¼ R2 ¼ 1 kX, C1 ¼ 1 lF, and C2 ¼ 0:1 lF. Crosses show the

simulator time points.

Element
library

(YML, C++)

Schematic
Entry

(Python)

High−level
netlist

Parsing,
parameter

computation
(Python)

Low−level
netlist(C++)

Solver

Output
files

Plotting
program
(Python)

Plots

Figure 4. Block diagram of the GSEIM program.
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axis variable(s) to be included in the plot. It also gives

the user control over plot attributes such as line colour,

line width, and symbol type, with appropriate values

specified by default. Using this information, the plotting

GUI displays the plot requested by the user. It also

produces python code associated with the plot. If

required, the user can edit this code in order to make the

plot more suitable for a report or a presentation. This

way, the user can benefit from a wide range of plotting

capabilities offered by python.

4. Library element templates

A very important feature of GSEIM is that it allows the user

to add new functionality in the form of library elements, by

writing a suitable ‘template’. In this section, we look at the

syntax of element templates with the help of some exam-

ples. We start with a few remarks.

(a) An element template has three types of variables in

general: input, output, and auxiliary. Only the input and

output variables are made available in the schematic

capture GUI for connection to other elements.

(b) Two types of elements are allowed:

(i) evaluate type in which the element equations

are of the form y ¼ f ðx1; x2; . . .Þ, where y is an

output and x1; x2, etc. are inputs. These elements

do not involve time derivatives;

(ii) integrate type with equations of the form
dy
dt ¼ f ðx1; x2; . . .Þ; where y is an output or auxil-

iary variable, and x1; x2, etc. can be input, output,

or auxiliary variables.

4.1 Adder

As our first example, we consider the sum_2 element

which gives y ¼ k1x1 þ k2x2, where x1 and x2 are input

variables, y is the output variable, and k1 and k2 are real

parameters. This is an evaluate type element, i.e., its

output can be written as a function of its input, and it does

not involve time derivatives. Figure 6 shows the overall

structure of sum_2.xbe.
The following features may be noted:

(a) The element name is specified by the keyword name.

Figure 5. Snapshot of the plotting GUI provided as a part of the GSEIM package.
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(b) The assignment evaluate=yes specifies the element

type.

(c) The assignment Jacobian: constant indicates

that when the element equation y� k1x1 � k2x2 ¼ 0 is

differentiated with respect to the variables involved in

the equation, we get constants.

(d) The lines input_vars and output_vars specify

the input and output variables of the element,

respectively.

(e) The names and default values of the real parameters are

given by the rparms statement. (GSEIM also allows

integer and string parameters; they are not used in

sum_2.)
(f) The outparms statement specifies the names of

output parameters which will be made available by

this template for saving to the user’s output files during

simulation (if requested by the user).

(g) The n_f and n_g statements specify the number of

f and g functions for this element. (This aspect is

described in detail in the GSEIM manual [10].)

(h) The g_1 statement indicates the variables involved in

the function g1.
(i) The C?? part of the template, to be described

separately, appears between the C and endC
statements.

Before we look at the C?? part of sum_2.xbe, let us see

where it fits in the overall scheme. The GSEIM library

preprocessor embeds the C?? part of each element tem-

plate in the C?? function corresponding to that element.

This function receives objects X and G from the GSEIM

main program and is expected to compute various quanti-

ties such as function values, output parameters, etc. The

object G is a global object and is used to pass information

about the current time point, type of method being used

(implicit or explicit), etc. It also conveys to the element

routine, through the flags array, what computation the

main program is expecting from the element routine in the

present call. The object X is specific to the element being

treated, and it contains variables and parameter values

related to that element. With this background, we can make

the following points about the C?? part of sum_2.xbe,

as shown in figure 7:

(a) If an explicit method is being used, the template only

needs to evaluate y in terms of x1 and x2.
(b) If an implicit method is being used, the template needs

to supply information about the equation it satisfies,

which in this case is

g1 � y� k1x1 � k2x2 ¼ 0 ð5Þ

If the program is requesting the function value,

g1ðx1; x2; yÞ is evaluated; if it is requesting the deriva-

tives, then og1
ox1
; og1
ox2
; og1

oy are evaluated.

(c) If the program is requesting assignment of output

parameters, the parameters listed in the outparms
statement (see figure 6) are assigned.

4.2 Integrator

Next, we consider an element of type integrate, viz.,

the integrator, which satisfies y ¼ k
R
x dt, where x and y

are the input and output variables, respectively, and k is a

real parameter. Since GSEIM expects the equations to be

written in the general form dy
dt ¼ f ðx1; x2; . . .Þ, we rewrite the

Figure 6. sum_2.xbe template (partial).

Figure 7. C?? part of the sum_2.xbe template (partial).
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integrator equation as dy
dt ¼ k x. For integrate type ele-

ments, we also need to specify the initial or ‘start-up’ value

of the state variable(s). For the integrator, we will denote

that by y0.
The integrator template without the C?? part is shown

in figure 8. The C?? part is shown separately in figure 9.

The start-up parameter y_st corresponds to y0 mentioned

above. The fact that time derivative of y is involved in the

element equation is indicated by the f_1 statement.

In the C?? part of the template (figure 9), we have

different sections for start-up and transient simulation. In

the start-up section, the equation y ¼ y0 is handled. In the

transient section, if the method is explicit, only the function

f1 ¼ k x is evaluated; if it is implicit, the function g1 ¼ k x
as well as its derivative og1

ox are computed.

4.3 Induction motor

We now look at a more complex element of type inte-
grate, viz., indmc1.xbe, which implements the

induction machine model given by:

dwds

dt
¼vds � rsids ð6Þ

dwqs

dt
¼vqs � rsiqs ð7Þ

dwdr

dt
¼� P

2
xrmwqr � rridr ð8Þ

dwqr

dt
¼P

2
xrmwdr � rriqr ð9Þ

dxrm

dt
¼ 1

J
ðTem � TLÞ ð10Þ

where

Figure 8. integrator.xbe template (partial).

Figure 9. C?? part of the integrator.xbe template

(partial).

Figure 10. indmc1.xbe template (partial).
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ids ¼
Lr

LmLe
wds �

1

Le
wdr ð11Þ

iqs ¼
Lr

LmLe
wqs �

1

Le
wqr ð12Þ

idr ¼
1

Lm
wds �

Lls
Lm

þ 1

� �

ids ð13Þ

iqr ¼
1

Lm
wqs �

Lls
Lm

þ 1

� �

iqs ð14Þ

Tem ¼ 3

4
PLm ðiqsidr � idsiqrÞ ð15Þ

with Le ¼ LsLr
Lm

� Lm; Ls ¼ Lls þ Lm, and Lr ¼ Llr þ Lm.

Figures 10–13 show the various sections of the indmc1
template. The input variables are vqs; vds; TL, and the output

variable is xrm. In addition, it has internal (auxiliary)

variables wds;wdr;wqs;wqr which are involved in the model

equations. The statements f_1, f_2, etc. in figure 10 are

used to inform the simulator which derivatives are involved

in the given equation. The statements g_1, g_2, etc. are
used to indicate which variables are involved in the right-

hand side of the corresponding equation.

In the induction machine equations (equations (6)–(15)),

there are some ‘one-time’ calculations, e.g., calculation of

Le, which are not required to be performed in every time

step. GSEIM provides a flag for this purpose, as seen in

Figure 11. One-time parameter section of indmc1.xbe.

Figure 12. Function evaluation in indmc1.xbe for explicit

methods.

Figure 13. Function evaluation in indmc1.xbe for implicit

methods.
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figure 11. When this flag is set by the main program, the

template computes Le and other one-time parameters, and

saves them in the X.rprm vector. Subsequently, these

parameters need not be computed again.

The function assignment sections of indmc1.xbe are

shown separately in figures 12 and 13 for explicit and

implicit methods, respectively. In the explicit case (fig-

ure 12), the function f1 (i.e., f[nf_1]) is computed as per

the right-hand side of equation (6), and so on. In the

implicit case (figure 13), the function g1 is similarly com-

puted. However, in this case, the derivatives of g1 with

respect to each of the variables involved in this equation

also need to be computed.

As seen from the above example, writing a new template,

particularly the Jacobian assignment part, requires some

systematic effort. For this reason, some simulation pack-

ages allow the use of hardware description languages such

as Openmodelica [13] and Verilog-AMS [14], which

require from the user only functions in symbolic form. The

derivatives are then computed internally by the simulator.
Figure 15. Parameter computation for the induction machine

subcircuit.

Figure 14. Subcircuit for the induction machine model given by equations (6)–(15).
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While the ‘low-level’ approach used in GSEIM

demands more effort from the user in developing new

element templates, it does offer more flexibility—the user

is not constrained by the limitations of a high-level lan-

guage. Furthermore, library development is a one-time

activity; once an element template is developed and tes-

ted, no further coding is required. We believe therefore

that our low-level approach has significant practical

relevance.

5. Subcircuits

In many situations, the system of interest is hierarchical in

nature, and building it in a modular fashion is easier or

more convenient than assembling all the basic blocks at one

level. Like simulation packages such as SPICE [15],

Simulink [1], Dymola [2], GSEIM also allows hierarchical

system building. In this section, we consider the induction

machine model of Section 4 and describe how it can be

implemented as a ‘subcircuit’ (a hierarchical block) rather

than writing an element template. For this purpose, we

rewrite equations (6)–(15) such that each of them can be

implemented using basic blocks such as adder, multiplier,

integrator, etc.

(a)

(b)

Figure 16. Triangle source waveform: (a) with a constant time

step and (b) with time step adjusted for tracking abrupt changes.

Crosses show the simulator time points.

Figure 17. Comparator input and output waveforms: (a) with a constant time step and (b) with additional time points obtained by

extrapolation. Crosses show the simulator time points.
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As an example, equation (8) can be rewritten as

wdr ¼
Z

� P

2
xrmwqr � rridr

� �

dt ð16Þ

which can be implemented using a multiplier (to multiply

xrm and wqr), and the sum_2 and integrator ele-

ments described in Section 4. Treating equations (6)–(10)

in this manner, we obtain the subcircuit that is shown in

figure 14.

The following additional points about the implementa-

tion may be noted:

(a) ‘Virtual’ sources and sinks (shown in light yellow

colour) are used in order to make wiring less cumber-

some. For example, note the virtual sink marked

‘[idr’ and the virtual source marked ‘idr[’, the

two corresponding to the same node.

Time

(a)

(b)

Figure 18. Comparator input and output waveforms: (a) with linear extrapolation and (b) with quadratic extrapolation.

Figure 19. Example of failure of the linear extrapolation

technique for treating crossover events.

Figure 20. GSEIM schematic diagram for simulation of free

acceleration of induction motor using indmc1.xbe.

Figure 21. GSEIM schematic diagram for simulation of free

acceleration of induction motor using induction machine

subcircuit.

  206 Page 10 of 13 Sådhanå          (2021) 46:206 



(b) Input and output pads (shown in light green colour) are

used to indicate the input and output ports the subcircuit

symbol will have when it is invoked (from a higher

level). For the induction machine subcircuit, va, vb,
vc, tl are the input ports, and wrm is the output port.

(c) The subcircuit has the following parameters (not shown

in figure 14): j, llr, lls, lm, poles, rr, rs, which
correspond to J; Llr; Lls; Lm;P; rr; rs, respectively, in

equations (6)–(10). In implementing the equations, we

need to compute quantities that depend on these

parameters. For example, consider equation (11) for

ids, implemented using the sum_2 element marked as

s6 in the figure. This element gives

ids ¼ k1wds þ k2wdr, which requires k1 ¼ Lr
LmLe

and k2 ¼
� 1

Le
to be assigned. For all such assignments, the user is

expected to supply a python function that is specific to

the concerned subcircuit. For the induction machine

subcircuit (s_indmc), the python block is shown in

figure 15. The calculations for k1 and k2 of s6 are

shown specifically in the figure. Similarly, several other

quantities are computed and stored in the python

dictionary received by the s_indmc_parm function

as an argument. With this mechanism, the user has

significant flexibility in implementing element

equations.

(d) The user can define ‘output parameters’ for a sub-

circuit and use those at higher levels, as described in

[10]. The output parameters can be mapped to nodes

within the subcircuit or to the output parameters of

the blocks involved in the subcircuit. These features

provide a mechanism for viewing various quantities

of interest at different levels when the system is

simulated.

6. Handling abrupt changes

In many systems of practical interest, some of the variables

are expected to vary abruptly. If the abrupt transitions are

missed out by the simulator, it would affect the appearance

of the plots of those variables, and more importantly, the

accuracy of the simulation results in some cases. As an

example, consider a triangle source with period T ¼ 2 s. If

a constant time step Dt ¼ 0:12 s is used, some of the peak

or valley points are missed out by the simulator, as shown

in figure 16(a). This situation can be improved by tracking

the time points where the source output is going to reach a

peak or a valley. For this purpose, the triangle source

template in GSEIM takes the current time point from the

simulator and returns the time of the next ‘break’ (peak or

valley). Using this information, GSEIM decides whether

the normal time step or a reduced time step should be used

(a)

(b)

Time

Figure 22. Simulation results for free acceleration of induction

motor: (a) speed and (b) torque.

Figure 23. GSEIM schematic diagram for V/f control of an induction motor.
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next time. Figure 16(b) shows the triangle source waveform

obtained with this approach.

Next, consider a comparator with inputs x1; x2 and output

y. Figure 17(a) shows the x1; x2, and y waveforms when a

constant time step is used. Abrupt changes in x2ðtÞ are

tracked by the simulator (as discussed above); however, y(t)
is not resolved correctly by the simulator, e.g., see the

transition at t ¼ 2:6 s. One way to improve the y waveform
is to uniformly reduce the time step, but this would make

the simulation slower, and from an accuracy perspective,

small uniform time steps may not even be required.

For resolving the abrupt transition in y(t) on a shorter

time scale but without making the ‘normal’ time step (de-

noted by Dtnormal) small, GSEIM uses the following

scheme. The comparator template stores the previous time

point t�1 and the corresponding solutions x
ð�1Þ
1 ; x

ð�1Þ
2 .

Knowing these and the current time point and solutions

(t0; x
ð0Þ
1 ; x

ð0Þ
2 ), it uses linear extrapolation to compute the

time t0 at which x1 � x2 would cross zero. If t0 is within

Dtnormal of t0, GSEIM places one time point just before and

one time point just after t0. Figure 17(b) shows the wave-

forms obtained with this method. The transition at t ¼ 2:6 s

is now seen to be resolved properly.

When the linear extrapolation technique is used for the

comparator inputs shown in figure 18(a), the zero crossing

at t � 1:93 s is not treated correctly because the linear

extrapolation overestimates t0 in this case, as illustrated in

figure 19. This problem can be addressed as follows. The

comparator stores, in addition to t0; t�1 (and the corre-

sponding solutions), one more past time point t�2 and the

corresponding solutions x
ð�2Þ
1 ; x

ð�2Þ
2 . It uses this information

to fit a quadratic which passes through

ðt0; uð0ÞÞ; ðt�1; u
ð�1ÞÞ; ðt�2; u

ð�2ÞÞ (where u � x1 � x2), and
computes t0 at which it goes through zero. Figure 18(b)

shows the waveforms obtained with the quadratic extrap-

olation scheme. It can be seen that the transition at

t � 1:93 s is now treated correctly.

7. Simulation examples

We now look at simulation examples which demonstrate

the capabilities of GSEIM. We consider two examples, both

involving the induction machine model described by

equations (6)–(10). Details regarding setting up the sche-

matic, running the simulation, viewing the plots are

described in [10] and are not reproduced here. Also, a

detailed description of the system being simulated, values

of the machine parameters, etc. are not included. The

simulation times mentioned in the following are for a

desktop computer (Ubuntu-19) with 3.2 GHz clock and

8 GB RAM.

7.1 Free acceleration of induction motor

In this example, we consider free acceleration of an

induction motor with load torque TL ¼ 0. Figure 20 shows

the GSEIM schematic diagram for the system when the

induction motor template discussed in Section 4 is used. In

this case, the conversion of Va;Vb;Vc to Vd;Vq is required,

and it is performed by the abc_to_dq element. Figure 21

shows the GSEIM schematic diagram for the same problem

when the induction machine subcircuit of Section 5 is used.

In this case, the abc-to-dq conversion is incorporated within
the subcircuit. Figures 22(a) and (b) show the simulation

results for speed and torque, respectively. The capability of

GSEIM to produce plots of interest without cluttering the

schematic diagram with scopes may be noted.

7.2 V/f control of induction motor

The GSEIM schematic diagram for V/f control of an

induction motor [9] is shown in figure 23. The induction

machine block shown in the figure corresponds to the

Time

Figure 24. Voltages Va;Vb;Vc in the steady state for the system

of figure 23.

Time

Figure 25. Speed versus time for the system of figure 23.
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subcircuit of figure 14; however, we can also use the ele-

ment template indmc1.xbe (see Section 4) directly. The

pwl20 element, which allows piecewise linear waveforms,

is used to generate the frequency command which is

smoothened using the lag_1 element, satisfying

dy

dt
¼ 1

Tr
ð�yþ xÞ ð17Þ

The V/f conversion is provided by pwl10_xy.
Simulation of this system is computationally more

demanding than the free acceleration example because

(a) its size is larger and (b) accurate resolution of pulse

width modulation (PWM) voltages requires smaller time

steps. For resolving the PWM waveforms correctly, the

linear extrapolation technique described in Section 6 has

been used. Figure 24 shows the PWM voltages in the

steady state. It is seen that the transitions between low and

high levels are treated properly. Figure 25 shows the motor

speed versus time.

It is interesting to compare the simulation times when

two different approaches are used: (a) induction machine as

a subcircuit (described in Section 5) and (b) induction

machine as an element template (described in Section 4).

To enable a fair comparison, the same numerical method

(RKF45) was used in both cases, and the algorithmic

parameters were kept the same. The simulation times were

found to be 2.33 and 1.55 s, respectively, for (a) and (b).

This clearly brings out the advantage of implementing

equations at a low level (the template level) rather than as a

subcircuit. On the other hand, the subcircuit implementa-

tion is often easier, and therefore it may be preferred when

simulation time is not large enough to be of concern.

8. Conclusions and future work

In summary, we have presented a new general-purpose

ODE solver called GSEIM which allows the use of explicit

as well as implicit methods. The organisation of the pro-

gram has been described. A useful feature of GSEIM is that

it allows the user to write new templates to incorporate

element equations. In addition, it also allows the use of

subcircuits (hierarchical blocks). These two facilities are

illustrated with the help of examples. The importance of

correct handling of abrupt changes is pointed out, and the

techniques used by GSEIM to handle abrupt changes are

explained. Finally, two representative simulation examples

are presented. The computational advantage of incorporat-

ing element equations in a basic template rather than a

subcircuit is brought out.

The GSEIM package, along with a users’ manual, is

available under the GNU general public license [10]. From

the examples presented in this paper, it can be seen that

GSEIM has features comparable to the commonly used

Simulink package. The fact that it is an open-source

package is expected to make GSEIM an attractive alter-

native, especially for educational purposes. It is envisaged

that users will add to the element library, make up useful

simulation examples, and make them available to other

users through the GSEIM repository.

Further developments in GSEIM are expected to address

the following issues:

(a) Additional features in the schematic capture GUI such

as rectangular wires, ‘bus’ facility (i.e., grouping of

several connections into a single wire), use of images in

the element symbols, provision for adding text to the

canvas, etc.

(b) Allowing electrical type elements, which satisfy some

form of Kirchhoff’s current and voltage laws, in

addition to the ‘flow-graph’ type elements currently

available. The option of using explicit or implicit

methods provided by GSEIM is expected to be partic-

ularly useful in this development. Addition of electrical

elements will significantly enhance the applications

handled by GSEIM.

(c) Allowing different time stepping schemes for flow-

graph elements and electrical elements.
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