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Abstract. This research formulates a real-life multi-depot and multi-period vehicle routing problem

(MDMPVRP) by imposing time window (TW) and many other constraints. A set of customers, spread in

different locations, are to be served by a fleet of heterogeneous vehicles over a finite number of periods. Each

customer is associated with combinations of routes and vehicles over the period. A customer must be served in

one of the allowable combinations. The objective of this MDMPVRP-TW is to minimize the total distance

traversed by the fleet over the planning horizon. The proposed MDMPVRP-TW is an extension of vehicle

routing problem (VRP), and is hence an NP-hard problem. In order to optimize it, we propose a hybrid meta-

heuristic approach by combining tabu search (TS) and variable neighbourhood search (VNS) algorithms. Fur-

thermore, to provide richer insights, the efficacy of the proposed method and mathematical formulation is

demonstrated through numerical experiments for a number of instances varying from small to large scale.

Keywords. Multi-depot vehicle routing problem; multi-period; time window; allowable combination; hybrid

VNS–TS.

1. Introduction

Vehicle routing problem (VRP) determines a set of routes

for a fleet of vehicles aiming to minimize, in general, the

total distance traversed under a set of constraints such as

capacity, time window (TW), visiting frequency, etc. VRP

with time window (VRP-TW) imposes a constraint on the

start of service time, thereby indicating that a customer

must be visited by a vehicle within prescribed time interval.

In order to encounter such real-life business scenarios,

VRP-TW is observed to arise frequently in various context

such as grocery distribution, oil and petroleum delivery,

repairmen scheduling, school bus routing, industrial refuse

collection, etc. (Cordeau et al [1]). The complexity

involved in VRP-TW is much higher when the fleet is

assumed to consist of a set of heterogeneous vehicles

(having different capacities), which traverse through mul-

tiple depots over multiple periods. Yousefikhoshbakht et al
[2] proposed a meta-heuristic algorithm called bone route

algorithm combined with a modified tabu search (BRMTS)

for solving the heterogeneous fixed fleet open vehicle

routing problem (HFFOVRP). The proposed research is

intended to formulate a multi-depot multi-period vehicle

routing problem with time window (MDMPVRP-TW),

wherein a transportation company builds a set of replen-

ishment depots to serve a set of customers located at dif-

ferent places. A fleet of heterogeneous vehicles are

operated over a finite time horizon, the latter being seg-

mented into several periods. The proposed MDMPVRP-

TW is an extension of VRP-TW, and is therefore an NP-

hard problem. To optimize the MDMPVRP-TW, we pro-

pose a hybrid meta-heuristic by combining tabu search (TS)

with variable neighbourhood search (VNS) algorithm.

Over the last few decades, VRP-TW is being widely

studied and is found to have many applications in the

design and management of distribution systems. Several

variants of VRP-TW are therefore put forward to encounter

the real-life situations more closely. Besides the capacity

constraint, it is now mandatory for each vehicle to visit a

delivery location within a specified time frame. In literature

two types of TWs are considered, namely soft and hard.

The soft TW can be violated by incurring penalty cost

whereas hard TW cannot be violated at any cost. The latter

case is being considered in the present work. A heuristic TS
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algorithm was studied by Taillard et al [3] with soft TW.

Cordeau et al [1] presented two important generalizations,

namely the periodic and the multi-depot vehicle routing

problems (MDVRPs) with TWs. Recently, Paul et al [4]
investigated a two-echelon pollution routing problem with

simultaneous pickup and delivery under multiple TWs

constraint. Some other notable contributions on VRP-TW

include the works of Solomon [5], Braysy and Gendreau

[6], Chang et al [7], Miranda and Conceicao [8], Chu et al
[9] and Hu et al [10].

In real-life VRP, routes are designed for a planning

horizon that may consist of multiple periods and a customer

may be served over a subset of these periods (Mancini

[11]). Multi-period vehicle routing problem (MPVRP) is a

profitable tour planning that allows vehicles to serve the

customers based on their requirements so that every cus-

tomer need not necessarily be visited daily. MPVRPs,

capturing different situations, have been formulated by

many researchers in the recent years. Dayarian et al [12]
proposed partitioning-based two-stage MPVRP in which

first stage corresponds to plan whereas second stage takes

multi-period. Luo et al [13] investigated a mixed integer

MPVRP with TW and limited visiting quota, and proposed

three-stage heuristic approach to optimize it. Dayarian et al
[14] formulated MPVRP by considering seasonal fluctua-

tion in supply and designed an adaptive large neighbour-

hood search (ALNS)-based meta-heuristic to optimize the

proposed model. Naccache et al [15] addressed a multi-

pickup and delivery VRP with TW, and developed a hybrid

ALNS via branch and bound heuristic. Similar to MPVRP,

the literature of MDVRP is also very rich. An elaborative

literature survey on MDVRP is carried out by Lahyani et al
[16]. Michallet et al [17] addressed a real-world problem

occurring in the transportation of valuable goods by con-

sidering a very hard periodic VRP with TWs and time

spread constraints on services. The existing MDVRPs are

mostly optimized by heuristics approach. One of the first

algorithms is put forward by Tillman [18], which assigns

every customer node to its nearest depot and thereby routes

are constructed back and forth between the depots and the

customers. Renaud et al [19] discussed a TS algorithm for

the MDVRP with capacity and route length constraints, the

algorithm being tested on a set of 23 benchmark instances.

During serving the customers along a route, it may

sometimes happen that the remaining cargo in the vehicle is

not sufficient enough to fulfil the demand of the next cus-

tomer. In such a situation there is a need of installation of

some intermediate replenishment depots, which can be

visited by the vehicles as and when required. Cordeau et al
[1] presented a unified TS heuristic for the VRP-TW as well

as for its two important generalizations, namely, PVRP-TW

and MDVRP-TW. Allowable combination for serving the

customers was also taken into consideration, which

restricted the service time to be scheduled on certain

specified time periods. Suppose a planning horizon of 5

days is considered, viz. Monday to Friday. Within this

planning horizon a customer i is to be served twice, with the
service being provided on Monday and Wednesday, or

Monday and Friday or Tuesday and Friday (say). There-

fore, in this case the customer i has 3 possible combinations

of 2 days so that the set of allowable combinations can be

represented as {{Monday, Wednesday}, {Monday, Friday},

{Tuesday, Friday}}. Polacek et al [20] proposed an algo-

rithm based on the philosophy of the VNS for solving

MDVRP-TW. An extension of MDVRP was suggested by

Crevier et al [21] involving replenishment of vehicles at

intermediate depots along the routes. A three-phase

methodology was proposed by them based on adaptive

memory, TS and integer programming. The algorithm was

tested on randomly generated as well as on benchmark

instances derived from those proposed for MDVRP by

Cordeau et al [22]. A hybrid granular tabu search algorithm

to solve the MDVRP under associated capacity and maxi-

mum duration constraints was proposed by Escobar et al
[23].

Among the recent works, Mancini [11] introduced the

multi-depot multi-period vehicle routing problem with a

heterogeneous fleet (MDMPVRPHF). The authors pro-

posed a mixed integer programming formulation and an

ALNS-based meta-heuristic that defines several destroy

operators. Salhi et al [24] solved an MDVRP with hetero-

geneous vehicle fleet by designing an efficient VNS-based

algorithm. Kumar et al [25] developed a multi-objective

multi-vehicle production and pollution routing problems

with time window (MMPPRP-TW). They formalized a

hybrid self-learning particle swarm optimization (SLPSO)

algorithm in multi-objective framework for the solution

methodology. A multi-depot open VRP was investigated by

Soto et al [26], which is a well-known variant of VRP in

which vehicles are not required to return to the depot at the

end of their tour. Instead, each route ends at the last served

customer. Recently, Zhou et al [27] introduced a new city

logistics problem by considering a multi-depot two-echelon

VRP with delivery options. For the solution methodology

of the problem, the authors proposed a hybrid multi-pop-

ulation genetic algorithm.

With an overview of the related research works done so

far, it is observed that a VRP-TW model with both multi-

period and multi-depot facilities considering allowable

combinations has not been examined yet in the literature.

Therefore, in order to fill this research gap, a model with

the said characteristics is presented here. The second nov-

elty of this research is to propose a hybrid meta-heuristic by

combining TS and VNS. The remainder of the paper is

organized as follows. A detailed description of the exam-

ined situation with the formulation of the mathematical

model is demonstrated in Section 2. The proposed hybrid

VNS–TS algorithm is elaborately discussed in Section 3. In

Section 4, the proposed model is illustrated with the help of

numerical examples followed by relevant discussions.

Lastly, Section 5 presents a brief conclusion along with

future research opportunities.
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2. Model formulation

In this section, we mathematically formulate the proposed

MDMPVRP-TW. Before this, a detailed description of the

model along with real-life application is presented.

2.1 Situation description

In real-life problems, a transportation company plans to design

routes to serve customers over a planning horizon instead of a

single period. We have considered, in our study, a finite

planning horizon subdivided into a number of periods. For

instance, a week may be regarded as a planning horizon with

each of the seven days being considered as a period. A cus-

tomer is served over a subset of this planning horizon. For

example, one may be served on Monday, Wednesday and

Friday, while another is served on Saturday and Wednesday

and so on. Such a planning of routes also helps in mini-

mization of total traversed distance. Every customer i has a

constant demand and a fixed service time indicating that a

vehicle must visit it within the specified TW, thereby taking

care of the allowable combinations as discussed in Section 1.

A set of d depots are installed at various locations, where a

fleet of r heterogeneous vehicles are considered to be located.

The journey of a vehicle in period t starts from the depot at

which its journey ended in period ðt � 1Þ. While serving the

customers along the route, it may happen sometimes that a

vehicle is out of cargo or the remaining cargo is not sufficient

to serve the next customer node. In such a situation, it may

visit any nearby replenishment depot for the purpose of

refilling. However, the route duration covered by any vehicle

is not allowed to exceed a given maximum time limit.

As an instance, water distribution to drought-affected areas

can be considered as a suitable example for the proposed

MDMPVRP-TW. All the vehicles that are used for trans-

portation purpose are situated at a main station from where

tours have to begin. The various sites away from the main

station are affected by drought. In such a scenario, the more

affected areas are supposed to be served frequently whereas

the lesser affected regions have less frequent supply for water.

Accordingly, each area will be specified with an allowable

combinations set within a certain planning horizon in order to

counteract the water scarcity in every region equally. More-

over, at any point of service, if the water supplying tank is

found to lack sufficient water to serve further when there is

already some pending demand, then in such a situation the

vehicle (carrying storage tanks) can visit some nearby water

reservoir, get refilled and resume the service further.

2.2 Assumptions

The model is built up under the following assumptions

listed:

1. Heterogeneous fleet of vehicles is considered to serve

the customer.

2. Demand rate at each customer node is fixed and known

in advance. Shortages of item are not permissible to any

node.

3. Intermediate replenishment is considered, which means

any running vehicle can be replenished by a nearby

depot if required.

4. Demand of any customer does not exceed the vehicle

capacity.

5. Demand at each depot is assumed to be zero.

6. The journey of a vehicle in period t starts from the depot

at which its journey ended in period t � 1.

7. Every depot is assumed to hold infinite inventory.

8. Each customer has a TW in each period within

which it must be served by at most one vehicle.

9. Any route of a vehicle will get terminated as soon as it

violates maximum time limit constraint.

10. A route is a path travelled by a vehicle in any particular

period.

2.3 Mathematical model

Built upon the discussed situation, a constrained opti-

mization problem is formulated with the objective function

being represented as follows:

minimize:
Xn

i¼1

Xn

j ¼ 1

i 6¼ j

Xr

k¼1

Xp

t¼1
dijxijkt:

ð1Þ

Equation (1) represents the total distance travelled by all

the vehicles over the planning horizon. Hence our objective

is to minimize it. The following constraints are enunciated

by addressing time window, visiting frequency quota and

vehicle routes:

eit � arikt � lit; 8i 2 V; 8k 2 K; 8t 2 T ð2Þ

arikt þ sikt þ tijxijkt � arjktxijkt þ Kð1� xijktÞ; 8i; j 2 V ;

i 6¼ j; 8k 2 K; 8t 2 T

ð3Þ

yikt � qit; 8i 2 V1; 8k 2 K; 8t 2 T ð4Þ

0� yjkt �ðyikt � qitÞxijkt þ Qkð1� xijktÞ; 8i 2 V1;

8j 2 V; 8k 2 K; 8t 2 T
ð5Þ

0� yjkt �Qk � qitxijkt; 8i 2 V2; 8j 2 V ; 8k 2 K;

8t 2 T

ð6Þ
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X

i2V

X

j 2 V

i 6¼ j

qitxijkt �Qk

X

i2V2

Eikt þ 1

 !
; 8k 2 K; 8t 2 T

ð7Þ

tij ¼
dij
v
; 8i; j 2 V ð8Þ

X

i2V

X

j 2 V

i 6¼ j

tijxijkt �Dk; 8k 2 K; 8t 2 T

ð9Þ

X

j 2 V

i 6¼ j

X

k2K
xijkt � 1; 8i 2 V1; 8t 2 T

ð10Þ

X

j 2 V

i 6¼ j

X

k2K
xjikt � 1; 8i 2 V1; 8t 2 T

ð11Þ

X

j2V
xijkt ¼

X

j2V
xjikt 8i 2 V1; 8k 2 K; 8t 2 T ð12Þ

X

j2V

X

k2K

X

t2T
xijkt ¼ fi 8i 2 V1 ð13Þ

X

j2V

X

k2K

X

t2T
xjikt ¼ fi 8i 2 V1 ð14Þ

X

r2Ci

wir ¼ 1; 8i 2 V1 ð15Þ

X

j 2 V1

i 6¼ j

X

k2K
xijkt �

X

r2Ci

artwir ¼ 0; 8i 2 V1; 8k 2 K;

8t 2 T

ð16Þ
X

j2V

X

k2K
xijkt ¼

X

k2K
Eikt; 8i 2 V2; 8t 2 T ð17Þ

X

j2V

X

k2K
xjikt ¼

X

k2K
Eikt; 8i 2 V2; 8t 2 T ð18Þ

X

k2K
Mikt � r; 8i 2 V2; 8t 2 T ð19Þ

X

k2K
Nikt � r; 8i 2 V2; 8t 2 T ð20Þ

X

i2V2

X

k2K
Mikt ¼

X

i2V2

X

k2K
Nikt; 8i 2 V2; 8t 2 T ð21Þ

X

i2V2

Mikt þ
X

i2V2

Eikt þ
X

i2V2

Nikt � 2; 8k 2 K; 8t 2 T

ð22Þ

Mikt ¼ Nik;t�1; 8i 2 V2; 8k 2 K; 8t 2 Tnf1g ð23Þ
X

i2S

X

j 2 S

i 6¼ j

xijkt �
X

i2S

X

j 2 V1

i 6¼ j

xijkt �
X

j 2 V1

e 6¼ j

xejkt; 8S � V1;

jSj � 2; 8e 2 S; 8k 2 K; 8t 2 T

ð24Þ

arikt � 0; 8i 2 V; 8k 2 K; 8t 2 T ð25Þ

yikt � 0; 8i 2 V ; 8k 2 K; 8t 2 T ð26Þ

wir 2 f0; 1g; 8i 2 V1; 8r 2 Ci ð27Þ

Eikt 2 f0; 1g; 8i 2 V2; 8k 2 K; 8t 2 T ð28Þ

Mikt 2 f0; 1g; 8i 2 V2; 8k 2 K; 8t 2 T ð29Þ

Nikt 2 f0; 1g; 8i 2 V2; 8k 2 K; 8t 2 T ð30Þ

xijkt 2 f0; 1g; 8i; j 2 V ; 8k 2 K; 8t 2 T ð31Þ

xiikt ¼ 0; 8i 2 V ; 8k 2 K; 8t 2 T: ð32Þ

TW constraints are given in (2) and (3), which indicate that

a vehicle has to reach a particular customer node within a

given time interval. Constraints (4) ensure that the

remaining cargo in any vehicle on arrival at a node is

greater than the customer demand at that node. It is spec-

ified by constraints (5) and (6) that the amount of cargo left

in a vehicle can never fall below zero, i.e., whenever

required, it may visit any nearby intermediate depot along

the route for replenishment. Constraints (7) put a restriction

on the total load carried by a vehicle, ensuring that it cannot

exceed the vehicle capacity. Relation between time and

velocity is given by (8). Constraints (9) restrict the duration

of a route to its maximum limit. It is ensured by constraints

(10) and (11) that in each time period, a customer can be

served by at most one vehicle. Constraints (12) indicate that

a vehicle arriving at a customer node will also get departed.

Constraints (13) and (14) state that a customer i will be
altogether served fi times over the planning horizon. It is

guaranteed by constraints (15) and (16) that each customer

is visited only on the days corresponding to the assigned

combination. Constraints represented by these two equa-

tions are directly adopted from the original research work

of Cordeau et al [22]. Constraints (17) and (18) confirm the

departure of a vehicle from an intermediate depot in case if

it has visited one. A restriction upon the total number of
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vehicles is imposed by constraints (19) and (20). All

vehicles departing from various depots in a particular per-

iod are bound to return back to the depots, which is ensured

by constraints (21) and (22). Constraints (23) suggest that

the journey of any vehicle in period t starts from the depot

where it ended in period ðt � 1Þ. For each vehicle the

possibility of sub-tours is eliminated by constraints (24), as

discussed in the work of Kumar et al [25]. Constraints (25)–
(32) define the domain of the decision variables.

3. Solution methodology

As discussed in introduction section, the literature is laden

with several algorithms for different variants of VRP and

also with various ways to obtain the initial solution. The

algorithm proposed in this paper, to obtain an optimal

solution to the formulated MDMPVRP-TW, is a

hybridization of TS and VNS. A detailed description of the

adopted procedure is presented under the following

headings.

3.1 Initial solution

The proposed approach to construct the initial solution is

quite similar to that suggested by Cordeau et al [1], and is a

very fast method. Step-by-step description of the procedure

is listed as follows:

1.

For each customer, an allowable combination from the

given options is randomly selected and allotted.

2.

Sets of customers having demand (need a service) in the

respective periods are to be listed.

3.

For every period:

(a) Customers are sorted in ascending order of the mean

value of their corresponding TW and the same is stored

in a set U.
(b) r empty routes are created, where empty route indicates

a route containing two depots.

(c) From the first a customers of U, a customer i is

randomly selected and inserted into any one of the

r routes so that it is feasible with respect to TW and

route duration. Then, i is removed from U.
(d) Step (c) will be repeated until the remaining customers

of U cannot be inserted into any route without violating

TW and maximum duration constraints and then the

remaining customers of U are inserted into the rth route.
(e) If the remaining cargo in a vehicle after serving a

customer is not sufficient to serve the next customer

along the route, then a depot is inserted in between

these two customers in a way so as to minimize the total

distance.

Thus, a set of r routes for each period is obtained where the

first ðr � 1Þ routes are feasible with respect to demand (TW

and route duration constraints may be violated because of

late insertion of the intermediate depot in the routes). After

completing this process we have an initial solution.

3.2 Generalized cost function

A solution is evaluated by means of the following gener-

alized cost function:

f ðsÞ ¼ fdistðsÞ þ afdemðsÞ þ bfdurðsÞ þ cfwaitðsÞ þ dflateðsÞ:
ð33Þ

The terms used in the relation have the following signifi-

cances: fdistðsÞ denotes the total distance covered by all the

routes in the entire planning horizon, fdemðsÞ represents the

demand penalty, fdurðsÞ is the route duration penalty, fwaitðsÞ
denotes the total waiting time penalty, flateðsÞ is delayed time

penalty and a; b; c; d are the penalty factors, which are con-

sidered to be constants (for details, see Schneider et al [28]).
If the remaining cargo is calculated to be negative at any

node, then it implies that the demand of the previous node

cannot be fulfilled by the available inventory on that

vehicle. This will incur some demand penalty. Considering

all routes in all the periods, the overall demand penalty is

calculated as

fdemðsÞ ¼
X

i;k;t

maxf�yikt; 0g: ð34Þ

The running time of vehicle k can never exceed a given

maximum duration Dk time units, violating which will

incur the duration penalty. The total duration penalty for all

the periods can be given by

fdurðsÞ ¼
X

k;t

maxfdurkt � Dk; 0g ð35Þ

where durkt denotes the duration of route k in period t.
If a vehicle arrives at a customer before the starting time of

service then it will incur a wait penalty, whereas a late penalty

will be incurred if it arrives after the end of TW of service;

these two can be, respectively, expressed as follows:

fwaitðsÞ ¼
X

i;k;t

maxfeit � arikt; 0g and ð36Þ

flateðsÞ ¼
X

i;k;t

maxfarikt � lit; 0g: ð37Þ

3.3 Proposed algorithm

The proposed MDMPVRP-TW is an NP-hard problem with

heterogeneous vehicle, multiple depots and multiple
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periods, wherein a customer will be served (if served in a

period) based on pre-specified allowable combination.

Hence this is a very complex problem, and the existing

meta-heuristic approaches are not so much suitable to

optimize it. Here we propose a hybrid VNS algorithm by

combining TS, and call it VNS–TS algorithm. The pro-

posed VNS–TS algorithm strengthens the neighbourhood

structure of classical VNS, which will be discussed in next

and onward paragraphs. In VNS algorithm, a set of

neighbourhood structures N jðSÞ; j ¼ 1; . . .; jmax is gener-

ated for the current best solution S. A random point S0 is
selected from N jðSÞ on which local search is applied to

obtain a new point S00. If the obtained solution is found to be
better than the incumbent, then S is replaced by S00 and the

search is thereby continued by setting j ¼ 1; otherwise j is

incremented by unity.

The proposed algorithm largely differs from those pre-

sent in the literature in various aspects, mainly in the pro-

cedure of constructing the neighbourhood structures for a

given solution. The neighbourhood structure of VNS is

modified into a two-step procedure, and then local search is

also utilized in the proposed VNS–TS. A brief sketch of the

algorithm with detailed characteristics is presented here.

Algorithm: A hybrid meta-heuristic for MDMPVRP-TW

S Generate an initial solution()

set j ¼ 1

set TCðiÞ ¼ 0 for i ¼ 1; 2; . . .; n
repeat

! generate N jðSÞ, neighbourhood structure of S
! update TC(i)

! randomly select a set S of h solutions from N jðSÞ
! for each solution s 2 S, generate N 0ðsÞ
! from each N 0ðsÞ; s 2 S, randomly select a solution s0 and

store it in S0
! apply local search on each s0 2 S0
! find the best solution S00 from S0
! if f ðS00Þ is better than f(S)
! S ¼ S00

! j ¼ 1

! else
! j ¼ jþ 1

! endif
until stopping criterion is met

The proposed j-neighbourhood structure N jðSÞ of S is

generated as follows. To diversify the search, tabu counter

TC(i) is set for each customer i whose value initially is

taken to be zero. If a customer i participates in the nbd-

structure then TC(i) will be set as x, which implies it will

not participate in nbd-structure for the next x iterations.

Randomly select any j customers from a set of those

having more than one allowable combination and with

TC(i) equal to zero. Consider all possible combinations

fr01; r02; . . .; r0jg of their corresponding visit combinations

excluding the one fr1; r2; . . .; rjg present in the current

solution ði.e., 9 at least one i for which ri 6¼ r0iÞ. The com-

position of the neighbourhood structure is based upon the

idea presented in the work of Cordeau et al [22]. It con-
stitutes of a set of solutions that can be generated by the

application of the following transformation:

For each time period l,
if airl ¼ 1 and air0l ¼ 0 for every selected customer i in
period l, then remove customer i from the routes in period

l,
if airl ¼ 0 and air0l ¼ 1 for every selected customer i in
period l, then insert customer i into a route in period l so as
to minimize the total function value as described in (33),

where airl ¼ 1 implies that, for rth combination, customer i
will be served on day l, and will not be served if airl ¼ 0.

The tabu counter for each of the selected customers is

updated and that for each of the remaining nodes not par-

ticipating in the nbd-structure is set as

TCðiÞ ¼ maxf0; TCðiÞ � 1g. The new set of solutions

obtained at the end of this procedure computed upon all the

aforesaid combinations is said to form the neighbourhood

structure N jðSÞ for the current solution S. From N jðSÞ, a
random set S of h solutions is chosen. For each solution

s 2 S, a neighbourhood structure N 0ðsÞ is formulated using

2-opt* operator (Potvin and Rousseau [29]). It operates on

two randomly chosen routes by breaking them at certain

nodes (say i and j) so as to mutually divert the portions of

the routes, i.e. node i of one route gets diverted to connect

with the latter part of the second selected route cut at j.
For local search three operators are used, namely,

Exchange and Relocate operators (Savelsbergh [30]) and a

problem-specific operator DepotInOut. They are briefly

discussed here.

Exchange: The exchange operator can be utilized to

swap any two customers either within the same (intra) or

two different (inter) routes. No depot is allowed to partic-

ipate in this operation, i.e. swapping of a depot with a

customer or any other depot is prohibited.

Relocate: The relocate operator selects a random cus-

tomer, removes it from the route and then inserts it into

either a different position along the same route (intra) or a

different route (inter). Just like the exchange operator, the

relocate operator also cannot be performed on depots other

than the customers.

DepotInOut: This operator finds out the first customer

node at which remaining cargo becomes negative and

thereby inserts a depot along the route before reaching that

customer so as to minimize f(s) . If even after removing

an intermediate depot from a route the remaining cargo in

a vehicle is found to be sufficient to serve all the

upcoming customers along the route without the incur of

any demand penalty, then this operator removes the said

depot.
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For better exploration of the solution space the dynamic

diversification process was adopted for the penalty factor as

introduced by Cordeau et al [1], which was further modi-

fied by Schneider et al [28]. The diversification method

involves updating the initial penalty factors ða0; b0; c0; d0Þ
with the help of a penalty updating factor k within a per-

missible range of their corresponding minimum

ðamin; bmin; cmin; dminÞ and maximum ðamax; bmax; cmax; dmaxÞ
values.

4. Computational results

The proposed MDMPVRP-TW and hybrid VNS–TS algo-

rithms are here tested on a set of 20 benchmark instances

varying from small to large scale as presented in table 1.

All the test instances are taken from Cordeau et al [1] after
some modifications. We change the co-ordinates of the

customer nodes, service time and demand parameters, and

install replenishment depots randomly. All data are created

in a way so that the total demand of all the customers in all

the periods is greater than the total capacity of all the

vehicles considered over all the periods. Therefore, the

vehicles have to visit intermediate depots in order to fulfil

the complete demand of the customers. In table 1, n ¼ the

number of customers, d ¼ number of replenishment depots,

m ¼ number of available vehicles, p ¼ total number of

periods,
P

Qk ¼ fleet capacity and
P

qit ¼ total demand of

all the customers for all the periods.

The parameters involved in the proposed algorithm need

to be empirically selected with utmost care. This is because

the choice of these parameters has a significant effect on the

execution of the algorithm. The exploration and exploita-

tion rates are observed to be influenced greatly by the

selection of the parameters. Table 2 presents the parameter

values set best attained for the proposed algorithm, which is

obtained by trial and error method. Although the provided

set need not be optimal, the algorithm is observed to per-

form much better with it as compared with other parameter

values.

4.1 Discussion on numerical examples

In this section, a complete illustration of the obtained

numerical results for the formulated MDMPVRP-TW as

well as the proposed hybrid algorithm is presented through

small as well as large instances discussed earlier. All the

computational experiments are performed on a DELL PC

(Intel Core i5 3.2 GHz) with 4 GB RAM and Windows 7

Operating System. The program codes are written in

MATLAB R2017a.

In order to clearly delineate the vehicle route-schedule

over the periods, a detailed solution of the first instance

with 48 customer nodes is presented in table 3 and figure 1.

The first column of the table shows the route number

expressed in the form of an ordered pair, wherein the first

element indicates the period number and the second one is

the vehicle number. From this table, it can be clearly

interpreted that every customer node from 1 to 12 is served

in all the periods; each of customers 13 to 24 is served

twice in the time horizon whereas each of the customers 25

to 48 is served only once. All the routes except (2, 2) and

(3, 2) are observed to have demand that is higher than the

vehicle capacity, thereby forcing them to visit an interme-

diate replenishment depot along their routes. Also every

vehicle starts from the depot where it ends in the previous

period. The scheduling plan of each vehicle over the peri-

ods is depicted in figure 1.

We have tried existing VNS algorithms to optimize the

proposed MDMPVRP-TW but, perhaps due to high com-

plexity, none of the algorithms got any success. However,

performance of the hybrid VNS–TS algorithm with respect

to the operators exchange and relocate is tested in each of

the three ways: firstly, without the exchange operator;

secondly, without the relocate operator and finally with

Table 1. Details of instances.

Instance no. n d m p
P

Qk

P
qit

1 48 4 2 4 380 2189

2 96 4 3 4 600 2511

3 144 5 5 4 950 4026

4 192 5 6 4 1110 4971

5 240 4 8 4 1440 6871

6 288 6 9 4 1580 7074

7 72 3 3 6 600 3820

8 144 3 5 6 960 5968

9 216 3 7 6 1275 8098

10 288 4 11 6 1872 11,551

11 48 2 2 4 400 2189

12 96 3 3 4 598 2511

13 144 3 4 4 760 3738

14 192 4 6 4 1110 4971

15 240 5 9 4 1625 6871

16 288 5 9 4 1660 7074

17 72 3 3 6 600 3820

18 144 4 5 6 950 5968

19 216 3 7 6 1260 8098

20 288 5 11 6 1870 11,551

Table 2. Parameter set.

Parameters Value

a0; b0; c0; d0 100

amin; bmin; cmin; dmin 1

amax; bmax; cmax; dmax 10,000

k 0.5

x 3–7

h 10–30% of jNjðSÞj
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Table 3. Optimal routes of vehicles for instance of 48 customers.

Route number Route demand Path

(1,1) 331 49 !35!7!10 !6!46!39!15 !�52 !12!21!
24!30!23!1! 32! 52

(1,2) 254 49 !2!9!13 !8!4!�51 !5 !28!14!11!48

!3!27! 50

(2,1) 258 52 !47!2 !9!10!7!45 !6!12!�49 !37!22!11 ! 50

(2,2) 174 50 !20!4!31 !8!5!19!3 !1! 51

(3,1) 330 50 !10!42 !9!2!13!8 !�52 !24!12!
15!25!14!3!11 !21! 52

(3,2) 174 51 !7!4!41 !5!23!1!16 ! 51

(4,1) 243 52 !34!10 !6!7!44!12 !5!36!�49 !22!3!11! 50

(4,2) 283 51 !33!9 !2!4!20!29 !8!�51 !26!
19!1!18!43! 52
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Figure 1. Optimal routes of vehicles over the periods.
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both the exchange and relocate operators. Comparisons

between the developed algorithm and the well-known PSO

are also studied. The parameters involved in the proposed

algorithm contain several random components as well.

Therefore for more accurate results, the algorithm is run for

10 times for 100 iterations in each run. The best obtained

results of the conducted comparative study are then

reported partly in table 4 and partly in table 5.

Table 4. Comparisons between the operators and PSO.

Alg. w/o relocate Alg. w/o exchange

Instance Best Avg Worst Avg run time (s) Best Avg Worst Avg run time (s)

1 1995.58 2125.766 2171.89 102.35 1981.23 2116.183 2166.37 99.69

2 3339.36 3653.642 3736.63 197.92 3459.11 3653.028 3711.25 199.01

3 5791.1 6225.031 6395.14 784.09 5899.19 6205.44 6377.21 802.9

4 6817.02 7085.194 7213.29 1079.93 6842.19 7108.421 7249.2 1082.53

5 7821.57 8414.596 8644.43 1849.06 7967.99 8397.833 8569.35 1881.32

6 10,037.67 10,449.417 10,591.4 3410.91 10,047.19 10,428.341 10,565.7 3493.11

7 5608.01 5911.822 6068.89 316.82 5596.87 5936.126 6092.04 319.99

8 8462.06 8867.578 9092.89 1237.72 8479.72 8837.522 8987.35 1272.06

9 13,471.09 13,961.7 14,289.65 2760.94 13,359.45 13,995.734 14,325.44 2620.1

10 17,841.43 18,690.79 19,077.28 3709.87 17,945.85 18,622.654 19,019.42 3680.27

11 1449.1 1599.267 1665.7 98.76 1459.95 1589.189 1649.97 94.66

12 2965.39 3124.651 3206.2 210.5 2926.54 3129.77 3211.2 234.03

13 4566.11 4825.058 4884.12 771.42 4615.11 4823.106 4880.44 759.08

14 4980.08 5318.054 5490.89 1042.42 4985.98 5293.614 5454.22 1121.23

15 4994.82 5420.935 5642.21 1816.57 5003.12 5398.004 5583.73 1801.59

16 6935.08 7514.79 7754.62 3289.6 7167.7 7509.599 7725.39 3362.51

17 3888.14 4120.824 4292.86 322 3896 4146.013 4328.92 328.88

18 5615.45 6010.835 6172 1147.22 5674.85 5988.384 6141.43 1126.47

19 8432.92 8889.943 9171.28 2606.11 8417.03 8935.17 9243.39 2530.07

20 10,198.69 10,772.468 11,042.17 3891.66 10,210.93 10,736.598 10,950.52 3845.87

Table 5. Comparisons between the operators and PSO.

Alg. w both PSO

Instance Best Avg Worst Avg run time (s) Best Avg Worst Avg run time (s)

1 1930.26 2031.899 2105.78 121.85 1940.71 2075.351 2158.88 123.07

2 3321.46 3520.817 3647.41 241.37 3321.46 3575.66 3685.14 234.13

3 5773.53 5983.852 6128.64 933.44 5833.57 6063.372 6233.23 980.11

4 6599.45 6900.863 6993.52 1301.12 6753.58 6981.441 7133.75 1353.16

5 7774.33 8099.421 8264.14 2201.26 8040.12 8244.807 8489.61 2179.25

6 9992.6 10,194.375 10,305.73 3966.18 10,142.21 10,312.794 10,521.83 4164.49

7 5586.04 5717.365 5845.75 372.73 5608.01 5795.132 5967.72 376.46

8 8378.64 8593.135 8739.19 1473.48 8479.72 8698.391 8880.27 1429.28

9 13,264.6 13,648.92 13,806.13 3102.18 13,528.32 13,775.472 14,076.06 3195.25

10 17,841.43 18,122.446 18,254.41 4469.72 17,999.98 18,340.332 18,849.38 4425.02

11 1443.36 1499.283 1540.54 117.57 1466.23 1538.744 1620.47 114.04

12 2887.27 3024.331 3089.77 247.65 2887.27 3059.13 3154.77 260.03

13 4452.35 4684.118 4793.84 964.28 4615.11 4761.825 4865.36 925.71

14 4857.86 5133.273 5234.67 1271.24 5060.22 5206.405 5314.8 1245.82

15 4939.43 5170.296 5277.62 2242.68 5091.95 5269.953 5488.76 2354.81

16 6726.95 7248.013 7409.28 4061.23 7131.64 7365.984 7563.06 4142.45

17 3743.37 3959.511 4028.37 361.8 3813.21 4012.704 4149.84 365.42

18 5563.51 5800.723 5896.27 1433.75 5779.96 5896.161 6068.9 1405.08

19 8234.32 8563.62 8716.99 3018.1 8452.85 8694.44 8982.16 3048.28

20 10,062.24 10,524.043 10,664.2 4578.42 10,479.9 10,639.915 10,804.21 4807.34
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Comparisons from the tabulated results indicate that the

best solution with minimum distance is obtained for the

third case when the algorithm is tested with both the relo-

cate and exchange operators in comparison with the other

two situations. While being compared with PSO also, better

outcomes are observed for the case of simultaneous incor-

poration of relocate and exchange operators in our proposed

methodology.

5. Conclusion and future work

The aim of this paper is two-fold. First, to develop a more

practical VRP that is mostly used in real life such as school

bus routing, grocery distribution, oil and petroleum deliv-

ery, repairmen scheduling, etc. In this process, we propose

a multi-depot multi-period vehicle routing problem with

time window (MDMPVRP-TW) by considering allowable

combination. A particular customer may appear along

several routes and can be served by many vehicles over the

period. However, all these routes and vehicle may not be

feasible for the customer. Out of these routes and vehicles,

we first select the feasible one and then make all possible

combinations. Our objective is to find the most suit-

able combination for each customer in such a way that the

total traversed distance or cost is minimum. The second

objective of this paper is to propose a hybrid VNS–TS

algorithm to optimize the mathematical model of

MDMPVRP-TW. In this process, three operators for hybrid

VNS–TS algorithm are considered in order to construct the

neighbourhood structures for a solution. In order to find the

initial solution, TS is modified and used. The efficiency and

robustness are believed to be the strengths of the proposed

algorithm. It is observed from the experimental results that

the algorithm holds good for the proposed problem and is

found to be preferably stable in obtaining the optimal

solution.

Both the proposed model and algorithm can be further

extended in several directions. One possible extension is

that instead of a single visit to a customer by a vehicle

within a period, multiple visits can be considered. Fur-

thermore, soft TW in place of hard TW can also be con-

sidered as an extension of this work that will further

strengthen the model because it will tackle an even more

realistic situation.

List of symbols

Sets and indices
V1 ¼ f1; 2; . . .; ng Set of customers

V2 ¼ fnþ 1; . . .; nþ dg Set of depots

V ¼ V1 [ V2 Set of all nodes

i, j Indices for the customer nodes

over the set V

t Index for the time period over

the set T ¼ f1; 2; . . .; pg
k Index for heterogeneous vehicle

over the set K ¼ f1; 2; . . .; rg

Parameters
Dk Maximum duration of vehicle k
Qk Capacity of the vehicle k
v Average vehicle speed

ri Number of allowable combinations of ith
customer

qit Demand at ith node in period t
dij Distance between the nodes i and j
[eit; lit] Time interval in which service must start at node

i in period t
sikt Service time required at i in tth period by kth

vehicle

fi Visit frequency to the node i over entire planning
horizon

Ci Set of visit combinations of customer i
art 1 if day t belongs to combination r, otherwise 0

K max flitji 2 V2g

Decision variables
arikt Arrival time of the vehicle k at i in tth period

yikt Remaining cargo of kth vehicle on arrival at i in tth
period

wir 1 if visit combination r 2 Ci is selected for node i,
otherwise 0

Eikt 1 if vehicle k visits depot i in period t for
intermediate replenishment, otherwise 0

Mikt 1 if vehicle k starts a tour from ith depot in period t,
otherwise 0

Nikt 1 if vehicle k ends a tour at ith depot in period t,
otherwise 0

xijkt 1 if vehicle k goes from i to j in period t, otherwise 0
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