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Abstract. In this study, a two-dimensional magnetohydrodynamic stagnation point flow of magnetite fer-

rofluid past a stretching/shrinking sheet through a Darcy–Forchheimer porous medium is investigated in the

occurrence of viscous dissipation, suction/injection, and convective heating. Using appropriate similarity

transformations the governing nonlinear partial differential equations are transformed into a system of nonlinear

ordinary differential equations, and then solved numerically using the shooting technique. Numerical results are

obtained for dimensionless ferrofluid velocity, ferrofluid temperature, skin friction, and Nusselt number. The

effects of various physical parameters on these quantities are investigated and presented in graphs and tables.

The results indicate that dual solutions exist for the shrinking sheet. Stability analysis is performed to identify

the stable solutions. It is found that the upper branch solution is hydrodynamically stable and physically

achievable, whereas the lower branch solution is unstable and physically unrealistic. The fluid flow stability is

maintained by increasing the magnetite nanoparticle volume fraction, suction/injection, and the magnetic field

parameter. On the contrary, the porous medium parameter and porous medium inertia parameter inflates the flow

stability. The heat transfer rate intensifies with the magnetite nanoparticle volume fraction and reduces with the

porous resistance term.

Keywords. MHD; ferrofluid; stability analysis; stretching/shrinking sheet; convective condition; Darcy–

Forchheimer porous medium.

1. Introduction

Due to the advancement of thermal devices in engineering

systems, the utilization of nanofluids has been playing a

vital role in the process of cooling electronic devices and

heat transfer enhancement in many industrial manufactur-

ing processes. Nanofluid is produced by mixing nanosized

metallic or nonmetallic particles or nanofiber particles into

conventional fluids in order to increase the thermal prop-

erties Gupta et al [1]. Among different researches on

nanofluids, some works have been focused on a new kind of

nanofluids called ferrofluids. Ferrofluids (Magnetic

nanofluids) are a special class of nanofluids exhibiting both

magnetic and fluid properties Bahiraei and Hangi [2].

Ferrofluids are defined as a solution comprising of colloidal

mixtures of super-paramagnetic nanoparticles (Magnetite,

Hematite, Cobalt Ferrite, or some other compounds con-

taining iron) and a nonmagnetic base fluid Xuan et al [3]. In

the occurrence of the magnetic field, the thermal conduc-

tivity of the magnetic nanofluid is affected by the orienta-

tion and the intensity of the applied magnetic field

Odenbach [4]. Furthermore, ferrofluids and magnetic fields

can also be used for fluid flow control and for improving the

heat transfer process taking place in case of natural, forced,

and mixed convection Gupta [5]. In order to maintain

agglomeration of the magnetic nanoparticles formed due to

the Van der Waals interaction and magnetic interaction

between the particles, particles are coated with surfactants

Tynjäl et al [6].
Using magnetic fluids have various use in different

engineering processes and biomedical applications such as

removing particles and contamination from drinking/

wastewater streams, removing radioactive chemicals, MRI,

drug delivery in cancer treatment, low-friction seals,

dampening and cooling agents in loudspeakers, recovery of

hazardous wastes, heat transfer, computer hardware,

dynamic sealing, electronic packaging, aerospace, power

electric transformers, solar collectors and magnetically
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controlled thermosyphons as mentioned by [7–10]. Fol-

lowing these facts, several works have been done experi-

mentally and numerically to determine the fluid flow

characteristic and heat transfer enhancement of a magnetic

nanofluid by considering several aspects of the problem.

For instance, Lajvardi et al [11] experimentally examined

the convective heat transfer characteristics of the magnetic

nanofluids with a magnetic field effect and obtained that the

heat transfer rate upsurges with the magnetic nanoparticles

concentration and the applied magnetic field. Sivakumar

et al [12] numerically scrutinized the cumulative effects of

viscous dissipation, thermal radiation, convective heating,

and slip effect on the MHD ferrofluid flow past a permeable

nonlinear stretching sheet and concluded that the heat

transfer rate increases with the convective heating and the

viscous dissipation while thermal radiation acts on the

contrary.

Fluid flow caused by a stretching/shrinking sheet has

many practical applications in the field of metallurgy,

polymer technology, chemical engineering, industrial pro-

cesses and etc. [13–15]. Fluid flow towards a shrinking case

is possible whenever sufficient mass suction is imposed on

the boundary [16] or with the consideration of stagnation

point flow [17]. Due to the unconfined fluid flow occurring

in the boundary layer of the shrinking case, no possible

solution is found. However, the application of the adequate

value of wall mass suction Miklavčič and Wang [16] or

with an added stagnation flow Wang [17], a non-unique

solution may exist. The governing system of differential

equations may have a non-unique solution. Temporal sta-

bility analysis is a mathematical technique that is conducted

to test the temporal stability of the non-unique solutions

obtained. Though the lower branch solution cannot be

produced experimentally, this solution is a part of the

solution of the differential equations and therefore should

be considered. Different works on stability analysis are

documented in the literature [18–22]. Recently, such fluid

flow problems have been investigated extensively by con-

sidering different aspects of the problem. For instance,

Khashi’ie et al [23] numerically examined the combined

effects of the controlling parameters such as magnetic field,

suction, and Joule heating on fluid flow and heat transfer

characteristics of a hybrid nanofluid past a permeable

stretching/shrinking sheet. From the temporal stability

analysis, they verified that only the upper branch solution is

stable and physically realizable.

Investigations on the stagnation point flow of nanofluid

or ferrofluid have gained more attention due to its immense

applications in many industrial manufacturing processes

such as aerodynamic, extrusion of plastic sheet, and the

cooling and drying of papers as reported by Kamal et al
[24]. Owing to this importance, such fluid flow problems

have been extended in various ways. For example, Abbas

and Sheikh [25] studied the stagnation point flow of a

magnetic nanofluid past a flat sheet with the consideration

of non-linear slip boundary condition and homogeneous–

heterogeneous reactions and concluded that the skin friction

obtained for water-based ferrofluid exceeds the kerosene-

based ferrofluid. Makinde [26] numerically investigated

hydrodynamic stagnation point flow of Fe3O4-water fer-

rofluid towards a permeable stretching or shrinking sheet

with the effects of applied magnetic field. They perform

hydrodynamic stability analysis to identify stable solutions

among those solutions which exist within the specific range

of stretching/shrinking parameter. Mohamed et al [27]

numerically examined the combined effects of the magnetic

field, velocity slip, nanoparticles volume fraction, stretch-

ing, and conjugate parameter on the boundary layer flow of

a water-based magnetite ferrofluid. They reported that the

heat transfer rate rises with the magnetite nanoparticles

volume fraction, whereas the velocity slip diminishes the

skin friction coefficient. Moreover, Jamaludin et al [28]

explored a two dimensional hydromagnetic stagnation point

flow of Fe3O4-water ferrofluid flow past a permeable non-

linearly stretching/shrinking surface by considering the

thermal radiation effect. They found that dual solutions

exist in certain ranges of mixed convection parameter and

thermal radiation diminishes the rate of heat transfer from

the sheet surface. Besides all these, some researchers have

investigated heat transfer enhancement process by consid-

ering hybridized nanoparticles. For instance, Waini et al
[29] numerically examined buoyancy effects on stagnation

point flow of hybrid nanofluid flow towards an exponen-

tially stretching/shrinking vertical sheet and found that the

heat transfer rate is greater for Al2O3-Cu/water hybrid

nanofluid compared to Cu/water nanofluid.

Meanwhile, fluid flow and transport process in porous

media have many applications in hydrology, agriculture,

civil, petroleum engineering, environmental and industrial

systems such as heat exchange design, catalytic reactors,

geothermal energy systems, fermentation process, grain

storage, groundwater pollution, groundwater systems,

movement of water in reservoirs, crude oil production and

recovery systems as explained by [30–32]. Owing to these

importance, several works have been done based on Dar-

cy’s law. However, in many practical applications, porous

media with relatively high porosity and permeability are

used, especially for reducing the pressure drop. Hence, the

Reynolds number based on the pore size may be greater

than unity and there is an impermeable boundary, making

Darcy’s law inapplicable Muhammad et al [33]. For these
reasons, it is important to incorporate the velocity-squared

term in addition to Darcian velocity in the momentum

equation in order to include the effect of inertia porous

media resistance [34, 35]. Following this fact, an important

analysis is done on the convective transport process in a

porous medium with the inertial effect. To mention some,

Bakar et al [36] numerically examined effects of velocity

and thermal slip on stagnation point flow towards a

shrinking sheet embedded in Darcy-Forchheimer porous

medium. They obtained that dual solution exists in certain

ranges of the velocity ratio parameter. Ali Lund et al [37]
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examined Darcy-Forchheimer’s flow of Casson type

nanofluid past a non-linearly shrinking sheet to identify the

effects of slip condition and viscous dissipation. They

identified the existence of dual solution.For fluid flows in a

porous medium, the inclusion of porous dissipation in the

model equation modifies the viscous dissipation term in

energy equation Kausar et al [38]. From the literature

survey and to the best of our knowledge, more attention is

required for problems of fluid flow and heat transfer past a

stretching/shrinking sheet embedded in a Darcy-Forch-

heimer porous medium in the presence of frictional heating

and porous dissipation.

Motivated by the above-cited works of literature, our

main goal here is to examine carefully the characteristics

of magnetohydrodynamic stagnation point flow of a

magnetite ferrofluid past a permeable stretching/shrinking

sheet in a Darcy-Forchheimer porous medium with vis-

cous and porous dissipation, and convective heating. For

such fluid flow problems, the existence of a dual solution

is possible, and stability analysis is performed to identify

stable and physically reliable solutions. To the best of

our knowledge, no work has been done to analyze the

combined effects of these parameters on the ferrofluid

flow and heat transfer characteristics. The di- mensionless

velocity, temperature, skin friction coefficient, and the

Nusselt number are obtained numerically and pre- sented

in graphs and tables.

2. Mathematical formulation and analysis

We consider a steady, laminar, viscous, and incompressible

stagnation point flow of Fe3O4-H2O nanofluid towards a

convectively heated permeable stretching/shrinking sheet

which is kept in a two dimensional Darcy-Forchheimer

porous med-ium. The flow is subjected to a constant

magnetic field of strength B0 which is applied in the posi-

tive y-direction normal to the surface. The induced mag-

netic field is assumed to be small compared to the applied

magnetic field. The ambient temperature of the fluid is

taken as T1 while the surface below the stretching/

shrinking sheet is heated by convection from a hot fluid

having initial temperature Tf which provides a heat transfer

coefficient hf . It is assumed that the porous medium is

homogeneous and isotropic, and saturated with a nanofluid

which is in local thermal equilibrium with the solid matrix.

We choose the coordinate system so that x-axis along the

permeable stretching/shrinking sheet and y-axis is normal

to the sheet surface. Figure 1 shows the physical model and

the coordinate systems.

The flow equations for continuity, conservation of

momentum and energy in the presence of magnetic field

past a permeable stretching/shrinking sheet, under the

Boussinesq approximation, with reference to a Cartesian

coordinate x� y system is defined as( [35–37, 39]).

ou

ox
þ ov

oy
¼ 0; ð1Þ

u
ou

ox
þ v

ou

oy
¼ U1

oU1
ox

þ
lnf
qnf

o2u

oy2

� rnf B2
0

qnf
þ

lnf
qnf K1

 !
ðu� U1Þ

þ F

qnf
ffiffiffiffiffiffi
K1

p ðu� U1Þ2;

ð2Þ

u
oT

ox
þ v

oT

oy
¼ knf

ðqCpÞnf
o2T

oy2

þ
lnf

ðqCpÞnf

�
ou

oy

�2

þ
�

rnf B2
0

ðqCpÞnf

þ
lnf

ðqCpÞnf K1

�
ðu� U1Þ2

þ F

ðqCpÞnf
ffiffiffiffiffiffi
K1

p ðu� U1Þ3;

ð3Þ

with the boundary conditions:

uðx; 0Þ ¼UwðxÞ; vðx; 0Þ ¼ V0;

� kf
oT

oy
ðx; 0Þ ¼ hf ðTf � Tðx; 0ÞÞ;

ð4Þ

uðx;1Þ ! U1ðxÞ; Tðx;1Þ ! T1; ð5Þ

where u and v are the velocity components along the x and y
directions, respectively. The expressions UwðxÞ ¼ bx is the

Figure 1. Flow diagram of the model.
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stretching/shrinking velocity of the sheet where b[ 0 is for

stretching case and b\0 for shrinking case, U1ðxÞ ¼ ax is
the free stream velocity where a[ 0 is the strength of

stagnation flow, and Tf ¼ T1 þ nx2 is the temperature of

the hot fluid below the sheet. The terms V0 is the sheet

suction/injection velocity, K1 is the permeability of the

porous medium, F is the non-uniform inertial coefficient of

porous medium, qnf is the nanofluid density, lnf is the

nanofluid dynamic viscosity, knf is the nanofluid thermal

conductivity, ðqCpÞnf is heat capacity of the nanofluid at

constant pressure and rnf is the nanofluid electrical con-

ductivity are defined as follows:

qnf ¼ ð1� /Þqf þ /qs;

ðqCpÞnf ¼ ð1� /ÞðqCpÞf þ /ðqCpÞs;

lnf ¼
lf

ð1� /Þ2:5
;

knf
kf

¼ ks þ 2kf � 2/ðkf � ksÞ
ks þ 2kf þ /ðkf � ksÞ

;

r ¼ rs
rf

;
rnf
rf

¼ 1þ 3ðr � 1Þ/
ðr þ 2Þ � ðr � 1Þ/ ;

ð6Þ

where qf is the density of the base fluid, qs is the density of

the solid nanoparticle, kf is the base fluid thermal con-

ductivity, ks is the nanoparticles thermal conductivity, rf is
the base fluid electrical conductivity,rs is the nanoparticles
electrical conductivity, / is the nanoparticles volume

fraction, lf is the base fluid dynamic viscosity Cpf is the

base fluid specific heat capacity and Cps is the nanoparticles

specific heat capacity. The thermo-physical properties of

Fe3O4 nanoparticles and H2O are listed in table 1 below;

Introduce the following non-dimensional similarity

variables in order to transform the governing equations.

g ¼y

ffiffiffiffi
a

mf

r
; wðx; yÞ ¼ f ðgÞx ffiffiffiffiffiffiffi

amf
p

;

hðgÞ ¼ T � T1
Tf � T1

:

ð7Þ

The equation of continuity is satisfied for the chosen stream

function wðx; yÞ such that

u ¼ ow
oy

; and v ¼ � ow
ox

: ð8Þ

Now using the similarity transformation quantities, the

nonlinear partial differential equations are transformed into

nonlinear ordinary differential equations as:

f 000 � A1ððf 0Þ2 � ff 00 � 1Þ � MA2 þ
1

Da

� �
ðf 0 � 1Þ

� FnA3ðf 0 � 1Þ2 ¼ 0;

ð9Þ

h00 � A4Prð2hf 0 � fh0Þ þ A5PrEcðf 00Þ2

þ EcPrðA6M þ A5

1

Da
Þðf 0 � 1Þ2

þ A7EcPrFnðf 0 � 1Þ3

¼ 0:

ð10Þ

The boundary conditions in terms of the new variables

become:

g ¼ 0 : f ð0Þ ¼ S; f 0ð0Þ ¼ k; h0ð0Þ ¼ �Bi 1� hð0Þ½ �;
ð11Þ

g ! 1 : f
0 ð1Þ ¼ 1; hð1Þ ¼ 0: ð12Þ

Here a prime symbol denotes differentiation with respect to

g and f 0; h and g are the dimensionless velocity, tempera-

ture and similarity variable respectively. The parameters,

the dimensionless numbers and the variables are defined as

follows:

M ¼ rf B2
0

aqf
; Pr ¼

lf Cpf

kf
;

Ec ¼ a2

nCpf
;

Da ¼ aK1

mf
;Fn ¼ Fx

qf
ffiffiffiffiffiffi
K1

p ;

k ¼ b

a
; S ¼ �V0ffiffiffiffiffiffiffi

amf
p ;

Bi ¼ hf
kf

ffiffiffiffi
a

mf

r

A1 ¼ ð1� /þ /qs
qf

Þð1� /Þ2:5;

A2 ¼ ð1� /Þ2:5

rf
rnf ; A3 ¼ ð1� /Þ2:5;

A4 ¼ kf
knf

1� /þ /ðqCpÞs
ðqCpÞf

 !
;

A5 ¼ kf

knf ð1� /Þ2:5
;

A6 ¼ rnf kf
rf knf

; A7 ¼ kf
knf

:

ð13Þ

Table 1. Nanoparticle and base fluid thermophysical properties.

Physical

properties

q (kg/

m3)

Cp (J/kg

K)

k (W/

mK)

r (S/

m)

H2O 997.1 4179 0.613 5 � 10�6

Fe3O4 5180 670 9.7 2:5 � 106
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Where M;Pr;Ec;Da;Fn; S; k and Bi denote the magnetic

field parameter, Prandtl number, Eckert number, the porous

media parameter, porous medium inertia parameter, the

constant mass flux parameter where S[ 0 for suction and

S\0 for injection or withdrawal of the fluid, stretching/

shrinking parameter where k[ 0 for a stretching sheet and

k\0 for a shrinking sheet, and Biot number respectively. It

is important to note that the porous medium inertia

parameter (FnÞ is a local similarity parameter. Nonetheless,

the parameter Fn may become a similarity parameter if the

non-uniform inertial coefficient of porous medium is

defined as F ¼ Cd

x
where Cd is drag coefficient. In this case,

the expression for Fn ¼
Cd

qf
ffiffiffiffiffiffi
K1

p is a similarity parameter

since it is independent of x [30, 40, 41].

The important physical quantities of interest, in this

problem, are the skin friction coefficient Cf and the Nusselt

number Nu are defined as:

Cf ¼
sw

qf U2
1
;

Nu ¼ xq00w
kf ðTf � T1Þ ;

ð14Þ

where sw is the skin friction and q00w is heat flux from the

plate are given by

sw ¼lnf
ou

oy
jy¼0;

q00w ¼� knf
oT

oy
jy¼0:

ð15Þ

In dimensionless form, the skin friction coefficient and

reduced Nusselt number can be rewritten as:

CfRe
1=2
x ¼ f 00ð0Þ

ð1� /Þ2:5
; NuRe�1=2

x ¼ � knf
kf

h0ð0Þ:

ð16Þ

The heat transfer enhancement (HTE) of the nanoparticles

can be determined as

HTE ¼ NuRe�1=2
x ð/ 6¼ 0Þ � NuRe�1=2

x ð/ ¼ 0Þ
NuRe

�1=2
x ð/ ¼ 0Þ

� 100

ð17Þ

Where Rex ¼
U1x

mf
is the local Reynold number.

3. Stability analysis

From the numerical result obtained, such fluid flow prob-

lem has dual solutions depending on the physical parame-

ters under consideration. For such cases, it is substantial to

perform stability analysis in order to examine which of the

solutions is physically practicable and stable. The execution

of the stability analysis is mathematically performed to

validate the real solution among all the solutions. It is

implemented by considering an unsteady (time dependent)

problem Merkin [18]. Hence, for the present analysis, an

unsteady form of equations (2) and (3) have to be

inspected:

ou

ot
þ u

ou

ox
þ v

ou

oy
¼ U1

oU1
ox

þ
lnf
qnf

o2u

oy2

� rnf B2
0

qnf
þ

lnf
qnf K1

 !
ðu� U1Þ

þ F

qnf
ffiffiffiffiffiffi
K1

p ðu� U1Þ2;

ð18Þ

oT

ot
þ u

oT

ox
þ v

oT

oy
¼ knf

ðqCpÞnf
o2T

oy2

þ
�

rnf B2
0

ðqCpÞnf
þ

lnf
ðqCpÞnf K1

�

ðu� U1Þ2 þ
lnf

ðqCpÞnf

�
ou

oy

�2

þ F

ðqCpÞnf
ffiffiffiffiffiffi
K1

p ðu� U1Þ3:

ð19Þ

Following Makinde [26], new transformations are applied

to the unsteady equations (18) and (19) where s is the

non-dimensional time variable:

g ¼ y

ffiffiffiffi
a

mf

r
; u ¼ ax

of

og
ðg; sÞ;

v ¼ � ffiffiffiffiffiffiffi
amf

p
f ðg; sÞ;

w ¼ f ðg; sÞx ffiffiffiffiffiffiffi
amf

p
; hðg; sÞ ¼ T � T1

Tf � T1
; s ¼ bt:

ð20Þ

Now using equation (20), equation (18) and (19)

become
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o3f

og3
� A1

 
o2f

osog
þ
 
of

og

!2

� f
o2f

og2

!
�
�
MA2 þ

1

Da

� 
of

og
� 1

!

� FnA3

 
of

og
� 1

!2

þ A1 ¼ 0;

ð21Þ

o2h
og2

� A4Pr

 
oh
os

þ 2h
of

og
� f

oh
og

!

þ A5PrEc

 
o2f

og2

!2

þ EcPr

�
A6M þ A5

Da

� 
of

og
� 1

!2

þ A7EcPrFn

 
of

og
� 1

!3

¼ 0;

ð22Þ

and the boundary conditions become:

f ð0; sÞ ¼ S;
of

og
ð0; sÞ ¼ k;

oh
og

ð0; sÞ ¼ �Bi 1� hð0; sÞ½ �;

of

og
ð1; sÞ ! 1; hð1; sÞ ! 0:

ð23Þ

Based on Harris et al [20], we test the stability of the steady

flow solution f ðgÞ ¼ f0ðgÞ and hðgÞ ¼ h0ðgÞ satisfying the

set of boundary-value problem equation (9)–(12) by

writing

f ðg; sÞ ¼ f0ðgÞ þ e�bsFðg; sÞ

hðg; sÞ ¼ h0ðgÞ þ e�bsGðg; sÞ
ð24Þ

where b is an unknown eigenvalue parameter (a small

disturbance of growth or decay) and Fðg; sÞ and Gðg; sÞ are
small relative to f0ðgÞ and h0ðgÞ, respectively. The fol-

lowing equations are obtained by substituting (24) into

(21)–(23)

o3F

og3
þ A1f0

o2F

og2
þ A1F

o2f0
og2

þ oF

og

"
bA1 � 2A1

of0
og

� A2M � 1

Da
� 2A3Fn

 
of0
og

� 1

!#

� A1

o2F

ogos
¼ 0;

ð25Þ

o2G

og2
þ oF

og

"
2EcPr

 
A6M þ A5

1

Da

! 
of0
og

� 1

!

þ 3A7EcPrFn

 
of0
og

� 1

!2

� A4Prh0

#

þ 2A5PrEcf0
o2h0
og2

o2G

og2

þ A4Prf0
oG

og

þ A4PrG

 
b� 2

of0
og

!
þ A4PrF

oh0
og

� A4Pr
oG

os
¼ 0;

ð26Þ

subjected to the boundary conditions:

Fð0; sÞ ¼ 0;
oF

og
ð0; sÞ ¼ 0;

oG

og
ð0; sÞ ¼ BiGð0; sÞ;

oF

og
ð1; sÞ ! 0; Gð1; sÞ ! 0:

ð27Þ

Following Weidman et al [19], the initial growth or decay

of the solution (24) can be identified by setting s ¼ 0 so

that F ¼ F0ðgÞ and G ¼ G0ðgÞ in Equations (25)–(27).

Solutions of the eigenvalue problem give an infinite set of

eigenvalues b1\b2\b3 � � � ; if b1 is negative, there is an

initial growth of disturbances and the flow is unstable but

when b1 is positive, there is an initial decay and the flow is

stable. The linearized Eigenvalue problem are given by

F000
0 þ A1f0F

00
0 þ A1F0f

00
0 þ F0

0

"
bA1 � 2A1f

0
0 � A2M

� 1

Da
� 2A3Fn

 
f 00 � 1

!#
¼ 0;

ð28Þ

G00
0 þ F0

0

"
2EcPr

 
A6M þ A5

1

Da

! 
f 00 � 1

!
þ 3A7EcPrFn

 
f 00 � 1

!2

� A4Prh0

#

þ 2A5PrEcf0h
00
0G

00
0 þ A4Prf0G

0
0

þ A4PrG0

 
b� 2f 00

!
þ A4PrF0h

0
0 ¼ 0;

ð29Þ

with the new boundary conditions:
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F0ð0Þ ¼ 0; F0
0ð0Þ ¼ 0; G0

0ð0Þ ¼ BiG0ð0Þ;

F0
0ð1Þ ! 0; G0ð1Þ ! 0:

ð30Þ

As suggested by Harris et al [20], the range of possible

eigenvalues can be obtained by relaxing one of the

boundary conditions given in equation (30), F0
0ð1Þ ! 0 or

G0ð1Þ ! 0. Thus, the boundary condition F0
0ð1Þ ! 0 is

relaxed and replaced with the normalizing boundary con-

dition F00
0 ð0Þ ¼ 1, and the boundary conditions become:

F0ð0Þ ¼ 0; F0
0ð0Þ ¼ 0; G0

0ð0Þ ¼ BiG0ð0Þ;

F00
0 ð0Þ ¼ 1; G0ð1Þ ! 0:

ð31Þ

Finally, Equations (28) and (29) are solved along the new

boundary conditions (31).

4. Numerical procedure

The non-linear system of equations (9) and (10) along

with the boundary conditions (11) and (12) are solved

numerically using the shooting method with the help of

Maple software. However, this system needs to be reduced

to the equivalent system of first order ODEs as follows:

f 0 ¼ g;

g0 ¼ h;

h0 ¼ A1ððgÞ2 � fh� 1Þ þ MA2 �
1

Da

� �
ðg� 1Þ

þ FnA3ðg� 1Þ2;

h0 ¼ p;

p0 ¼ A4Prð2hg� fpÞ � A5PrEcðhÞ2

� EcPrðA6M þ A5

1

Da
Þðg� 1Þ2

þ A7EcPrFnðg� 1Þ3;

ð32Þ

with boundary conditions

f ð0Þ ¼ S; gð0Þ ¼ k; hð0Þ ¼ a1; hð0Þ ¼ a2;

pð0Þ ¼ �Bi 1� a2½ �;
ð33Þ

Here, a1 and a2 are unknown initial conditions. We have to

shoot these initial conditions with some arbitrary slope such

that the solution of the ODE system satisfies the given far-

field boundary conditions. Thereafter, the resultant system

of first-order ODEs is solved by employing the fourth-fifth

order Runge-Kutta-Fehlberg method, and the accuracy of

missing initial conditions is then checked by comparing

calculated values with the given terminal points. The dual

solutions are obtained by taking different initial guesses for

the values of a1 and a2, where the far-field boundary con-

ditions might be satisfied by all profiles asymptotically.

5. Results and discussions

In this study, the effects of shrinking/stretching parameter

k, magnetic field parameter M, the porous medium

parameter Da, porous medium inertia parameter Fn, the

constant mass flux parameter S, viscous dissipation and

convective heating on the magnetite ferrofluid velocity and

temperature are demonstrated in graphs. The range of

parameters used in this study are 0:1�M� 1:1;
0�/� 0:1; 0:1�Ec� 0:3; 0:2�Da� 2; 0:1�Fn � 1:5;
�1� S� 2 and Pr ¼ 6:2 is used to signify the pure water

as the base fluid. The existence of dual solutions for certain

ranges of parameter variations are shown for the skin

friction coefficient in the form of graphs and tables and also

the variations of Nusselt number are illustrated in graphs

for different values of the parameters change.

Equations (9) and (10) together with the boundary

conditions (11) and (12) are solved numerically using the

shooting method in Maple2018. Validation of the numeri-

cal method used in this study is checked by comparing the

results obtained in the present study with the results from

the previous study for different parameters, as shown in

table 2.

As presented in the above table, it was found that the

present results are in a good agreement with the solution

obtained by Nazar et al [42] for a regular fluid case. This is

our guarantee that the method used to tackle our problem

is accurate and valid. In this study, the computations are

done for different values of parameters involved in the

governing flow equations. The velocity profiles, tempera-

ture profiles, the graph of skin friction and Nusselt number

are plotted.

The variations of the skin friction for various values of

the governing parameters are presented in figures 2, 3 and

4. From these figures, we observe that dual solutions with

upper and lower branch solutions exist when k[ kc, while
no real solution is obtained when k\kc. The critical value

kc is the value where the upper branch solution meets the

lower branch solution. These figures also show that the

magnitude of kc increases with each parameter /; S;M and

acts in opposite fashion with the porous resistance param-

eters, Da and Fn. Hence, the intensification of the

nanoparticle volume fraction, suction, injection, and the

magnetic field parameter widen the range of k for which the

solution exists and narrow for the increment of the porous

medium parameter and porous medium inertia parameter.

There is no similarity solutions exist beyond this critical

value due to the boundary layer separation from the surface

and the solution based upon the boundary layer approxi-

mations are not possible.
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Figure 2a illustrates that the value of the skin friction

coefficient is intensified with the quantity of magnetite

nanoparticle volume fraction for the upper branch solution,

which come to an agreement with the results obtained in

table 3. This indicates that an increase in nanoparticle

volume fraction resulted in a stronger wall shear stress.

Furthermore, it is noted that no skin friction is achieved

when k ¼ 1 for all values of nanoparticles volume fraction.

This is due to the fact that the fluid velocity is equal to the

stretching/shrinking sheet velocity.

As seen in figure 2b that for the upper branch solution,

the skin friction coefficient rises with an increase in suction.

This is because suction at the boundary slows down the

fluid motion and hence increases the velocity gradient at the

surface. Similar behavior of the skin friction coefficient is

observed with an intensification of the magnetic field

parameter as presented in figure 3b. An increase in the

porous media parameter, porous medium inertia parameter,

and injection parameter drops the skin friction coefficient

as shown in figures 3a, 4a, and 4b, respectively. All the

results obtained graphically agreed with the results men-

tioned in table 4.

The effects of various values of the governing parameters

on fluid velocity are shown in figures 5, 6 and 7. In these

figures, we noted that the existence of dual solutions with the

upper and lower branches for certain values of the parameter

variations and the far end boundary conditions are satisfied

asymptotically. Furthermore, it is noted that the hydrody-

namic boundary layer thickness for the upper branch solution

is less than that of the lower branch solution. As displayed in

figure 5a, the intensification of the quantity of the magnetite

nanoparticle volume fraction leads to an increment in the

fluid velocity for the upper branch solution and a decrement

in the lower branch solution. It is also noticed that the

hydrodynamic boundary layer thickness goes in the reverse

pattern for the upper branch solution and the same pattern for

the lower branch solution.

The effects of the suction parameter on ferrofluid

velocity for the shrinking sheet are observed in figure 5b.

This profile shows that the increment in the suction

parameter resulted in an increment in fluid velocity for the

upper branch solution and decrement for the lower branch

solution. Further, we noted that the hydrodynamic bound-

ary layer thickness decrease for the upper branch solution

and, thus, increases the flow near the surface as the suction

parameter intensifies. This is because of the reason that

suction is one of the mechanisms used to reduce drag on

bodies to control the boundary layer separation.

The variation of fluid velocity profile with the variation

of the porous medium parameter is illustrated in figure 6a.

It can be noted that the higher the value of the porous

medium parameter, the lower the fluid velocity in the upper

branch solution. However, a different result is obtained for

the lower branch solution that the intensification in the

value of porous media parameter initiated the velocity to

upsurge. Moreover, the hydrodynamic boundary layer

thickness gets diminished for lower values of the porous

medium parameter for the stable solution meanwhile goes

in the same pattern for the lower solution.

As illustrated in figure 6b, the magnetite ferrofluid is

derived to the sheet surface due to the increment in the

magnetic field in the porous medium for the upper branch

solution. Further resistance to the flow and the magnetite

nanoparticles are resulted due to the Lorentz force associ-

ated with the applied magnetic field. This resulting force

leads to the thinning of the hydrodynamic boundary layer;

however, the boundary layer thickens with the magnetic

field parameter for the lower branch solution. Furthermore,

it is found that the higher values of the magnetic field

applied lead to the increment of the fluid velocity for the

upper branch solution and the decrement of the fluid

velocity for the lower branch solution.

Figure 7a displays the effects of the shrinking parameter

on the fluid velocity. The graph exhibits that the existence

of dual solution for increasing values of jkj for some fixed

parameters. We noted that the fluid velocity decreases as

the magnitude of the stretching/shrinking parameter jkj
increases for the upper branch solution and it increases as

jkj increases for the lower branch solution. Figure 7b deals

about effects of the porous medium inertia parameter on the

Table 2. The computation showing Re1=2x Cf and Re�1=2
x Nu for different stretching/shrinking parameter value with Pr ¼ 1 for / ¼ 0

(Regular fluid), M ¼ 0; S ¼ 0;Da ¼ 1;Fn ¼ 0;Bi ¼ 1;Ec ¼ 0.

k
Re1=2x Cf

Re�1=2
x Nu

Present result Nazar et al [42] Present result Nazar et al [42]

1 0 0 1.253314 1.25331

0.5 0.713295 0.71329 1.051458 1.05146

0.2 1.051130 1.05113 0.913303 0.91330

0 1.232588 1.232588 0.811301 0.811301

�0.25 1.402241 1.40224 0.668573 0.66857

�0.5 1.495670 1.49567 0.501448 0.50145

�0.75 1.489298 1.48930 0.293763 0.29378

�1 1.328817 1.32882 0 0
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fluid velocity. In many practical applications the non-Darcy

behavior is important for characterizing fluid flow problems

in a porous medium. To see the effect of this parameter, the

velocity squared term is included in the momentum equa-

tion which is known as the Forchheimer’s extension of

Darcy’s law. As we can see from the graph, for the upper

branch solution the porous medium inertia parameter

affects the the fluid velocity in opposite manner compared

to the lower branch solution. It is also noted that the

hydrodynamic boundary layer thickness increases with the

Figure 2. (a) Variation of skin friction for different values of magnetite nanoparticle volume fraction, /. (b) Variation of skin friction

for different values of suction parameter, S.

Figure 3. (a) Variation of skin friction for different values of porous media parameter, Da. (b) Variation of skin friction for different

values of magnetic field parameter, M.
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porous medium inertia parameter for the upper branch

solution.

The dual natures of the temperature profile with sensible

numerical values to the governing parameters /;Ec;Da and
Fn variations are illustrated in figures 8 and 9. For the

chosen parameter in these figures, it seems that the differ-

ence between the upper branch and lower branch solutions

is very small and dual solutions almost do not exist in the

temperature profile.

As shown in figure 8a, the effects of the ferrofluid par-

ticle concentration on the fluids temperature profile for

other fixed parameters are manifested. It is obtained that an

increase in magnetite nanoparticle volume fraction,

increased fluid temperature, and also the thermal boundary

layer increased with the magnetite nanoparticle concentra-

tion. This is because the enhanced thermal conductivity

property of the magnetite nanoparticles promotes the ther-

mal enhancement of the ferrofluid past the permeable

shrinking surface. From this graph, we also noted that the

value / ¼ 0 (regular fluids) implies that no magnetite

Figure 4. (a) Variation of skin friction for different values of second-order porous resistance parameter, Fn. (b) Variation of skin

friction for different values of injection parameter, S.

Table 3. The computation showing skin friction and critical

shrinking parameter for various values of / and k when

M ¼ 0:1; S ¼ 1;Da ¼ 0:5;Fn ¼ 1.

/ kc k

Re1=2x Cf

Lower Branch Upper Branch

0 �1.175 �1.139 0.495546 1.643453

�1.175 �1.140 0.503809 1.636190

�1.175 �1.170 0.868000 1.302000

0.05 �1.322 �1.240 0.339038 2.370809

�1.322 �1.260 0.475999 2.258044

�1.322 �1.290 0.737148 2.033187

0.08 �1.407 �1.340 0.531744 2.593573

�1.407 �1.350 0.613821 2.524851

�1.407 �1.360 0.703912 2.448116

0.1 �1.464 �1.400 0.624384 2.782431

�1.464 �1.420 0.814838 2.620368

�1.464 �1.430 0.927322 2.522079

Table 4. The computation showing impact of parameters varia-

tion on skin friction and critical shrinking parameter for Fe3O4 /

H2O when / ¼ 0:1 .

S Da M Fn kc k

Re1=2x Cf

Lower Branch Upper Branch

1 0.5 0.1 1 �1.464�1.319 0.07793708 3.2138980

1.5 0.5 0.1 1 �1.664�1.660 2.52654336 3.1372878

2 0.5 0.1 1 �1.944�1.940 3.83650193 4.5101975

1 1 0.1 1 �0.926�0.920 1.09144325 1.6340093

1 1.5 0.1 1 �0.746�0.740 0.97564168 1.4942997

1 2 0.1 1 �0.657�0.650 0.91902959 1.4231562

1 0.5 0.5 1 �1.680�1.680 1.57861803 2.2256596

1 0.5 1 1 �1.960�1.950 1.56597395 2.6215704

1 0.5 0.1 1.5 �1.041�1.011 0.73522094 2.1194067

1 0.5 0.1 2 �0.743�0.740 1.01571989 1.4542215
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nanoparticles in the base fluid which in turn tells us that the

surface temperature obtained for the base fluid(water) is

lower than that of the surface temperature provided by

magnetite ferrofluid /[ 0. Figure 8b conveys the conse-

quences of the viscous dissipation parameter on the fluid

temperature. An escalation in this parameter gives rise to an

increment in the fluid temperature. Since Eckert number

has a major role in cooling the stretching or shrinking

surface which in turn the heat acquired from this stretching/

shrinking surface increased the fluid temperature.

Figure 5. (a) Dual solution for velocity profiles with nanoparticles concentration, /. (b) Dual solution for velocity profiles with suction

parameter, S.

Figure 6. (a) Dual solution for velocity profiles with porous media parameter, Da. (b) Dual solution for velocity profiles with magnetic

field parameter, M.
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Additionally, the thermal boundary layer thickness gets

thickens with the Eckert number because an increase in

dissipation boosts the thermal conductivity of the flow

which leads to an increase in the thermal boundary layer.

As we see from figure 9a, the effects of the porous

medium parameter on the fluid temperature for the

shrinking sheet are verified. This profile shows that the

thermal boundary layer thickness decreases for increasing

values of the porous medium parameter. Figure 9b displays

the effects of the nonlinear porous medium inertia param-

eter on the variation of fluids temperature for other fixed

parameters. It is obtained that an increase in porous med-

ium inertia parameter increases the fluid temperature and

also the thermal boundary layer decreases with the incre-

ment of this parameter.

The nature of dual solution occurrence is explicated by

local Nusselt number graphs, figures 10 and 11, by taking

sensible numerical values to the governing parameters to

exploit their effects on the heat transfer processes and the

intervals of the existence of the dual solution. Figure 10a

shows the variation of the reduced local Nusselt number

with k for different values of the magnetite nanoparticles

volume fraction. It can be seen that the reduced local

Nusselt number upsurges with magnetite nanoparticles

volume fraction which physically means that the heat

transfer rate at the surface increases as / increases. The

application of the magnetite nanoparticles volume fraction

causes an increase in temperature gradient at the sheet

surface and hence enhances the rate of heat transfer from

the surface to the fluid. It is also noted that the heat transfer

characteristics of the base fluid (water) are improved due to

the application of the magnetite nanoparticles. It is also

observed that the solution domain increases with the

intensification of the magnetite nanoparticles volume frac-

tion. The combined effects of the suction parameter and the

shrinking sheet are presented in figure 10b. For flows past a

shrinking sheet, dual solutions are found for up to some

critical value kc beyond which the boundary layer separates

from the surface and no solution is excepted in this region.

For the upper branch solution, the intensification of suction

assists the heat transfer processes from the shrinking sheet

surface. This is because a rise in the rate of suction

increases the ferrofluid particles on the shrinking surface

which leads to an increase in the rate of heat transfer. It is

also noted that the interval of existence of dual solution

increases with the suction parameter. Figure 11a shows that

opposite behavior is observed for local Nusselt numbers for

varying values of the porous medium parameter. It is also

observed that the solution domain decreases with the

intensification of the porous medium parameter. Figure 11b

shows the variability of the reduced local Nusselt number

concerning the shrinking surface parameter for different

values of second-order porous resistance parameter. From

this graph, we observed that an inverse relationship exists

between the local Nusselt number and the second-order

porous resistance parameter. It is also noted that the interval

of existence of dual solution diminishes with the slight

increment of this parameter.

Moreover, the heat transfer enhancement (HTE) of the

Fe3O4 nanoparticle for the cases of shrinking, fixed and

Figure 7. (a) Dual solution for velocity profiles with shrinking parameter, k. (b) Dual solution for velocity profiles with second-order

porous resistance parameter, Fn.
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stretching sheet are presented in figure 12. As we can see

from the bar chart given, for the magnetite nanoparticles

volume fraction / ¼ 0:1, a maximum heat transfer

enhancement with values of 75.86%, 97.24%,and 27.04%

are obtained for shrinking sheet with k ¼ �0:2, fixed sheet

with k ¼ 0 and stretching sheet with k ¼ 0:2, respectively.
The numerical results obtained in this problem show the

existence of a dual solution for certain ranges of the

Figure 8. (a) Dual solution for temperature profiles with nanoparticles concentration, /. (b) Dual solution for temperature profiles with

viscous dissipation, Ec.

Figure 9. (a) Dual solution for temperature profiles with porous medium parameter, Da. (b) Dual solution for temperature profiles with

second-order porous resistance parameter, Fn.
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stretching/shrinking parameter k. To identify stable solu-

tions stability analysis is done for the solutions. The

smallest eigenvalue, b, for the temporal development of

small disturbances with respect to the basic steady flow is

obtained for various values of / and k when M ¼ 0:1; S ¼

1;Da ¼ 0:5;Fn ¼ 1 as shown in table 5. we noted that the

eigenvalues, b, obtained for the upper branch solution are

positive while those of lower branch solutions are negative.

This confirms that the upper branch solution is hydrody-

namically stable and the solution is physically achievable

Figure 10. (a) Variation of local Nusselt number for different values of magnetite nanoparticle volume fraction, /. (b) Variation of

local Nusselt number for different values of suction parameter, S.

Figure 11. (a) Variation of local Nusselt number for different values of porous media parameter, Da. (b) Variation of local Nusselt

number for different values of second-order porous resistance parameter, Fn.
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whereas the lower branch solution is unstable and physi-

cally unrealistic.

6. Conclusion

A study on stagnation point flow of magnetite ferrofluid

past a stretching/shrinking sheet in a Darcy-Forchheimer

porous medium is carried out numerically to investigate the

collective effects of viscous dissipation, magnetic field,

suction or injection, porous medium, porous medium inertia

parameter, and convective heating. A stability analysis is

performed to identify stable and physically reliable solu-

tions. The effect of various parameters on the dimension-

less velocity and temperature, skin friction, and the Nusselt

number are obtained numerically and presented in graphs

and tables. Using a set of similarity transformations the

governing boundary layer equations are transformed into a

system of nonlinear differential equations and MAPLE

software is used to generate the numerical solutions. The

following are concluded based on the findings:

• Dual solutions exist for certain ranges of the stretching/

shrinking parameter k.
• The upper branch solution is hydrodynamically

stable and is physically achievable, whereas the lower

branch solution is unstable and physically unrealistic.

• The intensification of the magnetite nanoparticle

volume fraction, suction/injection, and the magnetic

field parameter widen the range of k for which the

solution exists and narrow for the increment of the

Figure 12. Heat transfer enhancement rate with nanoparticles concentration when S ¼ Fn ¼ 1;Bi ¼ Ec ¼ M ¼ 0:1;Da ¼ 0:5.

Table 5. The computation of smallest eigenvalue ( b ) for both lower and upper branch solutions for Fe3O4 /H2O.

/ Da S M Fn kc k

b

Lower Branch Upper Branch

0.00 0.5 1 0.1 1 �1.175 �1.139 �1.84658908 1.110213025

0.00 0.5 1 0.1 1 �1.175 �1.140 �1.822189105 1.092015814

0.00 0.5 1 0.1 1 �1.175 �1.170 �0.818609230 0.266895080

0.05 0.5 1 0.1 1 �1.321 �1.190 �3.28358197 2.078299080

0.05 0.5 1 0.1 1 �1.321 �1.200 �3.13104704 1.994941488

0.05 0.5 1 0.1 1 �1.321 �1.300 �1.33509522 0.743335278

0.08 0.5 1 0.1 1 �1.405 �1.300 �2.764296237 1.7836607793

0.08 0.5 1 0.1 1 �1.405 �1.350 �2.006142312 1.2585794567

0.08 0.5 1 0.1 1 �1.405 �1.390 �1.184362485 0.5938153589

0.1 0.5 1 0.1 1 �1.4641 �1.400 �2.07935102 1.2944575652

0.1 0.5 1 0.1 1 �1.4641 �1.420 �1.746482488 1.0368550235

0.1 0.5 1 0.1 1 �1.4641 �1.440 �1.34409043 0.7045052433
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porous media parameter and the porous medium inertia

parameter.

• The skin friction coefficient for the upper branch

solution is intensified with an increase in the quantity

of magnetite nanoparticle volume fraction, suction, and

the magnetic field parameters but drops for the porous

medium parameter, porous medium inertia parameter,

and the injection parameter.

• For the upper branch solution, the ferrofluid velocity

increases with the quantity of magnetite nanoparticle

volume fraction, suction, and the magnetic field

parameters, whereas decreases with an increase in the

shrinking parameter and porous medium parameter.

• The momentum boundary layer thickness increases

with the shrinking parameter and porous medium

parameter but decreases with an increase in the

magnetite nanoparticle volume fraction, suction, and

magnetic field parameters.

• The ferrofluid temperature and thermal boundary layer

thickness are enhanced with an increase in the

magnetite nanoparticle volume fraction and Eckert

number but diminished with an increase in porous

media parameter and porous medium inertia

parameter.

• The heat transfer rate increases with the magnetite

nanoparticle volume fraction and suction parameters,

whereas decreases with the porous media parameter

and porous medium inertia parameter.
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Nomenclature
a, b constant

x, y Coordinate along the plate and the transversal

B0 Magnitude of magnetic field

u, v Velocity components along x-axis and y-axis
K1 Porous medium permeability

Pr Prandtl number

Bi Convective parameter

f Dimensionless stream function

T temperature

k Effective thermal conductivity of nanofluid

Tf local fluid temperature

hf heat transfer coefficient

T1 ambient temperature

kp Thermal conductivity of nanoparticles

F Forchheimer coefficient

kf Thermal conductivity of base fluid

ks Nanoparticles thermal conductivity

Cpf Base fluid specific heat capacity

Cps Nanoparticles specific heat capacity

U1 external velocity

M Magnetic field parameter

Ec Eckert number

Da Porous medium parameter

Fn Porous medium inertia parameter

S Suction/injection parameter

Nu Reduced Nusselt number

q
00

w
Wall heat flux

Cf skin friction coefficient

Greek symbols
ðqcÞp Heat capacity of the nanoparticle

af Thermal diffusivity of fluid

k Stretching/shrinking parameter

h Dimensionless temperature

/ Nanoparticle volume fraction

w Stream function

r electrical conductivity

g Similarity variable

l absolute viscosity

t Kinematic viscosity of the fluid

qf Fluid density

qp Nanoparticle mass density
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