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Abstract. Firefly algorithm is one of the most promising population-based meta-heuristic algorithms. It has

been successfully applied in many optimization problems. Several modifications have been proposed to the

original algorithm to boost the performance in terms of accuracy and speed of convergence. This work proposes

a partition cum unification based genetic firefly algorithm to explore the benefits of both the algorithms in a

novel way. With this, the initial population is partitioned into two compartments based on a weight factor. An

improved firefly algorithm runs in the first compartment, whereas, the genetic operators like selection, crossover,

and mutation are applied on the relatively inferior fireflies in the second compartment giving added exploration

abilities to the weaker solutions. Finally, unification is applied on the subsets of fireflies of the two compartments

before going to the next iterative cycle. The new algorithm in three variants of weightage factor have been

compared with the two constituents i.e. standard firefly algorithm and genetic algorithm, additionally with some

state-of-the-art meta-heuristics namely particle swarm optimization, cuckoo search, flower pollination algo-

rithm, pathfinder algorithm and bio-geography based optimization on 19 benchmark objective functions cov-

ering different dimensionality of the problems viz. 2-D, 16-D, and 32-D. The new algorithm is also tested on two

classical engineering optimization problems namely tension-compression spring and three bar truss problem and

the results are compared with all the other algorithms. Non-parametric statistical tests, namely Wilcoxon rank-

sum tests are conducted to check any significant deviations in the repeated independent trials with each algo-

rithm. Multi criteria decision making tool is applied to statistically determine the best performing algorithm

given the different test scenarios. The results show that the new algorithm produces the best objective function

value for almost all the functions including the engineering problems and it is way much faster than the standard

firefly algorithm.

Keywords. Meta-heuristic algorithms; evolutionary computing; firefly algorithm; genetic algorithm;

hybridization; global optimization.

1. Introduction

Meta-heuristic algorithms are approximate techniques for

solving an optimization problem. They capitalize on intu-

itions along with randomness property in their search for

improving solutions at hand through successive iterations.

Nature has inspired the development of many meta-

heuristic algorithms [1, 2]. The earliest of this kind, in the

form of genetic algorithm (GA) [3, 4] was motivated by

Darwin’s survival of the fittest by means of natural selec-

tion. Several researchers have shown there keen interests in

this beautiful domain since then. As a result, numerous

meta-heuristic algorithms have emerged over years [5, 6].

Different creatures communicate with each other through

various unique modes of communication. Fireflies use their

flashing lights of varying intensity to communicate for

attracting mates or warning predators. A suitable mate

would either communicate back mimicking the same pat-

tern of flash or would produce response in a different

flashing pattern. The intensity of the light which is the key

source of attraction also depends on the distance between

the source and the observer because of absorption in air.

Environmental conditions like wind, darkness or fogginess

also regulate the intensity. This phenomenon besides

soothing the eyes of nature lovers in the darkness of sum-

mer nights has become the epitome of inspiration for many

scientific researchers mainly dealing with optimization

problems.
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1.1 Standard firefly algorithm

Fireflies may be conceived as candidate solutions in the

search space. The attraction and movements offer heuristic

goals to achieve brighter fireflies i.e. better solutions. The

standard firefly algorithm (FA) which has been developed

by Yang [7] has two parts in the position updates as shown

in Equation (1),

xi ¼ xi þ b
ð�c�r2ijÞ
0 ðxj � xiÞ þ aðeðÞ � 0:5Þ ð1Þ

where, xi is the position of the firefly that is to be updated

based on the difference of position of another firefly

denoted by xj; in the first part, which is driven by attraction

heuristic, b0 is the light intensity when the distance between
them is 0, c is the absorption coefficient and rij is the

Euclidean distance between them; in the second part, which

models random movement, a is the coefficient of random-

ness and eðÞ yields a random value in [0, 1].

1.2 Modifications of standard FA

FA is prone to premature convergence triggering efforts to

relax the constant parameters used therein. Studies also

show that this is comparatively slow and often suffers from

problems of falling into local minima [8]. The movement

update function solely depends on the present light intensity

or fitness and no previous memory is preserved. Further-

more, the algorithm parameters are fixed for all the suc-

cessive iterations making the step length of learning,

constant, thereby foregoing the needed exploitation espe-

cially at the later stages. Enormous efforts have been

channelled to boost the performance of the standard FA

[9, 10]. The various modifications, in accordance with some

broad categories are as follows.

1.2a Based on adaptive parameters: In this category, the

parameters i.e. the user defined constants, used in like any

other meta-heuristic algorithms, have been updated in the

successive iterations. These constants control the degree of

exploitation and exploration. The randomness coefficient a
has been tuned based on the current iteration number by

Shakarami and Sedaghati [11]. Kavousi-Fard et al [12]

have improvised the randomness part using crossover and

mutation operators. Modification of attraction related

parameters (b0, c and rij) have been also explored by many

researchers. Lin et al [13] have used a new concept of

virtual distance, r0, and computed the intensity of light b as

b0cð1� r0Þ to update the position of fireflies. Gandomi et al
[14] have employed 12 different chaos functions which

have non-repetition and ergodicity properties for updating

the constant values of the algorithm (b and c). Sulaiman

et al [15] have introduced minimum variance distance

replacing the Cartesian distance for the attraction part. The

random part has been modified with a mutation operator.

Wang et al [16] have handled the premature convergence

by regulating all the constant parameters based on the

difference of light intensity measured by a formula

dependent on number of iteration. Yu et al [17] have pro-

posed wise step length control specific to individual firefly

based on its personal and global best position for updating

its current position. A practical problem of optimizing

droplet ejection speed in electro-hydrodynamic inkjet

printing has been reportedly solved by using an improved

FA [18]. The authors have used a new rule for updating the

brightness instead of a constant initial brightness coefficient

for getting comparatively better results.

Keeping in view the simple modifications in this

approach, the results have been really encouraging. It has

been proved that keeping updating strategy same may lead

to stagnation. None of the cases in this line have considered

the need for changing updating strategy in general. This

method has also not considered the past memory. This

method has not been able to reduce the search space to

speed-up the convergence.

1.2b Based on update strategy: The second class of

approaches for modification deals with changing the strat-

egy of updating the position of the fireflies. Opposition

based approach has been introduced by Roy et al [19] for
solving high dimensional problems where opposite or

reverse set of regularly achieved population has been

determined in each iteration. The brightest one has been

updated by xmin þ xmax � x so that it can still improve from

the initial local extremes. This method to some extent

mimics the mutation operator in genetic algorithm which

has eventually initiated many experiments with different

methods and levels of incorporation. Yu et al [20] have

defined a criterion of hazardous condition based on which a

mutation can be operated on the weaker solutions to

improve them. Additionally, the authors have preserved the

historical performance in memory so that hitherto best

cases are not left-out. Kazemzadeh-Persi [21] has added k
newborn generations in each iteration with the help of

mutation. The authors also have suggested updating the

position based on the average directions of movement

dictated by all the brighter fireflies. Another line of modi-

fication has been approached [12, 22] by employing five

crossover operators and three mutation operators along with

adaptive a. Three random solutions have been considered

for generating the mutated solutions, one by applying

xmute1 ¼ xq1 þ eðxq2 � xq3Þ, and another for any iteration

number t by applying xmute2 ¼ xmute1 þ etðxb � xwÞ. In other

similar works [11, 23], the value of a has been made

adaptive by chaotic mapping or applying mutation operator.

Mohammadi et al [23] have proposed the update of the

position with respect to the brighter firefly xj, thereby

adding more exploration capability. Hassanzadeh and

Kanan [24] have used fuzzy attraction function represented

by a Cauchy distribution from the selected top k brighter

fireflies to impose the influence of a collection rather than

an individual in order to explore towards the global best. In
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Figure 1. Flowchart of the new algorithm.
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some literature [25, 26] , mutation has been used replacing

the updating formula in Equation (1) or as an additional

operator immediately after using the same updating for-

mula. Wang et al [27] have introduced Cauchy distribution

for performing mutation on the initially fitter fireflies

known as good nodes set to obtain improved results on

benchmark functions. In another recent work by Peng et al
[28], a novel courtship learning strategy has been adopted

where the updating of the position of the lower intensity

male fireflies have been accomplished using the guidance

from the relatively superior female fireflies. Tong et al [29]
have proposed using several diverse sub-groups of FA and

exchanging information for learning collectively about the

global best more effectively. Zhou et al [30] have adopted

partial attraction model which have been used to protect

swarm diversity and utilize full individual information.

Baykasouglu et al [31] have proposed a modification to FA

to solve dynamic multidimensional knapsack problem by

replacing pair-wise comparison by a specialized compar-

ison based on a dynamic variable in each iteration. The

authors have also used a probabilistic switch to decide

whether to update the position or not for the firefly to avoid

early convergence and reduce computational time.

This method of modification has been deemed very

useful to specific problems. This has not considered the

already improvement areas like adaptive control or

changing the randomness characteristics for better explo-

rations. This method has been not able to reduce the search

space and the time complexity of convergence.

1.2c Based on solution space and randomness control: In
the third category of approaches, two types of modification

have been tried. Firstly, changing the solution space to an

easy search space has been explored by Liu et al [32]. They
have used quaternion representation for xiðkÞ ¼
ðyi1; yi2; yi3; yi4Þ for all components k. The update of position

takes place in the quadruple-folded search space, while the

computation of brightness is done in actual solution space

using a norm transform function. Fister et al [33] have also
used quaternion representation of the solution space for

Table 2. Parameter settings for the algorithms.

Algorithm Parameter Value

GA Crossover probability pc 0.7

Mutation probability pm 0.3

FA a 4.0

b 1.0

c 2.0

m 2.0

PSO Inertia factor w 0.9

c1 1

c2 1

CS Discovery rate of alien solutions pa 0.25

FPA Probability switch p 0.8

PFA N/A

BBO Habitat modification probability 1

Immigration probability limits [0 1]

Step size 1

Max immigration (I) and Max

emigration (E)
1

Mutation probability pm 0.001

Figure 2. Tension-compression spring mass problem.

Figure 3. 3-bar truss structure problem.
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enhancing performance and avoiding stagnation. Wang et.
al. [34] have used a predefined neighbourhood to overcome

the problem of oscillation based on too much attractions

happening during the search. Secondly, the randomness

behaviour of the fireflies has been controlled by following

certain probability distribution functions. For example,

Farahani et al [35] have introduced Gaussian distribution,

whereas Yang [36] has used Levy distribution for

generating component wise product with the original ran-

dom fraction. The randomness property has been improved

by adding direction of movement of the fireflies using an

additional sign vector in case of the later. Tighzert et al [37]
have presented a set of new compact firefly algorithms

involving levy functions, elitism or preservation of previous

performances and opposition-based learning. They have

tested on benchmark functions considering 30 dimensions.

Wu et al [38] have also used adaptive logarithmic Levy

distribution to improve over the global searching charac-

teristics of FA using a probabilistic switch.

The best part about this method is the reduction of search

space thereby minimizing the computational cost of the

algorithm. This approach of modification has been proved

beneficial in most of the cases though the use of other lines

of modifications like adaptive control and changing the

updating strategy along with it would have clearly achieved

more robustness.

1.2d Hybrid approaches: There have been a few attempts

of hybridization of the FA with other evolutionary algo-

rithms. Luthra and Pal [39] have used genetic operators like

crossover along with the standard FA for solving a

monoalphabatic substitution cipher problem. Rahmani and

MirHassani [40] have applied genetic crossover operator on

the two fittest fireflies and mutation on the whole popula-

tion based on the mutation probability after the pass of

standard algorithm in each iteration. They have used this

Figure 5. Performance plot of Ackley (1) Function.

Figure 4. Time complexity plot of the new algorithms and

constituents.
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Figure 6. Performance plot of Beale Function.

Figure 7. Performance plot of Carrom Table Function.
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Figure 9. Performance plot of Goldstein-Price Function.

Figure 8. Performance plot of Easom Function.
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Figure 11. Performance plot of Schaffer (6) Function.

Figure 10. Performance plot of Michalewicz Function.
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Figure 13. Performance plot of Zettl Function.

Figure 12. Performance plot of Xin-She-Yang (3) Function.
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for solving a capacitated facility location problem. Sarangi

et al [41] have modified the FA by integrating the formula

used in particle swarm optimization (PSO). They have

retained best positions for both individual and group in all

successive iterations and have used it for the additional

velocity component calculation. Aydilek et al [42] have

enhanced hybrid FA and PSO by incorporating chaotic

functions. Yelghi and Köse [43] have successfully incor-

porated the concept of tidal force for modifying the

attraction component of the standard FA. Tomas et al [44]
have introduced the concept of orthogonal learning to the

hybridized FA and PSO algorithms to affect better perfor-

mances than that obtained from the original hybridization.

Huang et al [45] have used a hybridization of GA, FA and

differential evolution (DE) to enable the maximum power

point tracking for photovoltaic systems under partial

shading conditions. The authors have created the

hybridization framework by implementing DE mutation

followed by FA attraction and finally carrying out GA

crossover in each generation.

The hybrid methods of FA have been able to successfully

make inroads to the hitherto unseen solution space. Nev-

ertheless, a generic framework of integration of different

independent meta-heuristics has not been standardized.

There has been no such work reported which has parti-

tioned the population and considered running different

meta-heuristic algorithms in sub-groups.

1.3 Need and novelty of new algorithm

There have been numerous efforts for improving the stan-

dard FA to solve multiple optimization problems. At the

same time they have added precious knowledge base to the

literature in the process of different approaches of modifi-

cations. The key aspects that can be highlighted from the

rigorous literature review are as follows:

• Randomness part can be modified with controlled

direction using genetic crossover and/or mutation or

following other probability distributions for better

exploration.

• Records of past solutions and performance avoids

probable loss of eligible solutions.

• Adaptive a comes handy especially at later stages for

intensive exploitation.

Giving due respect to the previous modification efforts, it

has been observed that there is no formal integration with

any full fledged evolutionary algorithm as such. Genetic

operators in parts have been tried as an alternate or addi-

tional update strategy of the standard FA. Their application

has been targeted mainly on the fittest fireflies [40] for

getting even better solutions. In some cases it has been

purely application specific implementation of crossover

using dominant genomes [39]. The modified algorithm in

such case can not be used for solving any general

Figure 14. Performance plot of Zakharov (1) Function.
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optimization problems. If in any scenario it has been used

to evolve the weaker solutions alone, additional evaluations

of objective function fitness have been performed incurring

more computational cost.

1.4 Motivation and inspiration

A single method of modification may not capture all the

needed improvements of the existing FA. This may raise

issues with premature convergence in problems with higher

dimensionality. A very handful cases have concentrated on

combining different approaches of modifications. A very

few of the previous works reported has targeted

hybridization of different meta-heuristics in true sense.

Hence, this work aims to capitalize on the strengths of two

algorithms viz. faster convergence of GA and better accu-

racy of FA so as to achieve a better performing algorithm.

In this approach, a novel methodology is formulated in

the form of partition cum unification based genetic - FA

Table 4. Comparison results of functions 11 - 19 for 16-D.

Function
Alpine(1) Function Dixon-Price Function Levy Function

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 3375:92� 277:93 2:67246 ± 0:4 2710:46� 201:2 12319:92265� 773:9936 3965:64� 63:22 1:85192 ± 0:594

FPA 1815:69� 197:71 7:049� 2:23 1934:83� 173:86 569:36587� 66:568 3146:83� 22:28 5:72203 � 0:22

PFA 21556:15� 812:64 14:79595� 2:975 16823:13� 990:31 2775:48073 � 52:6423 19520:15� 1518:71 33:439� 9:464

CS 2313:93� 173:47 20:607� 2:054 1545:87� 251 58160:20214� 19:3558 1965:75� 98:73 47:29869� 4:894

PSO 1092:85� 207:2 3:757� 1:028 1361:88� 174:37 41:10107� 7:1484 2567:34� 12:92 3:6567� 1:412

GA 7601:56� 219:07 9:01469� 0:705 3646:29� 427 3315:55801 � 51:5104 4803:67� 183:25 8:50226 � 2:735

FA1 27942:47� 1245:24 9:09556� 0:633 27016:47� 796:63 151:40032� 2:7784 25364� 251:22 26:50476� 1:627

FA2 7992:92� 458:72 2:8544� 0:364 5208:79� 363:31 3:95043� 0:6344 6354:28� 166:73 5:15981 � 0:992

FA3 11159:64� 760:51 2:8309 ± 0:49 8778:96� 316:25 1:86466 ± 0:2025 9882:08� 28:4 2:46923 � 1:519

FA4 16371:42� 1133:56 2:29278 ± 0:365 13716:4� 442:46 0:90298 ± 0:2512 14844:66� 279:68 1:71954 ± 2:47

Function
Rastrigin Function Rosenbrock Function Sphere Function

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 2003:15� 102:26 22:17343 ± 1:168 2649:9� 52:16 76339:53829� 704:733 2651� 150:42 5:69212� 1:272

FPA 1704:93� 69:84 69:17319 ± 8:529 1713:42� 2:82 2599:38309 � 16:788 1546:37� 214:18 19:48063 � 25:829

PFA 12671:67� 385:77 139:28111� 28:208 16624:32� 13:96 1687225:534� 666:174 16599:76� 701:42 238:55139� 29:621

CS 1094:56� 0:71 156:65561� 8:411 1598:21� 6:33 15738070:75� 1242:74 1489:73� 238:6 172:67592� 1:511

PSO 798:37� 2:12 64:39563� 9:968 1066:15� 2:82 46137:90181� 458:758 882:64� 41:03 6:50556� 16:944

GA 2734:68� 21:18 88:90463� 8:463 3624:83� 7:74 808516:8752� 206:606 3373:93� 383:5 134:05013� 10:504

FA1 21703:01� 22:54 146:47182� 4:865 25269:4� 316:43 4286885:836� 1240:917 25111:61� 996:93 0:29449� 0:087

FA2 3850:19� 37:36 90:45436� 2:364 5469:7� 141:5 147:86933 ± 15:612 4931:06� 412:44 0:08064� 0:027

FA3 6799:33� 35:96 79:58992� 13:137 9792:43� 34:88 71:18291 ± 14:925 8444:63� 246:77 0:05245 ± 0:013

FA4 11328:21� 2:1 73:43202� 8:385 14960:71� 587:85 184:92492� 15:292 13322:69� 969:73 0:02323 ± 0:01

Function
Step(2) Function Sum Squares Function Xin-She-Yang (1) Function

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 2617:41� 40:87 414:3257� 147:078 2418:02� 31:71 7068:28929� 753:904 2780:87� 32:88 0:21958� 0:169

FPA 1830:11� 11:28 679:5015� 2:121 1577:99� 76:4 2951:582� 7:114 1651:02� 6:26 9:20017� 3:088

PFA 16610:34� 12:37 1452:7321� 75:433 16652� 74:21 14618:92605� 456:184 16512:81� 66:09 3:72492� 0:995

CS 1561:32� 4:94 14652:5124� 454:67 1526:63� 3:23 114105:2836� 948:057 1670:54� 135:4 2874:54363� 195:053

PSO 925:03� 43:02 389:3239� 18:019 846:24� 47:25 1813:1691 ± 19:58 987:36� 1:41 1:09523� 0:698

GA 3419:36� 21:86 3369:5217� 526:087 3371:63� 34:9 21197:44893� 80:87 3484:34� 1:71 3:29214� 0:486

FA1 24018:71� 49:78 22734:5293� 101:116 23959:46� 146:95 151356:0888� 170:783 26223:42� 972:43 0:0892� 0:021

FA2 4917:85� 18:33 342:5792� 15:685 4954:64� 54:24 2145:34541� 227:942 5301:37� 188:24 0:01764� 0:014

FA3 8482:68� 40:58 325:5792 ± 26:163 8501:71� 42:46 2533:63824� 103:309 8824:72� 45:72 0:01058 ± 0:007

FA4 13360:51� 137:22 206:1934 ± 14:664 13590:18� 39:29 1709:19545 ± 141:555 13845:02� 111:97 0:00921 ± 0:004
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(PUBG-FA) by integrating FA with GA. The initial popu-

lation is partitioned into two compartments based on a

weight factor, w set by user, which determines how much of

the algorithm is dominated by FA. The first compartment

which has the superior fireflies based on light intensity

(fitness) runs a little improved version of standard FA,

whereas the second chamber consisting of the weaker

solutions runs the entire GA encompassing selection,

crossover and mutation. After each iteration these two

populations are again unified and the intensities of the new

fireflies are computed. Based on that, the consolidated

population is sorted and trimmed before going to the next

iterative cycle for further partition, update and unification.

The new algorithm in three variants of different w (30%,

50% and 70%) is tested and compared with the two con-

stituents i.e. standard firefly and genetic algorithm and

additionally with some state-of-the-art meta-heuristics

namely PSO [46], cuckoo search (CS) [47, 48], flower

pollination algorithm (FPA) [49], pathfinder algorithm

(PFA) [50], bio-geography based optimization (BBO) [51]

Table 5. Comparison results of functions 11 - 19 for 32-D.

Function

Name
Alpine(1) f � ¼ 0 Dixon-Price f � ¼ 0 Levy f � ¼ 0

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 4151:92� 37:24 9:46719� 1:849 4253:91� 94:01 18229:19278 � 583:1756 6042:92� 40:15 13:31744 ± 2:189

FPA 4174:44� 4:25 23:21317 � 0:84 4105:64� 8:46 16302:97239 � 805:55 5826:54� 6:35 40:47595� 1:444

PFA 22736:56� 141:61 47:91859 � 0:226 22572:46� 116:6 122989:6484� 642:1208 24183:25� 1:01 119:25448 � 61:335

CS 3957:55� 51:5 47:90387 � 3:311 3968:01� 45:14 682456:0873� 715:2843 4367:58� 2:32 131:41598 � 36:709

PSO 3372:6� 9:87 16:17078 � 4:132 3331:25� 3:6 7687:38604� 189:2988 5004:24� 7:05 13:59586� 2:082

GA 8039:94� 25:41 24:19729 � 1:644 6529:69� 3:49 31071:63456 � 512:5961 8163:85� 5:61 39:20025� 3:582

FA1 34290:83� 174:78 28:21906 � 2:14 34023:49� 68:77 27738:38929 � 115:0443 35727:5� 50:1 66:65928� 2:715

FA2 8433:11� 2:77 8:91902 ± 1:227 8408:64� 7:75 95:98027 ± 12:0397 10072:69� 7:06 14:30951� 0:74

FA3 13131:59� 29:56 11:79566 � 1:541 13068:22� 2:02 64:14974 ± 2:8246 14736:75� 19:04 14:68524� 2:047

FA4 20260:08� 45:84 8:62356 ± 0:44 20581:14� 244:81 107:35544� 22:0462 21768:71� 53:27 11:45863 ± 4:255

Function

Name
Rastrigin f � ¼ 0 Rosenbrock f � ¼ 0 Sphere f � ¼ 0

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 4445:28� 48:6 88:14888 ± 9:641 4197:97� 5:03 664508:5654� 330:784 4131:19� 77:03 29:32855� 2:884

FPA 4210:89� 69:78 190:8849 ± 25:989 4070:73� 8:46 171261:4486� 542:892 3850:85� 0:62 109:15806 � 7:632

PFA 22602:22� 27:97 350:61797 � 33:617 23133:12� 29:65 22211614:02� 820:138 22456:49� 20:61 740:59813 � 9:326

CS 3956:52� 4:92 391:51587 � 13:903 3952:55� 23:27 98607940:06� 235:38 3849:81� 61:34 549:39435 � 16:107

PSO 3361:14� 12:01 220:39739 � 6:072 3332:71� 1:41 321449:9769� 187:004 3029:55� 0:05 31:50217� 9:422

GA 6584:04� 5:64 232:0219� 18:538 6543:21� 0:11 7467747:463� 653:833 6309:8� 8:51 419:08603 � 33:061

FA1 34510:81� 59 365:82424 � 4:558 34117:03� 41:64 42864576:94� 918:677 36270:24� 117:62 32:0092� 0:894

FA2 8473:99� 2:78 233:55792 � 3:983 8389:23� 0:04 1944:16522 � 114:53 8193:22� 62:77 1:49072 ± 0:454

FA3 13192:4� 70:48 230:69942 � 1:357 13122:57� 55:09 1160:32527 ± 341:623 12919:18� 86:13 1:2801 ± 0:09

FA4 20633:02� 193:24 214:02865 � 17:308 20196:48� 21:2 1589:57498 ± 439:686 20032:62� 75 1:89594� 0:225

Function

Name
Step(2) f � ¼ 0 Sum Squares f � ¼ 0 Xin-She-Yang (1) f � ¼ 0

Algorithm

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

Mean CPU

Time (ms)

Mean Objective

Function Value

BBO 4662:37� 318:79 3320:21 ± 593:97 3995:25� 161:47 161352:35� 169:373 4359:12� 139:77 79:61591� 1:22689

FPA 4520:93� 255:49 856:13 ± 395:98 3789:17� 27:16 169186:25� 185:183 4210:94� 232:58 452589:2685� 323:566

PFA 25346:92� 1656:09 13146:19� 759:433 23133:12� 29:65 196667:4749� 402:781 23876:65� 184:61 2992457:495� 402:994

CS 4378:09� 56:55 45050:51� 835:938 14630:33� 598:61 717051:7199� 487:797 4055:18� 2:68 27575755784:34� 3506:12

PSO 3360:58� 24:57 1693:13� 442:649 3008:82� 22:2 189540:70� 822:851 3299:62� 41:59 2:48656� 1:696

GA 8026:8� 579:49 12083:32� 415:78 6861:35� 31:86 158967:17� 823:89 6801:15� 60:05 9205:93� 121:67

FA1 38597:426� 708:22 65868:710� 10:343 36921:770� 58:16 1026759:599� 947:17 39955:330� 62:95 41480:496� 541:498

FA2 8580:52� 256:18 4912:54� 305:47 8709:04� 45:23 52836:55 ± 443:68 8839:84� 51:6 0:11752 ± 0:03

FA3 13699:65� 585:68 6098:57� 379:72 14116:53� 149:47 57148:79 ± 172:88 13724:66� 704:44 0:98629� 1:27

FA4 21780:92� 574:49 5319:51� 149:117 21947:96� 325:32 71005:68905� 261:071 21495 � 32:79 0:08405 ± 0:109
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on 19 benchmark objective functions of different com-

plexity, continuity, differentiability, mode, separability and

scalability. This testing is carried-out considering several

dimensionality of the problems viz. 2-D, 16-D, and 32-D.

Further, the new algorithm is tested and compared with

others on two real engineering optimization problems

namely tension-compression spring [52, 53] and 3-bar truss

problem [53, 54]. Non-parametric statistical tests, namely

Wilcoxon rank-sum tests are conducted on the objective

function values for each dimensional (scalability) test for

all the algorithms from repeated independent experiments

to statistically rule-out any significant deviations. One of

the extensively used multi-criteria decision making

(MCDM) tools, namely, technique for order of preference

by similarity to ideal solution (TOPSIS) [55] is applied to

statistically determine the best performing algorithm given

the different multi-dimensional test scenarios and two

assessment criteria - running time and objective function

value.

Thus, the primal novel prospects and contributions of

this article can be summarized as follows:

• Seeking key improvement areas of FA from the past

literature and combining them together for getting

added advantages.

• Envisaging a genetic strategy so as to achieve a faster

convergence rate than conventional FA.

• Partitioning the population for running two algorithms

in two compartments and unification of the population

derived from respective compartments.

Figure 16. Performance plot of Alpine(1) Function for 32-D.

Figure 15. Performance plot of Alpine(1) Function for 16-D.
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Figure 18. Performance plot of Dixon-Price Function for 32-D.

Figure 17. Performance plot of Dixon-Price Function for 16-D.
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• Keeping the algorithmic parameter to tune to a single

weight factor indicating the dominance of one algo-

rithm over another.

• Utilizing MCDM tool to strategically decide the final

ranks of the competing optimization algorithms.

The rest of the paper is segmented as follows: section 2,

where the methodology is described, presents the new

algorithm elaborately and describes the objective functions

and engineering optimization problems considered for

testing. Results of all the testing are discussed in section 3.

Finally, some concluding remarks are drawn in section 4.

2. Methodology

The basic idea of the new algorithm PUBG-FA is pretty

simple. Dimmer fireflies get attracted towards the brighter

ones and by virtue of their positions getting updated, their

light intensities or objective fitness values are improved.

The weaker section having feeble flashing intensity, instead

of waiting for their turn for improving up the ladder of

intensity through generations, are moved into a separate

genetic compartment. In this space they get opportunities

for further and faster improvement through explorations by

applying standard genetic operators, namely selection,

crossover and mutation. The remaining best part of the

population having brighter fireflies undergo a little

improved version of the standard FA in the primary com-

partment. Memory of the candidate solutions, random

movement of the brightest firefly and adaptive a constitute

the improvement spectrum of FA as already successfully

experimented in some previously reported works

[19, 20, 36]. Figure 1 shows the flowchart of the new

algorithm. After each iteration, the populations from two

compartments along with the past memory are unified and

ranked according to the light intensity meaning the objec-

tive fitness value before venturing for the next cycle. In the

pseudo code presented in Algorithm 1, the new algorithm

can be easily comprehended. Key improvement areas and

features of PUBG-FA are discussed in the following

subsection.

2.1 Features of PUBG-FA

2.1a Memory of past records: In the standard FA, the

positions of all the fireflies are updated in a stochastic goal

direction. Naturally, it may so happen that the intensity of

the light meaning the objective fitness deteriorates from the

previous value. Hence, it is changed to keep memory of the

past records so that eligible candidates once found are

never lost.

2.1b Random movement of the brightest: The position of

the brightest firefly is not updated by the standard FA as

because only dimmer fireflies update positions with respect

to the brighter ones. Therefore, the algorithm is modified so

that the brightest one is updated by the following Equa-

tion (2) involving only random term.

xi ¼ xi þ aðeðÞ � 0:5Þ ð2Þ

2.1c Adaptive random coefficient: It has been realized by

the past researchers that an adaptive a improves the

exploration in the beginning and exploitation in the final
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Figure 19. Performance plot of Levy Function for 16-D.

Figure 20. Performance plot of Levy Function for 32-D.

  121 Page 18 of 31 Sådhanå          (2021) 46:121 



stages of the FA. The following Equation (3) is used to

update a based on the value of initial randomness coeffi-

cient a0 value and current generation/iteration counter iter.

a ¼ a0 � 0:95iter ð3Þ

2.1d Partitioning the population: The initial population

of size pop with randomly assigned positions is partitioned

into two compartments based on w, which actually says

w� pop would go into FA compartment and the rest i.e.

ð1� wÞ � pop would go into the GA counterpart. This

essentially makes the number of total functional evaluations

same as that of the standard FA while improving the

exploration capability by applying integrated GA.

2.1e Genetic operators: The specific implementations of

genetic operators immensely influence the performance of

GA. In this real coded GA, RouletteWheel selection

mechanism is adopted. Uniform crossover as shown in

Equations (4) and (5), is implemented. with a crossover

probability of 0.8. Mutation operator is implemented by

taking average of a random fraction eðÞ in [0, 1] and pre-

vious value on the same dimension of position vector with a

mutation probability of 0.2 as presented in Equation (6).

Xchild1 ¼ Xparent1 � eðÞ þ Xparent2 � ð1� eðÞÞ ð4Þ

Xchild2 ¼ Xparent1 � ð1� eðÞÞ þ Xparent2 � eðÞ ð5Þ

Xmutated ¼
1

2
� ðXchild þ eðÞÞ ð6Þ

2.1f Unification before ranking: The position-updated

populations from the two compartments are unified and

ranked according to their newly computed light intensities

or fitness values. This approach is better than parallel

processing of FA and GA in two compartments without

mixing. This is because the current scheme i.e. unification

creates more chances to the newly evolved fireflies from

GA compartment to come to the mainstream FA and

thereby converge rapidly by following a local direction of

search.

2.2 Objective functions for testing

The new algorithm in three variants with 30%, 50% and

70% of w is tested on 19 benchmark functions [56, 57] as

illustrated in table 1 and the results are compared with that

of the standard FA and GA and some five state-of-the-art

meta-heuristic algorithms, namely PSO, CS, FPA, PFA,

and BBO. Here, the different variants of this algorithm is

used to study the impact of w on the overall performance. In

this study, three main indices used for comparison are mean

CPU time, mean number of functional evaluations and

mean value of objective function presented by the best

solution. The population size and maximum generation for

termination for the 2-D functions (function 1 to 10 in

table 1) are kept at 50 and 100 respectively. The respective

values are chosen as 200 and 300 for all 16-D and 32-D

functions (function 11 to 19 in table 1) for the enhanced

complexity of the problems. The number of independent

repeated trials is set at 30 for all the functions. The

parameter settings for all the algorithms are fixed as per the

values in table 2. To make the comparative study really

unbiased, all the algorithms are started with the same initial

random population set.

2.3 Engineering case study problems for testing

The algorithms have been also tested on some real world,

engineering case study problems which are described in the

following sub-sections:

Figure 21. Performance plot of Rastrigin Function for 16-D.

Figure 22. Performance plot of Rastrigin Function for 32-D.
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Figure 23. Performance plot of Rosenbrock Function for 16-D.

Figure 24. Performance plot of Rosenbrock Function for 32-D.
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Figure 25. Performance plot of Sphere Function for 16-D.

Figure 26. Performance plot of Sphere Function for 32-D.
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3.1a Design optimization of tension/compression helical
spring: In this case, the objective is to minimize the weight

of a helical spring under tension/compression. Design

variables for this case study are wire diameter (d), mean

coil diameter (D), and the number of active coils (N) (fig-
ure 2). Here, the constraints on shear stress, surge

frequency, and minimum deflection should be satisfied

during the weight optimization. The objective function and

the constraints of this problem can be formulated as

follows:

Consider x!¼ ½x1x2x3� ¼ ½dDN�;
Minimize f ð x!Þ ¼ ðx3 þ 2Þx2x12;
Subject to

g1ð x!Þ ¼ 1� x2
3x3

71785x14
� 0;

g2ð x!Þ ¼ 4x2
2 � x1x2

12566ðx2x13 � x14Þ
þ 1

5108x12
� 1 � 0;

g3ð x!Þ ¼ 1� 140:45x1
x22x3

� 0;

g4ð x!Þ ¼ 1� x1 þ x2
1:5

� 0

Ranges of variables

0:05� d� 2:00; 0:25�D� 1:30; 2:00�N � 15:00

Instead of choosing strict death penalty which often suffers

stagnation, this problem has been formulated by a modified

version of barrier penalty approach [58], which works by

adding weighted penalty values computed from the devia-

tions from all the constraints to the objective function

value. The initial population has been generated

Figure 27. Performance plot of Step (2) Function for 16-D.

Figure 28. Performance plot of Step (2) Function for 32-D.
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considering the feasible solution space defined by only the

individual bounds of the decision variables. The final

solution has also been checked for feasibility. The candi-

date which lies in the last generation of solutions matching

all the constraints with the best objective function value has

been selected as the solution.

3.1b Design optimization of 3-bar truss structure: This
problem can be regarded as one of the most studied cases in

constrained optimization works for bench-marking. Fig-

ure 3 illustrates the shape of the formulated 3-bar truss and

the related forces acting on this structure. Here, the design

space constitutes of two parameters: the area of bars 1 and

3, which is A1 and the area of bar 2, which is A2. The

objective of this problem is to minimize the total weight of

the structure. While solving this, the optimal design has to

satisfy several constraints including stress, deflection, and

buckling.This problem can be formulated mathematically

as follows:

Consider x!¼ ½x1x2� ¼ ½A1A2�;
Minimize f ð x!Þ ¼ ð2

ffiffiffi

2
p

x1 þ x2Þ � L;

Subject to

g1ð x!Þ ¼
ffiffiffi

2
p

x1 þ x2
ffiffiffi

2
p

x12 þ 2x1x2
P� r � 0;

g2ð x!Þ ¼ x2
ffiffiffi

2
p

x12 þ 2x1x2
P� r � 0;

g3ð x!Þ ¼ 1
ffiffiffi

2
p

x2 þ x1
P� r � 0

Ranges of variables

0:00�A1 � 1:00; 0:00�A2 � 1:00

where L ¼ 100 cm; P ¼ 2N=cm2; r ¼ 2N=cm2

This problem has been similarly modelled by adding pen-

alty values to the specific objective function value. The

initial population has been generated considering the fea-

sible solution space defined by both the individual bounds

of the decision variables and all the constraints to be

Figure 29. Performance plot of Sum Squares Function for 16-D.

Figure 30. Performance plot of Sum Squares Function for 32-D.
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Figure 31. Performance plot of Xin-She-Yang (1) Function for 16-D.

Figure 32. Performance plot of Xin-She-Yang (1) Function for 32-D.
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satisfied. The final solution has been checked for feasibility

defined by the bounds and constraints.

2.4 Statistical tests

As per the recommendation by Derrac et al [59], the non-

parametric Wilcoxon rank-sum statistical test with 95%

degree of confidence (5% degree of significance) is per-

formed along with experimental evaluations to detect any

significant differences between the attained results of dif-

ferent algorithms.

TOPSIS is one of the most popular MCDM tool and has

been successfully utilized for decision making across many

engineering domains. There are grossly two criteria for

relative comparison of all the meta-heuristic algorithms -

mean CPU time and mean objective function value com-

puted from 30 independent repeated runs with a specific

algorithm. The lower the time and value, the better is the

algorithm. The respective mean values for all the

Table 6. Comparison results of tension-compression spring

problem.

Algorithm d D N Optimal weight

BBO 0.0606 0.4437 11.5313 0.0220628

FPA 0.0524 0.3706 10.7119 0.0129143

PFA 0.0527 0.3662 11.3203 0.0135283

CS 0.0524 0.3474 14.0883 0.0153417

PSO 0.0597 0.5728 5.0634 0.0144132

GA 0.0624 0.6401 5.2427 0.0180378

FA1 0.0500 0.3167 14.2819 0.0128905

FA2 0.0519 0.3570 11.1812 0.0126753

FA3 0.0518 0.3589 11.1580 0.0126713
FA4 0.0518 0.3593 11.1387 0.0126619

Table 7. Comparison results of 3-bar truss structure problem.

Algorithm A1 A2 Optimal weight

BBO 0.7971 0.3875 264.193285

FPA 0.7963 0.3976 264.977011

PFA 0.7980 0.4082 266.533187

CS 0.7980 0.3834 264.046567

PSO 0.7938 0.4016 264.589298

GA 0.7976 0.3903 264.618029
FA1 0.7917 0.4073 264.638401

FA2 0.7971 0.3924 264.694955

FA3 0.7971 0.3914 264.638401

FA4 0.7886 0.4082 263.886308

Figure 33. Performance plot of tension-compression spring problem.
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dimensions (2-D, 16-D and 32-D) including the engineering

problems are used for comparative study.

3. Results and discussions

It should be mentioned that other than the improvement

areas mentioned earlier all the remaining equivalent design

and implementation is kept unaltered for all the algorithms

in test. The user defined constant parameters are also same

for all the algorithms. All the respective parameters and

their values are shown in table 2. The results for benchmark

objective functions and real engineering problems are dis-

cussed in the following subsections.

3.1 Results for benchmark objective functions

The population size and maximum number of iteration have

been kept 50 and 100 respectively, for all the meta-heuristic

algorithms for this lower dimension tests. It is clearly vis-

ible from comparison results of tests on 2D objective

functions tabulated in table 3, the new PUBG-FA performs

better in comparison with the standard FA and GA and it

outperforms most of the state-of-the-art algorithms tested in

this study. In case of Beale and Schaffer(6), FA3 has been

found to be most accurate optimizer, while for Zettl func-

tion FA2 has been the topmost performer. For rest of the 2D

functions, FA4 with the maximum (70%) weightage/dom-

inance of FA has been proved to be the most suit-

able blender. It performs satisfactorily well for all the

multimodal problems and specifically for functions like

Carrom Table and Easom with nearly flat like surfaces

containing very small central nadir area. In case of Acley

(1) and Zakharov, PFA produces the least objective func-

tion value with the new algorithm closely following it.

Figures 5 to 14 show the convergence plots of the algo-

rithms for the 2-D objective functions. The convergence

plots of the Carrom Table function and Easom function

reveal that standard GA and standard FA get trapped at

local minima, respectively. This clearly raises concerns

about using any one specific standard algorithm for the two

optimization problems. However, the new algorithm per-

forms well and finds the global minima, converging pretty

faster for both the optimization problems. It is clear from

the plots that all the algorithms start with the initial same

fitness dictated by the same initial population set design.

Working with the higher dimensional 16-D benchmark

function tests, the new algorithm is found to outperform all

the algorithms except for Rastrigin function (table 4).

Testing with the same group of functions on 32-D, has

produced similar kind of results in favour of the new

algorithm except for Rastrigin and Step (2) functions

(table 5). The minimum objective values (global mini-

mums) for all the functions tested are 0. For complexly

scattered multi-modal functions like Rastrigin and Rosen-

brock functions, where all the standard algorithms find it

hard to converge to the global minima, the new PUBG-FA

shows encouraging results. Figures 15 to 33 show the

convergence plots for the 16-D and 32-D objective func-

tions. Competitiveness of different algorithms for Alpine(1)

and Rastrigin functions is studied from the respective

graphs. They are complex, uniformly distributed multi-

modal functions with a single global minimum at 0. The

standard optimization algorithms are trapped at local min-

ima whereas the proposed FA variants avoid trapping into

local minima and converge rapidly. The impressive result is

due to the seamless hybridization of the two standard

algorithms enhancing both exploration and exploitation.

The same happens with Step (2) and Sum Squares function,

where the PUBG-FA is able to find competitive results

while most of the other algorithms including the standard

FA and GA seem to suffer from local optimization traps. In

case of Rastrigin function alone when tested on 16-D, the

new algorithm is preceded by FPA, PSO and BBO in the

ascending order of superiority. In the further higher

dimension of Rastrigin and Step (2) functions, BBO and

FPA has been found the best performer respectively. In all

the functions of higher dimensions too, PUBG-FA has

outperformed the standard algorithms FA and GA quite

consistently. The fast convergence rate of the new algo-

rithm is very much evident from all the convergence plots.

The success of PUBG-FA is due to the continuous

exchange of useful information between two complete sets

of different algorithms.

Even though, the variant with highest w (70%) as rep-

resented by FA4 is the overall best performer among all,

FA2 with the least weightage of FA (30%) shows com-

mendable performance when considered in terms of both

accuracy and speed of convergence. FA2 has seen com-

paratively higher success rates in the higher dimensions.

The most remarkable result is achieved while optimizing

the 16-D and 32-D Sphere, Step (2) and Sum Squares

functions, where it could draw a clear demarcation line ofFigure 34. Performance plot of 3-bar truss structure problem.
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quality between itself and the two standard algorithms used

as the constituents - FA and GA.

The average time taken and standard deviations are also

far less than that of the standard FA and for lesser w variant

it is very close to GA. The number of functional evaluations

for all the algorithms is logged and found same for all the

algorithms and it matches with the theoretically obtainable

values (D� N) i.e. 5000 and 60000 for the 2-D and higher

dimensional functions (16-D and 32-D) respectively.

The time complexity of the new algorithm is studied by

analytical method alongside plotting with a close watch on

the reported time of execution in logs. Considering N as the

population size the time complexity for the standard GA

and FA are in the order of Oð9N
2
þ 2N log ð2NÞÞ and OðN

2
�

ðN � 1Þ þ N logðNÞÞ respectively. The newly developed

PUBG-FA maintains an intermediate order of time as

regards the standard algorithms, which can be computed as

Oð9N
4
þ N

4
� ðN

2
� 1Þ þ 2N log ð2NÞÞ.

Table 8. p-values obtained in Wilcoxon rank-sum tests on 2-D functions with 5% significance.

BBO FPA PFA CS PSO GA FA1 FA2 FA3 FA4

Ackley (1) 1.68E-04 1.66E-04 1.69E-04 1.68E-02 3.68E-04 1.76E-04 1.09E-04 2.12E-04 1.09E-04 1.13E-04

Beale 1.66E-03 1.68E-04 1.28E-04 2.23E-02 4.09E-04 1.76E-04 1.87E-04 6.65E-04 1.87E-04 4.39E-04

Carrorm Table 1.76E-03 1.21E-03 1.23E-03 2.23E-02 1.21E-03 1.18E-03 5.10E-03 6.62E-04 5.10E-03 4.43E-03

Easom 1.56E-03 1.18E-03 1.38E-03 2.46E-02 1.18E-03 7.44E-03 8.44E-03 1.84E-02 2.35E-02 7.06E-03

Goldstein-Price 1.57E-02 4.45E-04 1.31E-03 1.98E-02 4.45E-04 7.44E-03 1.94E-03 1.94E-03 1.78E-03 1.18E-03

Michalewicz 1.20E-02 1.32E-03 3.22E-04 1.76E-02 3.22E-04 5.54E-04 3.40E-04 3.40E-04 6.75E-04 6.54E-04

Schaffer (6) 1.20E-02 7.16E-03 1.62E-04 1.99E-02 1.62E-04 5.54E-04 4.24E-04 4.24E-04 1.83E-04 4.24E-04

Xin-She-Yang (3) 3.12E-03 5.17E-04 1.69E-05 1.47E-04 1.69E-05 1.45E-05 2.09E-04 2.09E-04 9.42E-05 2.09E-04

Zettl 1.31E-02 9.18E-04 1.77E-04 1.65E-02 1.77E-04 6.52E-04 5.43E-04 3.97E-04 5.43E-04 1.20E-04

Zakharov 1.12E-03 1.57E-04 1.57E-04 1.51E-02 1.57E-04 2.57E-04 5.65E-03 8.11E-03 4.10E-03 7.72E-03

Table 9. p-values obtained in Wilcoxon rank-sum tests on 16-D functions with 5% significance.

BBO FPA PFA CS PSO GA FA1 FA2 FA3 FA4

Alpine (1) 1.00E-03 3.36E-02 2.12E-03 4.16E-03 2.07E-03 5.66E-03 2.54E-02 1.33E-02 3.37E-02 3.05E-02

Dixon-Price 3.44E-03 3.53E-03 2.07E-02 3.44E-02 3.32E-02 2.44E-02 2.79E-02 1.90E-02 1.61E-03 1.17E-02

Levy 1.67E-03 4.11E-03 9.80E-03 2.40E-02 1.59E-02 6.32E-03 6.58E-03 1.33E-02 1.44E-02 4.37E-03

Rastrigin 2.92E-02 1.86E-02 2.54E-02 2.45E-02 8.91E-03 2.21E-02 2.68E-02 1.65E-03 8.12E-03 1.91E-02

Rosenbrock 1.22E-02 1.15E-02 2.90E-02 2.55E-02 3.09E-02 1.79E-03 2.45E-02 1.36E-02 1.17E-02 2.27E-02

Sphere 6.00E-03 3.03E-02 1.78E-03 3.11E-02 2.64E-02 3.10E-02 3.26E-02 2.74E-02 4.53E-03 8.83E-03

Step (2) 1.26E-02 9.23E-03 3.00E-03 7.41E-03 1.88E-02 1.91E-02 2.51E-03 2.11E-02 1.42E-02 1.67E-02

Sum Squares 8.98E-03 3.37E-02 2.71E-02 1.43E-02 2.79E-03 3.43E-02 1.76E-02 1.40E-02 1.60E-02 1.31E-02

Xin-She-Yang (1) 2.10E-02 2.55E-02 1.95E-02 8.49E-03 2.54E-02 8.36E-03 5.53E-04 2.75E-02 5.19E-03 1.88E-02

Table 10. p-values obtained in Wilcoxon rank-sum tests on 32-D functions with 5% significance.

BBO FPA PFA CS PSO GA FA1 FA2 FA3 FA4

Alpine (1) 3.43E-03 7.65E-03 1.74E-02 3.43E-03 2.08E-03 5.43E-03 1.43E-03 2.91E-03 9.88E-03 7.75E-03

Dixon-Price 1.89E-03 1.76E-03 5.11E-03 2.33E-03 4.30E-03 1.38E-03 7.56E-03 1.78E-03 7.89E-03 6.89E-03

Levy 1.53E-03 1.19E-03 2.90E-03 5.67E-02 1.21E-03 4.34E-03 5.44E-03 7.87E-03 4.17E-03 6.34E-03

Rastrigin 1.15E-02 1.81E-02 3.18E-02 1.34E-02 1.90E-02 2.74E-02 4.55E-02 2.12E-02 2.32E-02 2.44E-02

Rosenbrock 5.60E-02 6.56E-04 3.31E-02 1.77E-02 1.28E-03 7.72E-03 1.43E-03 1.47E-03 1.65E-03 1.00E-03

Sphere 1.17E-02 1.07E-03 3.97E-03 1.79E-02 6.62E-03 7.54E-03 2.21E-03 5.64E-03 6.12E-03 6.55E-03

Step (2) 1.65E-03 1.99E-03 3.97E-03 1.67E-02 1.00E-03 6.58E-03 2.19E-03 3.76E-03 5.61E-03 2.24E-03

Sum Squares 3.09E-03 1.16E-03 3.54E-03 1.74E-02 5.58E-03 7.46E-03 2.53E-03 5.34E-03 7.71E-03 1.09E-03

Xin-She-Yang (1) 1.52E-03 1.85E-03 2.44E-03 1.89E-02 7.72E-03 8.78E-03 3.22E-03 9.12E-03 5.88E-03 1.20E-03
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Figure 4 shows the plotting of time complexity of the

new algorithm (FA3) along with that of the constituents

used. It is evident from the mean CPU time tabulated in the

table 4, all the variants of the new algorithm has an inter-

mediate time complexity between standard GA and FA1

(standard FA). The fitness convergence plots against

elapsed computation time for all the function tests and case

studies are separately available as supplementary files

(Figures. S1 to S30).

3.2 Results of engineering case study problems

The new algorithm has shown clear supremacy in dealing

with constrained optimization problems when entrusted to

solve two real engineering case studies. Population size and

maximum number of iterations have been set as 200 and

300 respectively for the tension-compression spring prob-

lem having three variables. The FA4 variant of PUBG-FA

has been able to expose the best solution with optimal

weight satisfying all the constraints. The comparison results

obtained in this study are tabulated in table 6. Similarly, the

3-bar truss optimization problem has been solved by all the

algorithms using population size and maximum iteration

number as 50 and 100 respectively. Here also, FA4 has

been the topmost performer producing the least objective

value. The results shown in table 7 indicate a total supre-

macy of all the variants of the new algorithm in the context

of this particular case study. The performance plots for the

engineering case studies are shown in figures 33 and 34.

This proves that the new algorithm is aptly suitable in

handling real world constraints besides achieving global

optimization.

3.3 Results of statistical tests

The results of non-parametric Wilcoxon rank-sum tests are

tabulated in tables 8, 9, and 10 for 2-D, 16-D and 32-D

benchmark functions respectively. The p-values are all

below 0.05 (with 5% significance) and thus confirm that

there is no significance differences in the results obtained in

independent trials. The final ranks obtained by applying

TOPSIS considering all the test scenarios are shown in

table 11. It shows that FA2 and FA3 variants of PUBG-FA

are the two top performing algorithms followed by PSO and

GA. The other variant of the new algorithm - FA4 is

assigned the 5th overall rank. Equal weights are given for

all the objective functions and problems whereas ratio of

weights of computation time to objective value is chosen as

1:3.

4. Conclusions

In this paper, a new algorithm PUBG-FA is proposed,

which first partitions the population in two compartments

for running a slightly modified FA and standard GA. Then

it unifies the worked-upon sub-populations of two com-

partments and finally ranks the fireflies before going into

next generation. The new algorithm is experimented with

three variants of weightage, w which determines the per-

centage of total population belonging to FA chamber. This

is tested on 19 different benchmark optimization functions,

the first 10 of which are used as 2-D functions and the rest

are run separately as 16-D and 32-D functions. The results,

when compared with the standard FA and GA, show the

algorithm is significantly more efficient with faster con-

vergence than the standard FA and lower minimal values

than the two. The new algorithm is also compared with

some of the state-of-the-art meta-heuristic algorithms on

the same functions and encouraging results are observed. A

popular MCDM tool TOPSIS reveals that the new variants

are very competitive and successfully outperform some

renowned algorithms in majority of the cases.

Meta-heuristic algorithms are not panacea. It has been

exhibited that different optimization problems suit different

techniques ranging from simple classical optimization

methods to complex meta-heuristic and population-based

Table 11. Results of TOPSIS conducted on all the algorithms. Equal weights for all functions. Weights for time:objective value = 1:3.

Algorithm

2-D benchmarking 16-D benchmarking 32-D benchmarking Engineering optimization Overall performance

Score Rank Score Rank Score Rank Score Rank Score Rank

BBO 3.33E-01 10 9.18E-01 2 9.59E-01 1 4.76E-01 9 4.95E-01 10

FPA 8.19E-01 6 9.14E-01 3 8.87E-01 4 4.46E-01 10 8.34E-01 6

PFA 6.22E-01 9 6.13E-01 8 5.84E-01 8 8.93E-01 2 6.15E-01 8

CS 6.85E-01 8 3.29E-01 10 3.21E-01 10 5.65E-01 6 5.38E-01 9

PSO 8.94E-01 5 9.46E-01 1 9.18E-01 2 8.47E-01 4 9.05E-01 3
GA 9.56E-01 2 8.00E-01 7 7.98E-01 7 5.60E-01 7 8.68E-01 4

FA1 6.98E-01 7 5.20E-01 9 5.16E-01 9 5.56E-01 8 6.24E-01 7

FA2 9.69E-01 1 8.97E-01 4 9.09E-01 3 9.38E-01 1 9.35E-01 1
FA3 9.47E-01 3 8.67E-01 5 8.69E-01 5 8.48E-01 3 9.08E-01 2
FA4 9.10E-01 4 8.11E-01 6 8.10E-01 6 7.46E-01 5 8.62E-01 5
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evolutionary algorithms. The methodology adopted in this

study can be seen as a new approach of dealing with

multiple population based meta-heuristic algorithms col-

laboratively for solving a particular optimization problem.

This work has some prompting directions pertaining to the

future works as follows:

• The same hybridization schema can be rigorously

explored in future considering other combination of

some of the top performing evolutionary algorithms

like PSO, FPA, BBO, etc.

• The new PUBG-FA can be further tailored for new

practical problems associated with social and engi-

neering domain, e.g., preservation of privacy in social

networks, the multicast vehicle routing, and parameter

tuning in training of machine learning and artificial

intelligence models.

Abbreviations

GA Genetic algorithm

FA Firefly algorithm

PUBG-FA Partition cum unification based genetic - FA

PSO Particle swarm optimization

CS Cuckoo search

FPA Flower pollination algorithm

PFA Pathfinder algorithm

BBO Bio-geography based optimization

MCDM Multi-criteria decision making

TOPSIS Technique for order of preference by

similarity to ideal solution
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flights. In 2009 World congress on nature & biologically
inspired computing (NaBIC), p 210. IEEE, 2009

[48] R Indumathy, S Uma Maheswari, and G Subashini. Nature-

inspired novel cuckoo search algorithm for genome sequence
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