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Abstract. In this paper, a multicriteria design framework for variable thickness isotropic plates using the

adaptive weighted sum method is developed. The design objectives are the minimization of weight and static

displacement and the design variables are the elemental thicknesses of plates modelled using finite elements.

Here, the multicriteria optimization framework is constructed by integrating the finite element method, ana-

lytical sensitivity technique along with optimization algorithms. The first-order shear deformation theory is used

in the static and dynamic analyses of plates. Both single and multiobjective optimization studies are conducted

to study the optimal thickness distributions of variable thickness plates under static and dynamic constraints. To

study multicriteria optimization of plates, the weighted sum method is first applied which gives sparsely

distributed Pareto optimal solutions. Then, the adaptive weighted sum method is employed where a coarser

representation of Pareto optimal solutions is generated using the weighted sum method and less populated

regions are identified for further refinement. The suboptimization problems are solved in these regions to

determine a new set of Pareto optimal solutions. The Pareto optimal curves obtained using the adaptive weighted

sum method are also compared with the conventional weighted sum method under different constraints. The

effect of boundary conditions on the Pareto optimal solutions and thickness distributions of plates is also

investigated.

Keywords. Multicriteria optimization; Weighted sum method; Adaptive weighted sum method; Pareto front;

Variable thickness plate; Finite elements.

1. Introduction

Structural design process using mathematical models is

extensively used in aircraft, automotive and civil industries

for the design and development of its structures. It consists

of structural modeling, design parameterization, finite ele-

ment analysis, design sensitivity analysis and design opti-

mization. In general, the structural design optimization

problems are formulated as a single objective under certain

behaviour constraints. However, in practical applications,

considering only one objective function rarely gives a

representative measure of the performance of the structure.

There exist several design objectives (usually conflicting)

which must be considered in the optimal design of struc-

tures. In order to include many design objectives, one can

solve each single objective optimization sequentially.

However, this method cannot find an optimal solution

because only one objective is solved in each optimization

process. These objective functions should be optimized

simultaneously to obtain solutions. Here, the interaction

among objectives gives rise to optimal solutions that trade

different objectives against each other. In multicriteria

optimization, there may not exist a solution that is best with

respect to all objectives. Instead, these are equally good

solutions which are known as Pareto optimal solutions or

non-dominated solutions. Here, an effort is first made to

find a set of trade-off optimal solutions. After a set of such

trade-off solutions is found, the decision maker then uses

higher level qualitative considerations to make a choice of

solution.

Many optimization studies have been conducted by the

researchers earlier considering weight (cost) or perfor-

mance of the structures (static displacement, fundamental

frequency or buckling load) as a single design objective.

Armand [1] analytically addressed the minimum weight

design of a simply supported, rectangular shear plate with

a prescribed fundamental frequency of free vibration. He

extended the classical methods of optimal control theory

to a two-dimensional structural optimization problem.

Kamat [2] optimized thin rectangular plates for optimum

fundamental frequency using the finite element approach.

The results suggested the non-uniqueness of solutions,*For correspondence
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and explained about the difficulty in determining a true

global optimum. Haug et al [3, 4] studied the optimal

design of structures with a natural frequency constraint

using the generalized steepest descent method. He also

studied optimization of a simply supported square plate

using a collocation technique wherein only a finite

number of structural elements were used. The sensitivi-

ties were evaluated by using finite difference techniques.

Leal and Soares [5] discussed the capacities of the mixed

finite element method in optimization of bending of

plates. Three different methods of sensitivity analysis

namely analytical, semi-analytical and finite difference

methods were used for the optimal design of bending of

plates. The ADS (Automated Design Synthesis) program

was used to optimize the weight of structure by consid-

ering plate thickness as design variable under displace-

ment, natural frequency and stress constraints. Grandhi

et al [6] discussed the minimum weight design of iso-

tropic plate structures with single and multiple frequency

constraints, using the generalized compound scaling

algorithm for reaching the optimum. Moradi et al [7]

discussed the maximization of fundamental frequency of

rectangular orthotropic composite plates subject to an

equality constraint on plate volume and inequality con-

straints on the lower and upper bounds of allowable

range of thicknesses using nonlinear constrained opti-

mization theory. Hinton et al [8] studied thickness opti-

mization of variable thickness isotropic plates and shells

by integrating Coons patch technique for thickness defi-

nition, structural analysis using the finite element method,

sensitivity evaluation using the global finite difference

method and the sequential quadratic programming

method. Both strain energy and weight minimization of

plates and shells were investigated with constraints on

volume and von Mises stresses respectively and optimal

thickness variations were obtained under different load-

ing, boundary and design variable linking conditions.

Later, Hinton et al [9, 10] also developed a computa-

tional tool for structural shape optimization of isotropic

shells and folded plates using curved, variable thickness

finite strips in which the strain energy or the weight of

the structure was minimised subject to certain constraints.

Optimal shapes were presented for various shells and

folded plates of variable thickness resting on elastic

foundation. Narita and Robinson [11] used layerwise

optimization approach to determine the optimum fiber

orientation angles for the maximum fundamental fre-

quency of cylindrically curved laminated panels under

general edge conditions. Faria and Almeida [12] studied

buckling optimization of variable thickness plates where

the variability in the loading distribution was also taken

into account. A min–max strategy was used to handle the

loading variability such that the resulting optimal design

could withstand an entire class of linear piecewise

loadings. Pyrz [13] investigated optimal material distri-

bution of plates by minimizing the structural strain

energy under constant volume constraint. He imple-

mented genetic algorithms to study the optimal design of

piecewise constant thickness plates subjected to bending.

In multi-objective optimization studies, different metrics

frequently require different optimal designs. Several mul-

tiobjective optimization studies on plates and shells have

been conducted by the researchers to improve the perfor-

mance of the structures. Topal and Uzman [14] studied

multiobjective optimization of symmetrically angle-ply

square laminated plates subjected to biaxial compressive

and uniform thermal loads. The design objective was the

maximization of the buckling load for a weighted sum of

the biaxial compressive and thermal loads for a given

laminate by optimally determining the fiber orientation.

The modified feasible direction (MFD) method was used

for all optimization studies. The effect of weighting factors,

number of layers, aspect ratios, load ratios and boundary

conditions on the optimal design was also investigated.

Topal [15] investigated multiobjective optimization of

laminated cylindrical shells under external load. The design

objective was to maximize a weighted sum of the frequency

and buckling load for a given laminate by optimally

determining the fiber orientation. The effect of different

weighting ratios, shell aspect ratio, shell thickness-to-radius

ratios and boundary conditions on the optimal designs was

also investigated. Walker [16] studied multiobjective

design of laminated plates for maximum stability using the

golden section method along with the finite element

method. The objective of the design optimization problem

was to maximize a weighted sum of the critical buckling

load and resonance frequency for a given laminate thick-

ness by optimally determining the fibre orientation. Walker

and Smith [17] investigated multiobjective optimization of

laminated composite plates using genetic algorithms along

with the finite element method. The design objective was to

minimise a weighted sum of the mass and deflection of fibre

reinforced structures with fibre orientations and laminae

thicknesses as discrete design variables. Results were

investigated for different load distributions, aspect ratio,

and various combinations of clamped, simply supported

and free boundary conditions. Abouhamze and Shakeri [18]

presented a multi-objective optimization strategy for opti-

mal stacking sequence of laminated cylindrical panels with

respect to the fundamental frequency and critical buckling

load, using the weighted summation method. To improve

the speed of the optimization process, artificial neural net-

works were used to reproduce the behavior of the structure

both in free vibration and buckling conditions. A genetic

algorithm was used for all optimization studies. Serhat and

Basdogan [19] presented a multi-objective design

methodology for laminated composite plates with dynamic

and load-carrying requirements. Lamination parameters

were used to characterize laminate stiffness matrices. The

weighted sum method was used to maximize the funda-

mental frequency, buckling load and equivalent stiffness

metrics to improve the dynamic and load carrying
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performance of laminated composite plates. Kim and Park

[20] introduced an interactive multiobjective optimization

technique called satisficing trade-off method to avoid dif-

ficulty in parameter selection for updating finite element

model. Nicholas et al [21] investigated multiobjective

optimization of laminated composite plates using genetic

algorithms (NSGA II). The design objective was to maxi-

mize buckling load factor and minimize weight of com-

posite structures with fibre orientations, stacking sequence

and number of layers as design variables. Grandhi et al [22]
discussed multiobjective optimization of large-scale struc-

tures using compound scaling algorithm. The behavioral

constraints such as stress, displacement and fundamental

frequency were treated as objectives to get the Pareto

optimal front. A reliability based decision criterion was

used for selecting the best compromise design. Borri and

Speranzini [23] discussed the multicriteria optimization

design of laminated composite shells based on analytical

optimization methodology (trade-off method). Two objec-

tive functions, the maximum displacement and the total

volume of the uniform thickness composite structures were

considered to determine the Pareto-optimal curve. Madeira

et al [24, 25] discussed the optimal design of laminated

composite panels with objectives as minimization of weight

and maximization of modal damping. The design variables

were the number and position of constrained layer damping

(CLD) treatments on the surface of the laminated plate. The

problem was solved using Direct Multi Search solver and

trade-off Pareto optimal fronts and the respective treatment

configurations were obtained.

From the above literature, it can be observed that the

conventional weighted sum method has been extensively

used to solve various multicriteria optimization problems of

plates and shells. Since, there are no general rules for

selecting the weighting factors, optimization problems need

to be solved repeatedly by varying the values of weighting

factors which is very time consuming. Further, continuous

variation of the weighting factors does not guarantee

complete representation of Pareto optimal solutions and

also it is not possible to obtain solutions in non-convex

regions of the Pareto front.

In this work, a multicriteria optimization technique for

variable thickness plates based on the adaptive weighted

sum method is presented to avoid such difficulty. To the

authors’ best knowledge this technique has not been

attempted by the researchers to study multicriteria opti-

mization of variable thickness plates and shells. In this

technique, an adaptive weighing factor selection procedure

is adopted, which effectively determines a fairly well dis-

tribution of Pareto optimal solutions on a Pareto front. This

technique can also be applied to optimization problems

with both convex and non-convex Pareto front. The com-

plete optimization framework is constructed by integrating

the finite element method, analytical sensitivity technique

along with optimization algorithms. The finite element

formulation of plate is done using the first order shear

deformation theory and an analytical design sensitivity

technique is employed to evaluate the derivatives of

objective and constraint functions. To formulate multicri-

teria optimization problems, two objectives, the mini-

mization of weight (cost) and static deflection

(performance) are considered with variable thicknesses of

plate as design variables. First, a coarser representation of

Pareto solutions is generated using the weighted sum

method and sparsely populated regions are identified for

further refinement. The suboptimization problems are

solved in these regions to determine a new set of optimal

solutions by applying additional inequality constraints in

the objective space. The applicability of the present

approach is demonstrated by solving Pareto optimal solu-

tions for variable thickness plates under various constraints

and boundary conditions. The Pareto optimal curves

obtained using the adaptive weighted sum method are also

compared with the conventional weighted sum method

under different constraints.

2. Multicriteria optimization model

Multicriteria optimization of variable thickness isotropic

plates is formulated by considering two objectives, the

minimization of weight (cost) and static displacement

(performance) with constraints on fundamental frequency

and maximum displacement. Here, the structural domain is

discretized into finite elements and the thickness of each

element is treated as a design variable. The equations for bi-

objective optimization of plates can be written as:

Minimize F1 ¼ q
PNE

i¼1

aihi

F2 ¼ dmax

subjected to g1 ¼ dmax � dlim � 0

g2 ¼ xd � xf � 0

and hL � hi � hU

ð1Þ

where F1 and F2 are two objective functions to be mini-

mized and g1 and g2 are two inequality constraints. NE
denotes the number of finite elements whereas ai and hi
represent the area and thickness of each element of the plate

respectively.dmax and xf are the maximum nodal dis-

placement and the fundamental frequency whereas dlim and

xd are their permissible values respectively. hL and hU are

the lower and upper limits of each design variable. In the

following sections, both weighted sum and adaptive

weighted sum methods are discussed to find Pareto optimal

solutions.

2.1 Weighted sum method

Multicriteria optimization of plates can be represented as a

single objective optimization problem by scalarization

Sådhanå           (2021) 46:82 Page 3 of 17    82 



using the weighted sum method. Here, the single objective

optimization problem is formulated as a sum of objective

functions Fi multiplied by weighting coefficients ai. Hence,
bi-objective optimization of plates can be represented using

the weighted sum method as [26]:

Minimize a1F1 þ a2F2

subjected to g1 ¼ dmax � dlim � 0

g2 ¼ xd � xf � 0

and hL � hi � hUði ¼ 1; . . .;NEÞ
ða1; a2Þ 2 0; 1½ �

ð2Þ

The normalization of the weighting coefficients can be

performed as:

a1 þ a2 ¼ 1 ð3Þ

As different objective functions can have different

magnitudes, the normalization of objectives is generally

done to get a Pareto optimal solution consistent with the

weights. In the case of bi-objective optimization, the

objective functions are normalized as:

Fi ¼
Fi � FU

i

FN
i � FU

i

ð4Þ

where the normalized objectives Fi [ [0 1], use the same

design space with the non-normalized ones. Here, FU
i and

FN
i are the utopian and nadir points defined as:

FU
i ¼ F1 h1�

� �
;F2 h2�

� �� �
;

FN
i ¼ max Fi h

1�� �
;Fi h

2�� �� �

where hi� is the optimal solution vector for single objective

optimization of Fi.

By varying the weights, it is possible to generate a set of

Pareto optimal solutions for Eq. (2). Here, every combi-

nation of weighting coefficients corresponds to a single

objective optimization problem. The sequential quadratic

programming algorithm is used to solve the single objective

optimization problems in MATLAB. Each optimization

problem gives an optimal solution on a Pareto front. Thus, a

set of Pareto optimal solutions is generated by solving

optimization problems using a predefined set of weighting

coefficients.

2.2 Adaptive weighted sum method

The adaptive weighted sum method is an extension of

the conventional weighted sum method. This method

increases the number of solutions on a Pareto front by

changing weights adaptively. Here, it approximates the

shape of the Pareto curve more effectively by putting

computational effort in the region where new solutions

are most required. Thus, the proposed method provides

relatively uniformly spaced and widely distributed

Pareto front for multicriteria optimization of variable

thickness plates. This technique also helps to find

Pareto optimal solutions in non-convex regions which

cannot be found using the conventional weighted sum

method [27].

Figure 1 shows the procedure used for bi-objective

optimization of plates based on the adaptive weighted

sum method. First, the weighted sum method is con-

ducted to obtain a coarse profile of a Pareto front. Then,

the Euclidian distances are calculated between neigh-

boring solutions on the Pareto front and sparsely popu-

lated regions are identified for further refinement. These

regions are now the feasible regions for suboptimization

with additional constraints in the objective space. Here,

two additional inequality constraints are formed in each

region parallel to the objective function axes such that

their distances from the solutions are d1 and d2 in the

inward directions of F1 and F2. The suboptimization

problem is solved in each region using the weighted sum

method, and a new set of solutions is obtained. Again,

new regions are identified for further refinement by cal-

culating the distances between two neighboring solu-

tions. This procedure is repeated until the segment length

in all the regions converge to a pre-defined maximum

length. The step-by-step procedure for bi-objective

optimization of plates using the adaptive weighted sum

method is given below.

Step 1: Construct the normalized objective function �Fi in

the objective space.

Step 2: Conduct multicriteria optimization of plates

using the conventional weighted sum method. Initially, use

a small number of divisions, nint(nint ¼ 4� 6) and find the

uniform step size of the weighting factor a as:

Daint ¼
1

nint
ð5Þ

Note that a large step size,Daint, leads to small number of

solutions.

Step 3: Calculate the distances between two neighboring

solutions and identify the regions for refinement. Remove

nearly overlapping solutions which generally occurs with

the weighted sum method. If the Euclidian distances are

very small between these solutions (less than the tolerance),

then only one solution is kept to represent the Pareto front.

Step 4: Calculate the number of refinements required in

each region based on the relative length of the segment as:

ni ¼ roundoff C
li
lavg

� �

ð6Þ

where ni denotes the number of refinements required for the

ith segment, li is the length of the ith segment and lavg is the

average length of all the segments. The function ‘roundoff’
gives the nearest integer. Here, C is a constant multiplier

whose value is considered between 1 and 2. If, in any

segment ni � 1, no further refinement is required in the

segment. If ni [ 1, go to the next step. Note that more
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refinement is required if the length of segment is longer

relative to the average length of all segments.

Step 5: Calculate the offset distances between the two

end points of each segment. First, a piecewise linearized

secant line is drawn between the points, A1 and A2. Then,

the offset distance (dO) is defined along the piecewise

linearized Pareto front which determines the final dis-

tribution of Pareto solutions. To find the offset distances

parallel to the objective axes, the angle h can be defined

as:

h ¼ tan�1 �Ay
1 � Ay

2

Ax
1 � Ax

2

� �

ð7Þ

where Ax
i and Ay

i are the x and y locations of the end points,

A1 and A2, respectively, in the objective space. Then, d1
and d2 are calculated using dO and h as:

d1 ¼ dO cos h and d2 ¼ dO sin h

Step 6: Perform suboptimization by applying additional

inequality constraints in each feasible region using the

weighted sum method. The feasible region is offset from A1

and A2 by the distances of d1 and d2 in the inward directions
of F1 and F2 as shown in figure 1 (b). The suboptimization

problem in each region can be defined as:

Minimize aF1 þ 1� að ÞF2

subjected to F1 �Ax
1 � d1

F2 �Ay
2 � d2

and
gi � 0 ði ¼ 1; 2Þ

hL � hi � hU ði ¼ 1; . . .;NEÞ
a 2 0; 1½ �

ð8Þ

where Ax
i and Ay

i are the x and y positions of the end points

and d1 and d2 are the offset distances calculated in Step 5.

The uniform step size of the weighting factor ai for each
feasible region is calculated based on the number of

refinements ni as:

Dai ¼
1

ni
ð9Þ

Step 7: Calculate the segment lengths between all the

neighboring solutions and remove nearly overlapping

solutions. If any segment length is greater than the defined

maximum length, go to Step 4. Terminate the optimization

process if all segment lengths are less than the defined

maximum length.

3. Design sensitivity estimation

The present gradient based optimization approach requires

the estimation of the derivatives of various functions with

respect to design variables. In this study, an analytical

approach for the design sensitivity analysis of variable

thickness plates is considered. Here, the sensitivity

parameter of interest is the thickness of each element of

plate modelled using the finite element method. The finite

element formulation of plate is done based on the first order

shear deformation theory [28].

3.1 Sensitivity estimation for static deflection

For the linear static analysis of variable thickness plates,

the governing finite element equations can be expressed

as:

KijDj ¼ fi i; j ¼ 1; 2; . . .;Nð Þ ð10Þ

where Kij is the global stiffness matrix, fi is the external

load vector and Dj is the displacement vector. N denotes the

total number of degrees of freedom of the system.

The derivatives of displacement with respect to design

variables xr can be obtained by differentiating Eq. (10) as

[29]:

Figure 1. The bi-objective optimization procedure based on adaptive weighted sum method.
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KijD
;r
j ¼ f ;ri � K ;r

ijDj i; j ¼ 1; 2; . . .;N; r ¼ 1; 2; . . .;Rð Þ
ð11Þ

where, D;r
j , K ;r

ij and f ;ri represent the derivatives of dis-

placement vector, stiffness matrix and force vector with

respect to design variables. Here, R denotes the total

number of design variables which is equal to the total

number of finite elements (NE) considered in the analysis.

The calculation of D;r
j requires K ;r

ij which can be computed

analytically or by using the finite difference technique. It is

preferred to evaluate the derivatives analytically, since it

will reduce considerable computation time during the

optimization process. If the external force is independent of

design variables, the term f ;ri becomes zero.

3.2 Sensitivity estimation for free vibration

For the free vibration analysis of variable thickness plates,

the governing finite element equations can be expressed as:

ðKij � kkMijÞ/k
j ¼ 0 i; j; k ¼ 1; 2; . . .;Nð Þ ð12Þ

where Kij and Mij are the global stiffness and mass matrices

respectively. /k
j is the kth mode shape and kk is the kth

eigenvalue with the corresponding natural frequency

kk ¼ x2
k .

The derivatives of eigenvalue with respect to design

variable xj can be obtained by differentiating Eq. (12) as

[30]:

Kij � kkMij

� �
/k;r
j þ K ;r

ij � kkM
;r
ij � k;rk Mij

� 	
/k
j ¼ 0

i; j; k ¼ 1; 2; . . .;N; r ¼ 1; 2; . . .;Rð Þ
ð13Þ

where, M;r
ij , /

k;r
j and k;rk represent the derivatives of mass

matrix, kth mode shape vector and eigenvalue with respect

to design variables respectively.

Pre-multiplying the above equation by /kT

i and applying

the equilibrium condition of Eq. (12) along with mass-

orthonormality condition (i.e. /kT

i Mij/
k
j ¼ 1), the expres-

sion for the eigenvalue derivatives can be written as:

k;rk ¼ /kT

i K ;r
ij � kkM

;r
ij

� 	
/k
j

i; j; k ¼ 1; 2; . . .;N; r ¼ 1; 2; . . .;Rð Þ
ð14Þ

Hence, the design sensitivity of natural frequency kk ¼
x2

k with respect to design variables xr can be calculated as:

x;r
k ¼ 1

2xk
k;rk k ¼ 1; 2; . . .;N; r ¼ 1; 2; . . .;Rð Þ ð15Þ

The above sensitivity formulation is applicable to

structural system having real and distinct eigenvalues. In

this work, the sensitivity of the lowest natural frequency

(fundamental frequency) of variable thickness plates is

considered which is real and distinct.

4. Numerical studies

The multicriteria optimization procedures discussed in the

preceding sections are employed to demonstrate the optimal

behavior of variable thickness square isotropic plates. The

dimensions and material properties of the isotropic square

plate are given below:

E ¼ 207 GPa; v ¼ 0:3; q ¼ 7940:324Kg=m3; a ¼ b
¼ 0:254 m

First, the design sensitivities of responses with respect to

elemental thickness of square isotropic plates are presented

under static and dynamic conditions. Then, single objective

weight optimization of variable thickness plates is

demonstrated under static and dynamic constraints. The

optimal weight and thickness distributions obtained from

the present approach are also compared with those avail-

able in the literature. Finally, multicriteria optimization of

plates is studied to obtain Pareto optimal solutions con-

sidering weight and static response as objectives under

static and dynamic constraints. The capability of both

weighted sum and adaptive weighted sum methods are also

discussed. The effect of different boundary conditions on

the optimum thickness distributions of plates is also

presented.

4.1 Sensitivity studies of variable thickness plates

In this section, the sensitivities of maximum displacement

and fundamental frequency of square isotropic plates are

calculated considering thickness of each element as design

variable under various boundary conditions. The plate is

discretized into 20x20 finite elements (NE) which corre-

sponds to 400 design variables.

First, the sensitivities of maximum displacement and

fundamental frequency of all edges simply supported

(SSSS) plates are shown in figure 2. The maximum dis-

placement derivatives are obtained considering uniformly

distributed load of magnitude 68948 N/m2. It can be seen

from the figure that the maximum value of fundamental

frequency sensitivity is observed around the center and at

the corners of the plate. Contrary to the case of fundamental

frequency, the maximum value of displacement sensitivity

appears around the center of the plate. A very low dis-

placement sensitivity value is also observed at the corners

of the plate.

The sensitivities of maximum displacement and funda-

mental frequency of all edges clamped (CCCC) and can-

tilever (CFFF) plates are also studied and shown in

figures 3 and 4, respectively. The maximum displacement
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(a)                                (b)
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Figure 2. Sensitivities of response due to thickness variation in each element of simply supported (SSSS) plate (a) maximum

displacement, (b) fundamental frequency.
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Figure 3. Sensitivities of response due to thickness variation in each element of clamped (CCCC) plate (a) maximum displacement and

(b) fundamental frequency.
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Figure 4. Sensitivities of response due to thickness variation in each element of cantilever (CFFF) plate (a) maximum displacement,

(b) fundamental frequency.
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derivatives are obtained considering uniformly distributed

load of magnitudes 206844 N/m2 and 2068.44 N/m2 acting

on clamped and cantilever plates respectively. It is

observed that a very high value of fundamental frequency

sensitivity appears near the boundary edges of the clamped

plate with a low sensitivity value around the center of the

plate. Contrary to the case of fundamental frequency, a high

displacement sensitivity appears around the center of the

clamped plate with a very small sensitivity value near the

boundary edges of the plate. In the case of cantilever plates,

a high value of displacement and fundamental frequency

sensitivities exist near the root which decrease as we move

towards the tip of the plate.

4.2 Single objective optimization of variable
thickness plates

In this section, single objective optimization of variable

thickness square isotropic plates is discussed. Here, the

weight of isotropic plates is minimized subjected to maxi-

mum displacement and fundamental frequency constraints.

The dimensions and material properties of plates are same

as defined earlier. The plate is discretized using 20x20

rectangular elements with each element thickness treated as

an independent design variable. A uniform thickness of

2.54 mm is taken as an initial design thickness with the

lower and upper bounds of each design variable as hL ¼
2:54mm and hU ¼ 7:62mm respectively. The single

objective multi-variable optimization problems are solved

using the sequential quadratic programming approach to

obtain optimum weights and thickness distributions of

variable thickness plates. The present optimization results

are also validated with those available in the literature.

Parametric studies are also conducted to investigate the

effect of different boundary conditions on the optimal

weight and thickness distribution of variable thickness

plates.

4.3 Single objective optimization of plates
with maximum displacement constraint

In this section, single objective optimization of square

isotropic plates is studied, by minimizing weight, subjected

to maximum displacement constraint. The permissible

value for the maximum displacement of plates is taken as

dlim = 1.905 mm. First, a simply supported plate subjected

to uniformly distributed load of magnitude 68948 N/m2 is

considered. The maximum central displacement of the plate

is found to be dmax = 3.751978 mm which is higher than the

permissible value. Single objective multi-variable opti-

mization is then carried out and the optimum weight of the

plate is shown in Table 1. The result obtained by Haug et al
[3] is also shown in the table and a good agreement

between the two is observed. The optimal thickness

distribution obtained for the simply supported (SSSS) plate

is shown in figure 5. The thickness profile of the resulting

optimum plate shows a growth in thickness around the

center and at the corners of the plate. It is also observed that

the central elements are slightly thicker compared to the

corner elements of the plate. Symmetry in the thickness

distribution about the central lines of the plate is also

observed. The present thickness distribution follows the

same pattern as reported in [3].

Further, the weight minimization of clamped and can-

tilever plates is also conducted under uniformly distributed

load of magnitudes 206844 N/m2 and 2068.44 N/m2

respectively which results in the maximum central dis-

placements of dmax = 3.5075 mm and 3.5783 mm respec-

tively. The permissible value for the maximum

displacement is taken as dlim = 1.905 mm. Single objective

multi-variable optimization gives optimum weights of

1.4092 kg and 1.4494 kg for the clamped and cantilever

plates respectively. The optimal thickness distributions

achieved for both clamped (CCCC) and cantilever (CFFF)

plates are also shown in figure 6. The thickness profile of

the clamped plate shows a growth in thickness around the

center and at the middle edges of the plate. The thickness

profile of the cantilver plate shows thicker elements near

Table 1. Comparison of optimum weight for simply supported

(SSSS) plate with maximum displacement constraint.

Optimum weight of SSSS plate in kg

Present approach Haug et al [3]

1.4741 1.4834
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Figure 5. Optimal thickness distribution of simply supported

(SSSS) plate with maximum displacement constraint.
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the root which decreases as we move towards the tip of the

plate.

4.4 Single objective optimization of plates
with fundamental frequency constraints

In this section, single objective optimization of square

plates is studied, by minimizing weight, subjected to fun-

damental frequency constraint. First, a simply supported

(SSSS) plate is considered whose fundamental frequency is

found to be xf = 1203.613 rad/sec. The permissible value

of fundamental frequency is taken as xd = 1375 rad/sec.

Single objective multi-variable optimization is then carried

out and the optimum weight obtained for the plate is shown

in Table 2. The result obtained by Haug et al [3] is also

shown in the table and a good agreement between the two

results is observed. The optimal thickness distribution

obtained for the plate is also shown in figure 7. The

thickness profile of the resulting optimum plate shows a

growth in thickness around the center and at the corners of

the plate. It is also observed that the corner elements are

slightly thicker compared to central elements of the plate.

The thickness distribution obtained from the present

approach follows the same pattern as given in [3].

Similarly, the weight minimization of clamped (CCCC)

and cantilever (CFFF) plates under fundamental frequency

constraint is performed. The permissible values of funda-

mental frequency for the clamped and cantilever plates are

taken as xd = 2420 rad/sec and 235 rad/sec respectively.

The fundamental frequencies obtained for the plates are xf

= 2200.63 rad/sec and 211.183 rad/sec respectively which

are lower than the permissible values. Single objective

multi-variable optimization gives optimum weights of

1.3321 kg and 1.3318 kg for the clamped and cantilever

plates respectively. The optimal thickness distributions

achieved for both plates are also shown in figure 8. Con-

trary to displacement constraint, the thickness profile of the

clamped plate shows a growth in thickness only at the

middle edges. There is no growth in thickness around the

center of the plate. The thickness profile of the cantilver
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Figure 6. Optimal thickness distribution of plates with maximum displacement constraint (a) clamped and (b) cantilever.

Table 2. Comparison of optimum weight for simply supported

(SSSS) plate with fundamental frequency constraint.

Optimum weight of SSSS plate in kg

Present approach Haug et al [3]

1.4242 1.4196

0.254

0.254

0

0.005

0.01

0.015
Th

ic
kn

es
s o

f p
la

te
 in

 m

Figure 7. Optimal thickness distribution of simply supported

(SSSS) plate with fundamental frequency constraint.
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plate shows thicker elements near the root which decreases

as we move towards the tip of the plate.

4.5 Multicriteria optimization studies of variable
thickness plates

This section investigates multicriteria optimization of

varying thickness isotropic plates with minimization of

weight and displacement as objective functions. First,

multicriteria optimization of plates is studied with dis-

placement constraint under various boundary conditions.

Further, an additional frequency constraint is added in the

multicriteria optimization problem to study its effect on

Pareto optimal solutions. Both weighted sum and adaptive

weighted sum optimization algorithms are employed to

obtain optimal solutions on a Pareto front. The adaptive

weighted sum method is performed using the parameter

values given in Table 3. The dimensions and material

properties of plates are same as defined earlier. Here, the

finite element discretization of plates is done using 10x10

rectangular elements with element thicknesses treated as

independent design variables. A uniform thickness of 2.54

mm is taken as an initial design thickness with the lower

and upper bounds of each design variable as hL = 2.54 mm

and hU = 7.62 mm respectively.

4.6 Multicriteria optimization of plates
with maximum displacement constraint

In this section, multicriteria optimization of square plates is

studied, by minimizing weight and displacement, subjected

to maximum displacement constraint. First, a simply sup-

ported (SSSS) plate under uniformly distributed design load

of magnitude 68948 N/m2 is considered. The permissible

limit on the deflection is taken as dlim = 1.905 mm. Both
weighted sum and adaptive weighted sum methods are

applied to solve the multicriteria optimization problem.

Figure 9 shows the Pareto optimal solutions obtained by the

conventional weighted sum method. The number of optimal

solutions taken on the Pareto front is 9, but most of the

solutions are found in the central region of the Pareto front.
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Figure 8. Optimal thickness distribution of plates with fundamental frequency constraint (a) clamped and (b) cantilever.

Table 3. Different parameters used for adaptive weighted sum

method.

Various parameters Parameter values

Initial step size for weighting factor ðDaintÞ 0.25

Constant multiplier (C) 1.5

Offset distance (dO) 0.1
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Figure 9. Pareto front for simply supported (SSSS) plate using

weighted sum method.
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Figure 10 shows the Pareto optimal solutions obtained by

the adaptive weighted sum method. Here, the Pareto front

obtained at each iteration of the adaptive weighted sum

method is also presented. The adaptive method converges

in four iterations, obtaining fairly well distributed solutions

on the Pareto front. Figure 11 shows the thickness distri-

butions obtained at various points A, B, C and D on the

Pareto front at the 4th iteration of the adaptive weighted

sum method. Absolute symmetry in the thickness distri-

bution about the central lines of the plate is observed.

Next, multicriteria optimization of clamped (CCCC)

plates under uniformly distributed design load of magnitude

206844 N/m2 is studied. Figure 12(a) shows the Pareto

optimal solutions obtained by the conventional weighted

sum method. The number of optimal solutions taken is 11

which are mostly concentrated in the central region of the

Pareto front. Figure 12(b) shows the Pareto optimal solu-

tions obtained at the 5th iteration of the adaptive weighted

sum method. The adaptive method converges in five iter-

ations, representing fairly well distributed solutions on the

Pareto front. Figure 13 shows the thickness distributions

obtained at various points A, B, C and D on the Pareto

front. Absolute symmetry in the thickness distribution

about the central lines of the plate is observed.

Similarly, multicriteria optimization of cantilever

(CFFF) plates is also investigated under uniformly dis-

tributed design load of magnitude 2068.44 N/m2. Fig-

ure 14(a) shows the Pareto optimal solutions obtained by

the weighted sum method. The number of optimal solutions

taken is 11 which are mostly concentrated in the central

region of the Pareto front. Figure 14(b) shows the Pareto

optimal solutions obtained at the 4th iteration of the
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Figure 10. Pareto fronts for simply supported (SSSS) plate at different iterations of adaptive weighted sum method.
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adaptive weighted sum method. In this case, the adaptive

method converges in four iterations, showing fairly well

distributed solutions on the Pareto front. Figure 15 shows

the thickness distributions obtained at various points on the

Pareto front. Absolute symmetry in the thickness distribu-

tion about the central line of the plate is observed.

4.7 Multicriteria optimization of plates
with maximum displacement and fundamental
frequency constraints

In this section, multicriteria optimization of simply

supported (SSSS) plates is studied, by minimizing weight

and displacement as objectives, subjected to maximum

displacement and fundamental frequency constraints.

The plate is subjected to uniformly distributed load of

magnitude 68948 N/m2. The permissible limits on the

maximum deflection and fundamental frequency are dlim
= 1.905 mm and xd = 1375 rad/s respectively. Figure 16

shows the Pareto optimal solutions obtained by the

conventional weighted sum and adaptive weighted sum

methods. Here, the adaptive method converges in four

iterations, obtaining well distributed solutions on the

Pareto front compared to weighted sum method. Fig-

ure 17 shows the thickness distributions obtained at

various points on the Pareto front using the adaptive

weighted sum method. It is observed from the results that

the corner elements of the simply supported plate become

thicker by applying additional frequency constraint as

compared to the plate having only displacement con-

straint. Thus, the trade-off’s for weight obtained for this

case is slightly higher compared to the displacement

constraint based multicriteria optimization.
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Figure 11. Thickness distributions of simply supported (SSSS) plate located at points A, B, C and D on the Pareto front obtained at the

4th iteration of adaptive weighted sum method
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Figure 12. Pareto fronts for clamped (CCCC) plate using (a) weighted sum and (b) adaptive weighted sum methods at 5th iteration.
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Figure 13. Thickness distributions of clamped (CCCC) plate located at points A, B, C and D on the Pareto front obtained at the 5th

iteration of adaptive weighted sum method.
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Figure 14. Pareto fronts for cantilever (CFFF) plate using (a) weighted sum and (b) adaptive weighted sum methods at 4th iteration.
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Figure 15. Thickness distributions of cantilever (CFFF) plate located at points A, B, C and D on the Pareto front obtained at the 4th

iteration of adaptive weighted sum method.
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Figure 16. Pareto fronts for simply supported (SSSS) plate using (a) weighted sum and (b) adaptive weighted sum methods at 4th

iteration.
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Figure 17. Thickness distributions of simply supported (SSSS) plate located at points A, B, C and D on the Pareto front obtained at the

4th iteration of adaptive weighted sum method.
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5. Conclusions

In this paper, multicriteria optimization of variable thick-

ness isotropic plates is investigated considering the mini-

mization of weight (cost) and displacement (performance)

as objectives under static and dynamic constraints. The

multicriteria optimization framework is constructed by

integrating the finite element method, analytical sensitivity

technique along with optimization algorithms. Both

weighted sum and adaptive weighted sum methods are

employed to study multicriteria optimization of variable

thickness isotropic plates. From the results, some of the

main conclusions drawn are given here.

(1) Maximum displacement and fundamental frequency

sensitivity values for simply supported plates with

varying thickness are generally high around the center

and at the corners of the plate. For clamped plates, the

fundamental frequency sensitivity is high near the

boundary edges whereas the displacement sensitivity is

high around the center of the plate. For cantilever

plates, high values of displacement and fundamental

frequency sensitivity are observed near the root which

decrease as we move towards the tip of the plate.

(2) The optimum weight and the thickness distribution

obtained by the present single objective optimization

method are in good agreement with those given in the

literature. Simply supported and clamped plates show

thicker elements around the centre for displacement

constraint while the same plates show thicker elements

near the boundary for frequency constraint. Cantilever

plates show thicker elements near the root for both

displacement and frequency constraints.

(3) The Pareto optimal solutions obtained by the weighted

sum method, using the predefined values of weighing

factors, are mostly concentrated in the central region of

the Pareto curve.

(4) The adaptive weighted sum method gives fairly good

approximation of the Pareto curve by increasing the

number of optimal solutions in the sparsely populated

regions based on automatic weight factor selection

procedure.

(5) The proposed multicriteria framework can be extended

to study structural design optimization problems with

non-convex Pareto front. The framework can also be

used as an automated tool for optimizing different finite

element models.
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