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Abstract. The network traffic in the intrusion detection system (IDS) has unpredictable behaviour due to the

high computational power. The complexity of the system increases; thus, it is required to investigate the

enormous number of features. However, the features that are inappropriate and (or) have some noisy data

severely affect the performance of the IDSs. In this study, we have performed feature selection (FS) through a

random forest algorithm for reducing irrelevant attributes. It makes the underlying task of intrusion detection

effective and efficient. Later, a comparative study is carried through applying different classifiers, e.g., k Nearest
Neighbour (k-NN), Support Vector Machine (SVM), Logistic Regression (LR), decision tree (DT) and Naive

Bayes (NB) for measuring the different IDS metrics. The particle swarm optimization (PSO) algorithm was

applied on the selective features of the NSL-KDD dataset, which cut down the false alarm rate and enhanced the

detection rate and the accuracy of the IDS as compared with the mentioned state-of-the-art classifiers. This study

includes the accuracy, precision, false-positive rate and the detection rate as performance metrics for the IDSs.

The experimental results show low computational complexity, 99.32% efficiency and 99.26% detection rate on

the selected features (=10) out of a complete set (= 41).

Keywords. Particle swarm optimization; feature selection; machine learning classifiers; intrusion detection

system.

1. Introduction

The intrusion detection system (IDS) has become a pow-

erful tool that monitors malicious activities and triggers

alerts to detect suspicious attacks. The intrusions make the

system unpredictable for network traffic because of its

nonlinear behaviour [1, 2]. The reason behind the require-

ment of an IDS is that the security principles: confiden-

tiality, integrity and availability, are compromised due to

intrusions and (or) attacks like spoofing, traffic analysis,

cyber-attacks and other harmful vulnerabilities [3]. The

IDS is partitioned into two broad categories: signature-

based and anomaly-based IDSs [4]. The signature-based

system is further referred to as misuse-based detection. This

approach compares the signature of the recognized mali-

cious activities and triggers alert whenever the match is

found. Hence, these types of systems can diagnose per-

ceived attacks with a low false alarm rate [5]. Anomaly-

based systems are competent to encounter zero-day attacks.

This approach observes the pattern of the systems; when-

ever any system deviates from the regular pattern, it trig-

gers alert. This approach undergoes a high false-positive

rate (FPR) [6, 7]. The IDS can be further divided into two

parts: host-based (HIDS) and network-based (NIDS). The

HIDS monitors the individual hosts and raises the alerts

based on the local host system calls, log files, application

logs and other host activities. However, NIDS monitors all

the traffic passing through the entire network system;

whenever any malicious activity matches with known

attacks in the network, alert is raised and sent to the

administrator to take appropriate actions. With the increase

in the number of features, the complexity of the system

increases. Hence, it is complicated for the IDS to examine

the large volume of data. The selection of useful and crit-

ical features is essential for the detection of intrusions in the

field of information security. In an attempt to make an

effective and adequate IDS, there is a requirement for the

identification of significant features before pre-processing.

Identification of the valuable features is complicated as the

dataset is expressed by various relevant, irrelevant and

extravagant features, which increase the computation

complexity for the analysis of intrusions [8–10]. The fun-

damental principle of the feature selection (FS) is to

improve the quality and performance of the predictor. This

research study proposes the optimal selection of features for

elaborating the performance of the IDSs having low com-

putational complexity because of the classification of a set

of simplified features. Hence, FS is used to enhance the*For correspondence
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performance of classifiers and scale down the attributes that

are not relevant before pre-processing. FS is performed on

the NSL-KDD dataset [11], which is a modified version of

the KDD Cup 99 dataset [12], and the proposed method

results in higher accuracy in detection of intrusions and also

cuts down the false alarm rate because of the use of a

reduced number of features.

2. Description of NSL-KDD dataset

The NSL-KDD is a modified variant of KDD Cup 99

dataset. The dataset has 41 attributes, partitioned into 5

classes, which are normal and 4 attack groups, and they are

described later. The 42nd attribute is the class attribute,

which contains information about these groups; this attri-

bute has positive or negative instances.

DoS (Denial of Service) includes the definition of attacks

where the services of authentic users are restricted.

Examples: smurf, teardrop, SYN flooding and neptune.

U2R (User to Root) includes the definitions where the

attacker controls the local machines by exploiting vulner-

abilities over it. Examples: rootkit, spy, buffer-overflow and

SQL attacks.

R2L (Root to Local) includes the definition of attack

where the attacker tries to yield access over the remote

machine in an unauthorized way. Examples: warezmaster,

Imap, multihope and spy.

Probe attack includes the definition where the attacker

gathers the information about the network by traffic anal-

ysis. Examples: port-scan, satan, ping-sweep and nmap.

The attributes of the dataset are further divided into four

labels [13, 14].

Basic: These attributes have separate transmission con-

trol protocol (TCP) connections. The number of attributes

that belong to this label is 9 and they are illustrated in

table 1.

Domain Knowledge: They are the attributes that are

inside the connections. The number of attributes that belong

to this label is 13 and they are explained in table 2.

Traffic: This group contains the attributes that are enu-

merated using windows of 2-s duration. The number of

attributes that belong to this label is 9. Attributes under this

group label are described in table 3.

Host: This group contains attributes that are represented

to evaluate attacks survival for greater than 2 s. The number

of attributes that belong to this label is 10. Attributes under

this label are described in table 4.

The statistics of the records in KDD Cup 99 and NSl-

KDD dataset are presented in figure 1 and 2, respectively.

The dataset is divided into four types of attacks for training

and testing sets. The training set has 22 attack types, and

the testing set has increased 17 attack varieties. Figure 3

presents the frequency distribution of attacks in NSL-KDD

dataset.

3. Related work

Ganapathy et al [15] proposed the FS algorithm as well as

classifier using Support Vector Machine (SVM). The paper

also represented the inspection of FS and classification

strategies for intrusion detection. Moreover, soft computing

techniques were used to highlight the research challenges in

intrusion detection. Ahmad and Amin [16] used particle

swarm optimization (PSO) algorithm for FS, and PCA for

feature transformation. The theoretical method was intro-

duced for the detection of intrusion using SVM classifier on

KDD Cup 99 dataset. This research work is further exten-

ded using the neural network on NSL-KDD dataset. Franco

et al [17] presented classification using a Self-Organized

Map (SOM) and FS performed using Fisher discriminant

rate algorithm using 17 features of the dataset. Eesa et al
[18] propose cuttlefish optimization algorithm for intrusion

detection, where FS is also used, and decision tree (DT) is

applied for classification purposes. This method improves

true positive rate (TPR) and accuracy, and reduces false

alarm rate. Chebrolu et al [19] introduced FS using clas-

sification and regression tree with a Bayesian network for

the effectiveness of performance and detection accuracy in

Table 1. Basic label attribute description of the NSL-KDD dataset.

Name Description Type

Duration Magnitude of the association in seconds Continuous

Protocol type The type of protocol (TCP, UDP) Discrete

Service Network services occupied by the destinations Discrete

Flag Identify the connection’s status error or normal Discrete

Source byte Bytes transferred from origin to destination Continuous

Destination byte Bytes transferred from destination to origin Continuous

Land 1 if the association is for the same port/host to/from, 0 contrarily Discrete

Wrong fragment Statistics of associations for wrong snippets Continuous

Urgent Statistics of urgent packets Discrete
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the IDS on KDD Cup 99 dataset. Zhang et al [20] presented
methods with a rough set using genetic algorithm (GA) [21]

for classification rules. The algorithms used for machine

learning and data mining, including SOM, DT, K Means

and SVM, have been used for the extensive analysis of

NSL-KDD and KDD Cup 99 datasets for the exhaustive

study [22]. Tsai et al [23] discuss several machine learning

techniques used for the identification of intrusions in the

system. The paper describes various classifiers, including

single, multiple and ensemble classifiers. Modi and Patel

[24] deployed IDS on cloud computing using different

classifiers DT, Bayesian and Associative. The framework

Table 2. Domain Knowledge label attribute description of the NSL-KDD dataset.

Name Description Type

Hot Statistics of hot benchmarks Discrete

Number of failed logins Statistics of incorrect login attempts Discrete

Logged in Denotes 1 for logged, 0 contrarily Discrete

Number of compromised Statistics of arbitrated conditions Discrete

Root shell 1 if root shell captured, 0 contrarily Discrete

Su attempted 1 if command attempted, 0 contrarily Discrete

Number of root Statistics of root access Discrete

Number of file creations Statistics of activities of file creations Discrete

Number of shells Statistics of shell prompts Discrete

Number of access files Statistics of access control files activities Discrete

Number of outbound cmds Outward-bound information in an FTP session Discrete

Is host login 1 if host login, 0 contrarily Discrete

Is guest login 1 if guest login, 0 contrarily Discrete

Table 3. Traffic label attribute description of the NSL-KDD dataset.

Name Description Type

Count Represents associations with the same host within last 2 s Discrete

Service count Represents connections for last 2 s of the same port number Continuous

Serror rate Represents synchronous errors by flag bit Discrete

Service serror rate Statistics of associations that contain SYN errors Discrete

Rerror rate Statistics of associations that contain REJ deviations Discrete

Service rerror rate Number of associations that contain REJ errors Discrete

Same service rate Number of associations for the equivalent service Discrete

Different service rate Number of associations for dissimilar services Discrete

Service different host rate Statistics of association of different hosts Discrete

Table 4. Host label attribute description of the NSL-KDD dataset.

Name Description Type

Destination host count Statistics for destination host Discrete

Destination host service count Associations having same port number Discrete

Destination host same service rate Statistics of connections having same terminus host Discrete

Destination host different service rate Different service rate for terminus host Discrete

Destination host same source port rate Port numbers for the attribute destination host service count Discrete

Destination host service different host rate Different host rate for terminus host Discrete

Destination host serror rate Number of activated flags for the attribute destination host count Discrete

Destination host service serror rate Service serror rate for terminus host Discrete

Destination host rerror rate Rerror rate for terminus host Discrete

Destination host service rerror rate Service serror rate for terminus host Discrete
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was designed to identify distributed attacks in both real-

time and offline environments. Seth and Chandra et al [25]
used Binary Grey Wolf Optimization (BGWO) algorithm

for key FS with a neural network classifier. Mazini et al
[26] use the AdaBoost algorithm for improved detection

rate (DR) and accuracy; for FS they deploy Artificial Bee

Colony (ABC) algorithm. Kumar and Sharma [27] propose

an integrated framework that automatically detects, triggers

the alarm, classifies and mitigates the software vulnerabil-

ities. Alzubi et al [28] used a modified BGWO algorithm

for the detection of attacks with feature reduction tech-

nique. Bharathy and Basha [29] used Multiple Criteria

Linear Programming (MCLP) model for the classification

and PSO algorithm for tuning the parameters to design

network intrusion detection. Xue et al [30] suggested a self-
adaptive PSO over enormous amount of features for

dimensionality reduction. The experiments were performed

over 12 datasets to represent the effectiveness of the

algorithm. Bostani and Sheikhan et al [31] implemented

binary gravitational search algorithm along with mutual

information for FS to achieve better results from existing

algorithms. SVM was used for feature reduction and neural

network was implemented to rank the importance of

selected features from DARPA dataset in [32]. Xue et al
[33] introduced a self-adaptive differential evaluation

(SaDE) for FS and k Nearest Neighbour (k-NN) for eval-
uating the different performance measures of IDS using the

KDD Cup 99 dataset on wireless sensor networks. Wu et al
[34] and Yu et al [35] proposed online feature selection

(OFS) methods in the field of data mining and machine

learning. Recently, evolutionary computation (EC) tech-

niques were used for FS due to its ability of global opti-

mization. Some of them include the firefly algorithm

[36, 37] and the PSO [38–40].

4. Machine learning classifiers

We have used the following machine learning classifiers for

the analysis of training and testing set of NSl- KDD dataset.

SVM: Cortes and Vapnik [41] developed the SVM

classifier for binary classification of data into two classes. It

contains the two hyperplanes, and the margin between them

should be large. The basic principle behind this is to

maximize the separating margin between negative and

positive classes in order to derive a hyperplane. In SVM the

mapping of the input vector is carried out to higher

dimensional feature space, and the optimal separating

hyperplane is accomplished in surpassing the dimensional

feature space. The SVM has low rationalization error or

does not deteriorate from the obstacle of overfitting to the

training dataset [42]. When a model performs poorly on

instances that are not commenced in the training, the set is

said to have high generalization error or overfitting. The

parameter penalty factor concedes users to make a trade-off

between the width of the decision boundary and the number

of misclassified samples. It is an effective technic for

solving regression and classification problems. Later on,

Zhang and Wang [43] developed a Computer-aided Design

(CAD) system for the classification of images into two

classes. They use 126 samples of brain Magnetic Reso-

nance (MR) images in which 28 samples have Alzheimer’ s

disease (AD), and remaining samples are normal scans.

Here, Displacement Field (DF) is employed for tracking the

morphometry from normal brains to AD brains. Further,

Figure 1. KDD dataset distribution.

Figure 2. NSL-KDD dataset distribution.

Figure 3. Frequencies of attack distribution in NSL-KDD

dataset.
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they have used the SVM and its two variants, namely

Generalized Eigen-Value Proximal SVM (GEPSVM) and

Twin SVM (TSVM), for classification of images.

Naive Bayes (NB): In most of the cases, it is troublesome

to express the probabilistic relationship among the variables

in cases where the variables have causal or statistical

relations between them. In computing, the variable may

influence others. The probabilistic model is designed to

exploit the causal or statistical relationship of random

variables of the problem, referred to as Naive Bayesian

networks [44, 45]. In this case, it is expected that attributes

are independent and this classifier performs well when

combined with some attribute selection measures.

k Nearest Neighbour (k-NN): It is a non-parametric and

most transparent machine learning technique for the clas-

sification and regression of samples [46, 47]. It performs

the computation of approximate separation between several

points on the input vector, and the unlabelled position

designated to its k-NN. The k parameter represents the

number of observations most adjacent to the given obser-

vation in testing or validation dataset. In this classifier, a

new point is taken and classified according to the majority

of the votes obtained for the nearest point in the training

data. To measure the similarity between two points,

Euclidean distance is used as the distance metric.

DT: In DT a sample is classified through a sequence of

decisions, where the prevailing decision supports making

the consecutive decision [48]. The classification of the

sample takes place from the root node to the leaf node,

where classification category is represented by each leaf

node. Each node represents the attributes of the sample.

Logistic Regression (LR): This analysis studies about the
association between the categorical dependent variable and

independent variables, and takes place only for binary

values such as 0 or 1, yes or no. It follows a binomial

distribution where individual characteristics are the basis

for creating the chance for the outcome of the model [49].

Random forest (RF): It is a machine learning classifier

that incorporates the DT and ensemble learning [50, 51].

The forest consists of several trees, and the attributes are

selected randomly as input. In this algorithm, a bunch of

DTs along with an arbitrary subgroup of the data are cre-

ated using a bagging approach. This algorithm is consid-

ered to be the most effective for the solution of almost any

prediction task. For any problem related to classification

and regression, it can be used. It is a combination of tree

predictors where every tree confides on the values of an

arbitrary vector sampled separately with the equal division

for all trees in the forest. This algorithm split into two

phases. In the first phase, ’i’ random trees are initiated,

which generate the RF. The second phase combines all DTs

that have the same test features. The final prediction con-

sists of the DT that appears most frequently or the assess-

ment of each DT. This algorithm operates well even for

inconsistent data to generate better accuracy, is simple to

use and also gives assessment on what variables are

necessary for the classification purpose. It executes accu-

rately on enormous databases while provoking an internal

impartial evaluation of the generalization error. It also

contributes a procedure for unbalanced datasets for stabi-

lizing error in class population. The random algorithm

specifically benefits data scientists to redeem data prepa-

ration time, as there is no requirement for any input

preparation and can examine numerical data and specific

features without scaling or transformation. In this ensemble

method, several DTs are operated by training them, and the

class having a majority over all the trees is returned. RF is

slightly better than SVMs [52]. A collection of trees is

constructed for the generation of forest having the con-

trolled variance. The prediction of this classifier is decided

by the weighted or majority voting. A flow chart of the

algorithm is presented in figure 4.

Definition of RF: It uses trees gkðA; hkÞ as kth base

learners where hk’ s are a stack of random variables and

they are independent for k = 1,...,K. For training data D ¼
ða1; b1Þ; . . .; ðaN ; yNÞ where ai ¼ ðai; 1; . . .; ai; pÞT repre-

sents the m predictors and bi represents the response, and a

Figure 4. Flow chart of random forest algorithm.
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specific realization hk of Hk, the fitted tree is represented as

ĝkða; hk;DÞ. While this formulation is derived from

[53, 54], in practice the random component hk is not treated
explicitly. However, it is used to implant randomness in

two phases implicitly. In the first phase, which includes

bagging, an independent bootstrap pattern is taken from the

original data to fit into each tree. The bootstrap sampling

involves randomization, which gives one part of hk . In the

second phase, during random selection, the best split is

found from the subsets of r predictor variables instead of all
m predictors, separately at each node while splitting a node.

The sampling of predictors gives the remaining part of hk
by randomization. A pseudo-code of RF is depicted in

Algorithm 1. As discussed, this algorithm has several trees

and each tree is constructed by following steps:

1. Assumptions: training cases = X and the classifier

consists of a number of variables = Y.
2. For the determination of the decision at a node of the

tree, we have y number of input variables, and y\ Y.
3. In this tree, the selection of a training set is performed by

taking a bootstrap sample, i.e., selecting x times with

restoration from all X available training cases. The

estimation of the tree’ s error is performed using the rest

of the cases.

4. Randomly, y variables are selected for each node of the

tree to perform the decision at that node. The best split is

calculated by these y variables in the training set.

5. Each tree is completely grown up and not sheared. A

new sample is predicted by pushing it down the tree. The

label is assigned to the training sample at the end of the

terminal node. The iteration continues for all trees, and

the prediction of RF is expressed by calculation of the

average vote of all the trees.

The benefits of this algorithm are the following:

1. Applicable for both classification and regression

problems.

2. Handles categorical predictors naturally.

3. Computationally quick and straightforward to fit, even

for significant problems.

4. No explicit distributional assumptions (non-parametric).

5. It can handle highly nonlinear communication and

classification boundaries.

6. Variable selection is automatic.

7. Handles missing values through surrogate variables

using proximities.

8. Outlier detection, visualization and unsupervised learn-

ing.
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5. Swarm intelligence

Swarm intelligence has emerged as a population-based and

nature-inspired algorithm with the capability of solving

complex problems that provides robust, fast and low-cost

solutions [55]. It is a subdivision of artificial intelligence that

involves the collective behaviour of social insects, including

ants, termites, bird flocks and honey bees. The social animals

have limited capabilities, unsophisticatedly interact either

directly or indirectly with each other by specific behavioural

patterns for survival. The direct interaction includes commu-

nication over audio or video, such as flutter dance of honey

bees. The indirect communication exists when an agent

changes the environment and other agents acknowledge the

changed environment, like ants depositing pheromone trails

on their way in order to search for food sources. Swarm

intelligence is used for the optimization of the problems

including data analysis, scheduling, bioinformatics, machine

learning, operations research andmedical informatics and also

in the field of business and finance. The author Bonabeau et al
[56] defined swarm intelligence in very simple words as the

popular way of simple and common intelligence of social

agents. The parameters used for finding a set of solutions in

swarm intelligence are the following. Proximity principle:
effective computation for the execution of time and space

solutions.

Quality principle: interaction of quality features of the

environment.

Different response principle: existence of solutions

beyond narrow channels.

Stability principle: stability of actions based on the

changing conditions.

Adaptability principle: ability to adapt new conditions

based on effective time and space computations.

6. Particle swarm optimization (PSO) algorithm

It was recommended by R Eberhart and J Kennedy in 1995

[57]. The PSO algorithm implemented in various streams of

engineering is explained in [58] and is derived from the

behaviour of bird flocking. It involves the adaption of

rapidly changing interactions and movements of social

animals like fishes and birds. A flow diagram of the PSO

algorithm is presented in figure 5. The PSO algorithm

combines the experiences learned when working together

as a group and personal experiences. The optimized solu-

tions are achieved by the flocking behaviour of birds. The

birds follow some predetermined path for the destined food

resources. This path, considered as the shortest path, is also

referred to as the personal best solution (pbest) of the

particle. Each particle looks for the best solution in the

search space by observing its own flying experiences and

experiences of others in the group. Another best fitness

value is achieved by observing any of the particles in the

group near the range of that particle. This is referred to as

the gbest. Each particle has its associated velocity for the

acceleration towards achieving the pbest and gbest. The

basic concept of PSO is to achieve global optimal solution,

thereby moving each particle towards pbest and gbest with

arbitrary weight at every step. This algorithm gives

improved exploration and exploitation [59, 60].

The equation for PSO algorithm is represented as

vkdðt þ 1Þ ¼vkdðtÞ þ c1R1ðpkdðtÞ � xkdðtÞÞ
þ c2R2ðpgdðtÞ � xkdðtÞÞ

ð1Þ

xkdðt þ 1Þ ¼xkdðtÞ þ vkdðt þ 1Þ ð2Þ

where vkdðtÞ represents the velocity of the kth particle in dth

dimension in tth iteration, C1 and C2 are the acceleration

factors, respectively, in personal and social cognizance

directions, xkdðtÞ represents the position of kth particle in dth
dimension in tth iteration, pkdðtÞ represents the pbest position
of the kth particle in dth dimension in tth iteration and p

gd
ðtÞ

represents the gbest position obtained by the complete pop-

ulation till tth iteration; R1 and R2 are random numbers

between 0 and 1 used to overcome premature convergence.

7. Proposed methodology

7.1 Preprocessing

The classifiers led to false alarms due to the rough features.

Hence, preprocessing of the dataset is the necessary part.

Moreover, some typical features increase the computation

time and memory resources that are unavoidable by the

classification techniques. In the NSL-KDD dataset, rough

features are expressed as

rs ¼ ffs1; fs2; fs3; fs4; . . .; fsng; ð3Þ

where n is 41, which represents 41 features in the dataset.

The typical features are eliminated from rough features due

to the overhead and redundancy. The modified rough fea-

tures are represented as

rs0 ¼ ffs1; fs2; fs3; fs4; . . .; fspg; ð4Þ

where p represents the number of rough features after

elimination. Moreover, appended preprocessing is needed

to obtain the optimized feature set based on their impor-

tance in the dataset. For this purpose, feature reduction and

feature transformation are necessary, which are explained

in the next section.

7.2 FS method

In this section, we propose the FS method using a mathe-

matical equation. FS is represented as 6-tuplet: FS ¼
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fD;V;C; S; fs;Eg where D is a dataset, D ¼ fa1; a2; . . .; akg
with k instances, V is set of features, V ¼ fe1; e2; . . .; ef g
with f number of features, C is a target class, C ¼
fc1; c2; . . .; cng with n classification of target classes, S
(search space) is a distribution of set V that contains all

subdivisions that we can construct by V, S ¼ fs1; s2; . . .; slg
ðl ¼ 2n � 1Þ with si ¼ fep; eq; . . .; erg ðl� p 6¼ q 6¼ r� nÞ,
E is an evaluation measure and function fs represents the

transformation of FS: fs : V ! S. FS is the process of

eliminating extravagant attributes and obtaining the opti-

mized subset(s) from the dataset [61]. The objective of this

technique is to select a subset of features that increase the

efficiency, reduce the computation complexity and enhance

the predictive accuracy. The steps performed in FS are

presented in figure 6 and explained here.

1. The generation module provokes the next successor from

the original feature set.

2. The estimation module calculates the applicability of the

subsets using several measuring parameters.

3. The endpoint where the subset features are recognized as

optimal.

4. The validation module to check the validity of the

feature subset.

7.3 Proposed model

In this paper, we have performed FS of attributes before

pre-processing. The process of selecting essential features

from the original is termed as FS, and it is compulsory

because of the perseverance of misleading and insignificant

features in the dataset. The RF algorithm is used for per-

forming FS, which is one of the most prominent machine

learning algorithms. This algorithm has easy interpretabil-

ity, low over-fitting and exemplary predictive performance.

The interpretability is represented by deriving the impor-

tance of each variable on the DT. The process of selecting

features using RF is referred to as embedded methods. This

method is the amalgamation of wrapper methods and

quality filters. RF inheres 4–1200 trees; each of them

undergoes the observation of random extraction from the

dataset as well as features. Decorrelated trees are less prone

to over-fitting because every tree does not observe the

features of others. Every tree undergoes a sequence of yes–

no questions that are based on a combination of features. At

every node of the problem the tree is divided into two

buckets, each of them observing the similarities among

themselves and differences in other buckets. This presents

the importance and purity of every feature, which is derived

from each bucket. Hence, RF classifier is applied to the

training and testing set of the NSL-KDD dataset; the clas-

sifier selects top 10 features based on the importance and

eliminates the insignificant features. Figure 7 presents the

proposed methodology. The list of selected features is

shown in figure 8 based on their importance in the dataset

and described in section 2. The proposed PSO algorithm is

blueprinted by Algorithm 2.

The training, as well as the testing set of the dataset, has

41 attributes; hence, excluding the 1 class attribute, there

are 41 attributes for the training set. The onehot encoding is

the feature used to convert categorical variables into a

format suitable for machine learning algorithms for

improving better job predictions. These 41 attributes

Figure 5. Flow diagram of the PSO algorithm.

Figure 6. Feature selection process [62].
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undergo onehot encoding and 74 attributes are created.

These attributes are used as an input layer in the neural

network; the hidden layer has 20 neurons, which is used to

decide the computation. The forward propagation is used as

an objective function. This computes the forward propa-

gation of the neural network as well as the loss. It receives a

set of parameters that must be rolled back into the corre-

sponding weights and biases. The PSO algorithm is

implemented after the forward propagation on the selective

features of the dataset with different iterations with a finite

number of particles to observe the best accuracy among all

the iterations.

8. Performance measure

The performance measurement is achieved by calculating

the FPR and TPR. FPR is also designated as false alarm rate

(FAR) or failure rate; it is the classification of benign traffic

as malicious. It can be formulated as the number of

incorrect detection of normal records as intrusions divided

by the total number of normal records. The DR is the

number of correctly identified positive instances divided by

the total number of instances identified as positive. The DR

is also referred to as TPR or recall or sensitivity. The fol-

lowing parameters are used for performance measurement:

True Positive Rate (TPR) ¼ TP

TP+FN
� 100;

True Negative Rate (TNR) ¼ TN

TN+FP
� 100;

False Negative Rate (FNR) ¼ 100� TPR� 100;

False Positive Rate (FPR) ¼ 100� TNR� 100;

precision ¼ TP

TP+FP
� 100;

overall accuracy ¼ TP+TN

TP+TN+FP+FN
� 100;

F 1-score ¼
2TP

2TP+FP+FN
� 100:

9. Analysis and results

The FS method eliminates unnecessary attributes from the

dataset. Removing these unwanted attributes is a must

because they decrease the accuracy of the algorithm, which

we use to predict something in the future. As the number of

features increases in the dataset, the search space also

increases. The FS is a challenging task because it is relevant

to the search space. It acts as a bridge for the extraction of

features and pre-processing. In this study, we have per-

formed FS using RF algorithm to cut down the number of

attributes from the dataset to enhance the computation

power and remove the redundant attributes that affect theFigure 7. Proposed research methodology.
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efficiency of the system. After performing FS on the

dataset, we have applied the PSO algorithm on the dataset,

including training set and testing set, for enhancing the DR

and optimization of the IDS. We have calculated various

performance measures, including the precision, DR and

accuracy of the system, based on the confusion matrix of

the results, which are enlisted in table 5 and 6 using the FS

method with the proposed PSO algorithm, which gives the

best accuracy of 99.32% in training set and 87.83% in

testing set, which is considered to be the optimized accu-

racy as compared with other machine learning classifiers,

Figure 8. List of selected attributes representing their importance using random forest algorithm.

Table 5. Comparison of the proposed technique with machine learning classifiers in training set.

Methods TPR TNR FPR FNR Precision F 1-score Accuracy

SVM 97.31 96.13 3.87 2.69 96.08 96.69 96.71

NB 96.96 96.32 3.68 3.04 96.29 96.62 96.63

DT 96.43 97.02 2.98 3.57 97.02 96.73 96.73

k-NN 97.04 97.24 2.76 2.96 97.24 97.11 97.18

LR 96.57 95.15 4.85 3.43 95.07 95.82 95.85

Proposed approach 99.26 99.38 0.62 0.74 99.37 99.31 99.32

Table 6. Comparison of the proposed technique with machine learning classifiers in testing set.

Methods TPR TNR FPR FNR Precision F 1-score Accuracy

SVM 87.47 84.28 18.72 12.53 77.80 82.35 85.51

NB 86.77 81.74 18.26 13.23 73.57 79.35 83.37

DT 81.35 81.87 18.13 18.65 74.97 78.03 81.66

k-NN 81.86 84.47 15.53 18.14 77.59 83.48 86.66

LR 83.07 85.04 14.96 16.93 79.95 81.48 84.22

Proposed approach 89.12 87.02 12.98 10.88 81.11 84.92 87.83

Figure 9. Comparison of accuracy of machine learning classi-

fiers with the proposed method.
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including NB, SVM, DT, LR and k-NN algorithms. The

comparison is presented in figure 9. This algorithm is

superior to machine learning classifiers because PSO is a

bio-inspired search technique that is simple and easy to

implement, which involves a single operator for updating

solutions. This algorithm has been very effective in a wide

variety of applications, and has the ability to produce good

solutions at a very low computational cost. A slight change

in the parameters of this algorithm results in better per-

formance and results of the systems [65–67]. It is robust

and parallel computation can be performed. Accurate

mathematical models can be solved efficiently. This algo-

rithm converges rapidly without overlapping and mutation,

and also has a higher probability of finding global optima.

[68, 69].

To analyse the performance of the proposed work, we

examine it on several combinations of the PSO parameters.

We found that highest accuracy is obtained on the fol-

lowing PSO parameters: C1 = 0.5, C2 = 0.3 and W = 0.9.

The tested results for different parameters are presented in

table 10. Moreover, to obtain the perfect empirical com-

bination of the number of particles and the number of

iterations, we perform several preliminary experiments and

find that 2800 number of particles and 28 number of iter-

ations give the concluding performance remarks (see

table 7). However, a change of parameters may result in

different observations in a different scenario. Thus, the

parameter optimization of the PSO algorithm is still an

open area of research. The change of accuracy with respect

to the iterations is depicted in figure 10. In this figure, we

observe that the detection accuracy fluctuates within a

small margin (approximately �0:5) till the 27th iteration.

This small change is because the search particles oscillate

between their personal and cognizance; thus their respec-

tive positions get updated in a small range of search space

(exploitation). However, some particles may iteratively

keep the momentum towards the earlier best position

(possible because the inertia weight is 0.9), and escape out

from local optimum. Hence, they also guide other particles

to move towards this newly discovered position (explo-

ration). This is observed in figure 10 by a sudden increase

in accuracy at 28th iteration. Moreover, excessive explo-

ration of the search space also guides the particles to move

towards nonoptimal area. Thus, we find that the accuracy

suddenly drops between the 28th and 30th iterations. This

algorithm is also tested for a different minimal set of

Table 7. Observations of the PSO algorithm using fixed number of particles with increased iterations.

Particles Iterations TPR TNR FPR FNR Precision F 1-score Accuracy

2800 20 98.31 97.24 2.76 1.69 97.20 97.75 97.77

2800 21 98.68 97.13 2.87 1.32 97.08 97.87 97.89

2800 22 98.67 97.00 3.00 1.33 96.94 97.80 97.82

2800 23 99.01 97.13 2.87 0.99 97.07 98.03 98.05

2800 24 98.66 97.35 2.65 1.34 97.31 97.98 98.00

2800 25 98.26 97.34 2.66 0.74 97.27 98.25 98.27

2800 26 99.14 97.25 2.75 0.86 97.20 98.16 98.18

2800 27 98.61 97.07 2.93 1.39 97.01 97.80 97.83

2800 28 99.26 99.38 0.62 0.74 99.37 99.31 99.32

2800 30 98.85 97.04 2.96 1.15 96.98 97.90 97.93

2800 31 97.80 97.13 2.87 2.20 97.10 97.49 97.46

2800 32 98.31 95.87 4.13 2.69 95.79 96.54 96.58

Figure 10. Accuracy observed using different iterations of the

proposed PSO algorithm.

Table 8. Observations of the PSO algorithm with different feature

sizes.

#

Features TPR TNR FPR FNR Precision

F 1-

score Accuracy

10 99.26 99.38 0.62 0.74 99.37 99.31 99.32

12 98.63 97.18 2.82 1.37 97.13 97.87 97.89

15 99.05 97.11 2.89 0.95 97.04 98.03 98.05

18 98.43 96.59 3.41 1.57 96.55 97.48 97.50

20 99.51 97.24 2.76 0.49 95.77 97.61 97.66

22 98.93 96.52 3.48 1.07 96.42 97.66 97.69

25 99.17 96.43 3.57 0.83 96.68 97.92 97.95
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features like 12, 15, 18, 20, 22 and 25 features using the

same configuration of the PSO to compare the results to

selected 10 features (see table 8). The comparison of

accuracy and DR with existing methods is depicted in fig-

ure 11 and 12, respectively, which shows that the proposed

technique has a better DR and accuracy than those from

other methods. In addition, the number of selected features

is lesser in the proposed PSO algorithm. The algorithm

improves the DR when the PSO algorithm is applied to the

reduced features of the NSL-KDD dataset. Hence, this

algorithm gives optimized results in terms of the number of

features. table 9 presents the comparison with existing

algorithms, which indicates that this algorithm provides

better results with 10 features only (table 10).

10. Conclusion and future scope

This paper discusses the implementation of PSO algorithm

with FS to enhance the accuracy and DR of the IDS. We

have used only 10 features from NSL-KDD dataset in an

attempt to remove the extra and noisy attributes with

negative encounter on the pursuance of the system. Sim-

plification of the dataset is the main objective of FS

method by reducing its dimensionality and identification

of the optimal subset of features. The RF algorithm is

used to select top 10 features out of 41. The PSO algo-

rithm is applied to the selected 10 features with a dis-

tinctive number of iterations with definite particles to

achieve the optimized result. The number of iterations

ranges from 20 to 28, and the number of particles is fixed

to 2800. The best accuracy and DR are observed at 28

iterations with 2800 particles. The results are compared to

those from SVM, DT, NB, LR and k-NN algorithms on

training and testing sets of the dataset. The accuracy and

other performance measures observed are better than those

from other algorithms. This algorithm is also compared to

existing algorithms where FS method is implemented on

the same dataset; the results show that this algorithm gives

the best accuracy with only 10 features as compared with

other algorithms.
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