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Abstract. This paper is aimed at incorporating all possible micro-scale damage mechanisms, namely, fiber

failure, matrix cracking, fiber-matrix debonding and delamination in multi-fiber multi-layer representative

volume element (M2RVE) subjected to multi-axial loading. Different loading conditions have been selected to

induce a particular or combined damage mechanism/s to study the damage evolution. The predicted constitutive

material responses for tensile and in-plane shear loading by M2RVE are in reasonably good agreement with the

experimental results. M2RVE then used for capturing all the microscale damage mechanisms even for complex

multi-axial loading. The stress–strain responses have been effectively captured for different combinations of

dominant damage mechanisms.

Keywords. Fiber damage; matrix damage; fiber-matrix debonding; delamination; mixed loading condition;

multi-fiber multi-layer representative volume element.

1. Introduction

It is important to accurately predict the damage behavior

for efficient and reliable designing of the composite struc-

tures. Typical macro-scale failure model makes use of Tsai-

Hill, Hashin and Puck’s damage criteria [1]. These models

do not capture failure mechanisms at the fiber and matrix

level. It is computationally expensive to carry out a full-

scale microscopic analysis of the structure by explicitly

modeling all the heterogeneities. In order to reduce com-

putational cost and to study the micro-scale behavior of

composites, multiscale methods are useful [2]. It has been

established that multi-scale modeling can provide the

desired accuracy in a computationally efficient manner.

There are many multi-scale modeling methods like FE2 [3],

Sub-modeling method [4], Inter-scale theory [5], Micro-

macro method [6]. Each approach has some advantages and

some limitations and specific application area. For example,

FE2 method provides accurate results, however the method

is computationally expensive and limited to use for 2D

problems.

The most common multiscale modeling method is to

utilize a representative volume element (RVE) to predict

microscale damage mechanism using computational

micromechanics through the homogenization process [7]. It

has been demonstrated that periodic boundary conditions

provide a better prediction of the global material response

as compared to displacement and traction boundary con-

ditions [8]. Representative volume elements (RVEs) usu-

ally consist of either a single fiber or multiple fibers of the

same diameter such that the volume fraction in the RVE is

the same as that of the composite lamina [9–11]. Different

loading conditions have been used to predict global mate-

rial response and local failure like matrix damage and fiber-

matrix debonding using a three-dimensional multiple fibers

RVE [9, 10]. It is important to note that a single RVE can

be used to predict the damage response of the composite

lamina (ply). The effective properties can be used to predict

the behavior of the laminate by considering the effect of

stacking sequence. The work done using RVE is mostly

limited to application of matrix damage and fiber matrix

debonding [10–12]. Matrix damage has been captured by

considering resin material as either elastic-plastic or visco-

elastic in nature [9–11].

To simulate fiber failure, González and LLorca [12] have

used randomly placed damageable (cohesive) elements

along the fiber length. A random arrangement is provided to

incorporate statistical variability of the properties of the

fiber. Wang et al [13] have also used randomly placed

damageable layers that have the same elastic properties as

fiber material (except that they are damageable) along the

fiber length. The basic limitation of the damageable layers*For correspondence
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is that placement of the damageable layers along the length

of the fibers affects the strength prediction results signifi-

cantly. The point in the fiber at which damage is expected

to initiate is already known. Also, initiation of the damage

in damageable layers affects matrix damage evolution and

fiber-matrix decohesion in the vicinity of the damage. Most

of the studies in the literature using RVE consisting of two

layers assume of perfect bonding between layers [12].

Cox et al [14] studied relationship between microstruc-

ture and evolution of damage events leading to failure using

continuous fiber composites. A new augmented finite ele-

ment method dealing with arbitrary systems of crack ini-

tiation in heterogeneous materials has been proposed. The

work aims to provide light on stochastic nature of material

microstructure on the composite’s performance. Design

parameters controlling damage behaviors of continuous

fiber reinforced thermoplastic composites using microme-

chanics has been studies by Pulungan et al [15]. They have

developed 3D RVE using periodic boundary conditions to

minimize the edge effect. The RVE is subjected to trans-

verse tensile loading and the simulation results are found to

be in good agreement with experimental results for stiffness

as well as for failure. Various micro scale failure modes

including fiber–matrix debonding and matrix failure are

studied in 2D RVEs extracted from the layer 90° in dif-

ferent cross-ply laminates by Madadi and Farrokhabadi

[16]. To model failure cohesive zone model and extended

finite element method (XFEM) has been used. Delamina-

tion initiation from the tips of matrix cracking has been

captured using cohesive surfaces. Effects of shape and

misalignment of fibers on the failure response of carbon

fiber reinforced polymers has been studied by Ahmadian

et al [17]. Tensile and compressive transverse loading has

been used for all the studies. Ramdoum et al [18] performed

interface debonding growth using the cohesive zone

method. 3D RVE has been used to study the energy release

rate (ERR) by the J integral method. It is attempted to study

effect on failure due to angle of debonding between fibers

and matrix material. Failure envelope of angle ply lami-

nates has been estimated by Romanowicz M [19] using

mesoscale finite element model. Damage by microcracking

at the fiber–matrix interface and shear band formation in

the matrix is incorporated in the numerical simulations.

Bargmann et al [20] reviews state of the representative

techniques for composites. The paper covers study of more

than 550 research papers and books on generation of 3D

representative volume elements for heterogeneous material.

Soni et al [21] has proposed multi-layer multi-fiber repre-

sentative volume element which can capture fiber-matrix

debonding and matrix cracking. However, the work did not

incorporate fiber failure and the delamination between

plies. Multifiber multilayer RVE has been used to capture

stiffness response by Ullah et al [22]. Perfect bonding

between the two layers has been considered. They have

infact observed that difference between experimental

results and simulation results can be attributed to inter-layer

perfect bonding. Very few studies in the literature have

investigated delamination between laminate layers using

computational micromechanics [23] and the interaction of

delamination with other damage mechanisms has yet to be

studied.

The focus of this paper is to use M2RVE to capture all

the damage mechanisms, namely, fiber failure, matrix

damage, fiber-matrix and interlaminar decohesion for

complex multi-axial loading. Fiber failure and matrix

cracking are based on the maximum principal stress crite-

rion and the multi-axial Mohr-Coulomb criterion, respec-

tively. Fiber-matrix debonding and delamination between

plies have been captured by introducing a cohesive layer in

conjunction with standard traction separation law. It is

known that the nature of damage evolution depends on the

loading conditions. In-plane tensile loading primarily cau-

ses the tensile failure of fibers.

It is known that matrix failure and interface failure is

dominating in case of shear loading as compared to trans-

verse loading [9–12]. Moreover, an in-plane shear loading

can be considered as combination of tensile and transverse

loading from a theoretical standpoint. On this basis, testing

in transverse direction is not considered in the current work.

Instead a conservative loading i.e., in-plane shear loading is

used. Out-of-plane tensile loading triggers delamination.

Additionally, in order to study the evolution of different

damage mechanisms simultaneously, a combination of

loads which trigger different failure mechanisms has been

considered. In simple words, current work covers combined

micro level (fiber failure, matrix failure and fiber matrix

debonding) as well as macro level (delamination) damage

mechanisms using multi-layer representative volume ele-

ment subjected to complex loading conditions.

2. Finite element modeling of M2RVE

This section presents the finite element formulation a multi-

fiber multi-layer representative volume element with multi-

axial loading and periodic boundary conditions. The failure

models for matrix failure, fiber-matrix debonding, fiber

failure and delamination are also described.

2.1 Geometrical configuration and the FE model

Figure 1 illustrates a typical M2RVE configuration for a [0/

90]n laminate (n number of [0/90] laminates), as described

in detail by Soni et al [21]. The M2RVE can be used to

model any symmetrical [0/90]n laminate because it uses

periodic boundary conditions on all the faces. The model is

comprised of two cubes which have multiple randomly

distributed fibers of equal diameter placed perpendicular to

each other. Circular fibers, 24 μm in diameter (used during

manufacture of composite), have been distributed randomly

via a fiber randomization algorithm in DIGIMAT FE® [24].
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Adequate discretization has been ensured by placing each

fiber at least 1 μm away from the other fiber. It has been

ensured that the distance between the fiber surface and the

M2RVE edges is more than 0.5 μm to avoid distorted ele-

ments during meshing. The proposed microstructure is

considered to have indefinite translation along all three

axes, thus, fiber positions within the M2RVE maintain

periodicity. The fibers intersecting the RVE edges were

split into two parts and copied to the opposite face to create

a periodic microstructure as shown in figure 1.

The total number of fibers has been restricted in such a

way that the volume fraction of fibers in the matrix is

*28%. The experimental spacemen were created using

hand lay-up techniques, therefore, there was no control

over the volume fraction obtained is on slightly lower

side. The stress-strain response of the M2RVE has been

investigated using finite element method (FEM). The

M2RVE (matrix and fibers) has been meshed using a four-

node linear tetrahedral (C3D4) elements in ABAQUS

Standard® [4]. A modified quadratic 10-node tetrahedral

(C3D10M) elements were also evaluated but did not yield

any appreciable change in results. Consequently, compu-

tationally efficient C3D4 elements have been used in this

study.

Cohesive elements have been included between each

fiber and matrix material to capture fiber-matrix debonding.

A thin layer of COH3D6 cohesive elements have been

provided between 0° lamina cube and 90° lamina cube to

capture possible delamination. Note that the size of the

M2RVE must be large enough to ensure that the average

properties do not depend on either the size and or the

location of the reinforcement phase, and their spatial dis-

tribution. In the previous study by Soni et al [21], a para-

metric study was performed to determine the size of each

cube in M2RVE. In that study, the edge length of each

M2RVE was varied between 0.1 mm and 0.5 mm and

global stress and strain response were found to be insen-

sitive to the size of the RVE. Therefore, a cube of 0.1 mm

edge size has been used in this study.

2.2 Boundary conditions

Figure 2 shows a schematic 2D unit cell under macro strain

with periodic boundary conditions.
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Figure 1. M2RVE for [0/90]n laminate [21].

Figure 2. A two-dimensional array under macro strain with periodic boundary conditions [8].
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Consider a periodic structure of periodic array under a

macroscopic strain.

The displacement field for the structure can be expressed

as:

uiðx1; x2; x3Þ ¼ e011xj þ u�i ðx1; x2; x3Þ ð1Þ
e011 is the macroscopic strain tensor as shown in figure 2.

First term on the right side of the equation ðu0 ¼ e011xjÞ is a
linear displacement field, while the second term

u�i ðx1; x2; x3Þ is a periodic function. Modification of the

linear displacement field due to heterogeneity in structure is

represented. Displacement must be continuous, i.e., adjacent

array cannot be separated or penetrated during deformation.

Traction distribution at the opposite parallel boundaries of

array must be the same. With this an individual unit cell can

be used as a continuous body. For every unit cell boundary

surface must appear in parallel pairs. Displacements of

parallel opposite surfaces can be written as

uKþi ¼ e0ijx
Kþ
j þ u�i ð2Þ

uK�i ¼ e0ijx
K�
j þ u�i ð3Þ

Here indices Kþ and K� identify the Kth pair of the two

opposite parallel boundary surfaces of a repeated RVE.

u�i ðx1; x2; x3Þ is same at the parallel boundaries (periodic-

ity), thus, difference between the two equations is

uKþi � uK�i ¼ e0ij xKþj � xK�j
� �

¼ e0ijx
K
j ð4Þ

As DxKj are constants for each pair of the parallel

boundary surfaces for a specified e0ij the right side of the

equation becomes constant. This trick is then used in finite

element analysis using displacement constraint equations

for implementation of periodic boundary condition. Using

above method traction boundary condition is automatically

satisfied [8].

Above mentioned approach is extended for Multi-fiber

multi-layer representative volume element (M2RVE) for

the cross-ply laminate is shown in figure 1. Hills [25]

principle which states that the energy on the micro-level

must be the same as the effective energy for the homoge-

nized material over the volume if uniform stresses or strains

exist on the boundary of the RVE has been utilized for

averaging purpose. In case of M2RVE elastic modulus is

obtained by dividing the volume averaged stress to the

volume averaged strain as described in Gibson [2] and

elaborated by Sun and Vaidya [26]. More details and

implementation of periodic boundary conditions for

M2RVE can be found in [21].

2.3 Loading conditions

To capture the prominent failure mechanisms observed in

laminated composites, different loading conditions have

been identified. Figure 3 shows various loading condi-

tions used to study micro-scale damage evolution via

M2RVE.

Figure 3. (a) In-plane tensile loading, (b) in-plane shear loading, (c) out-of-plane shear loading and (d) combined in-plane tensile and

out-of-plane shear loading.
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To capture fiber failure, in-plane tensile loading (see

figure 3(a)) has been used. To capture matrix failure and

fiber-matrix debonding, in-plane shear loading has been

used as shown in figure 3(b). In case of out-of-plane shear

loading, interlaminar decohesion (delamination) failure

dominates the failure process (see figure 3(c)). To capture

all the failure mechanisms simultaneously, in-plane tensile

and out-of-plane shear loading have been applied together

as illustrated in figure 3(d). A detailed analysis has been

performed for each loading condition and global and local

damage responses have been characterized.

2.4 Material properties

M2RVE for [0/90]n laminate has been modeled by using

E-glass (ER-459L) fibers having an elastic modulus of

73 GPa and a Poisson’s ratio of 0.23. The epoxy matrix

(EPOFINE-556 with FINEHARD-951 hardener) has an

elastic modulus of 4.7 GPa and a Poisson’s ratio of 0.3.

2.5 Failure criteria

In the damage process of a laminated composite, different

failuremechanisms are involved.However, only one or two of

the damage mechanisms drive the failure process for a given

loading condition. In case of tensile loading along the fiber

direction, fiber failure governs the failure process. Figure 4

shows different failure mechanisms and their respective fail-

ure criteria considered during modeling of M2RVE.

2.5a Fiber failure Fibers are the main load-bearing elements

of a fiber reinforced composite which means that mechanical

properties of the fiber-reinforced composites are governed by

fiber strength distribution. Glass fibers typically exhibit a

statistical variability in the strength due to the presence of

randomly distributed flawswhich act as stress raisers [27]. 25

E-glass fiber (ER459L) specimens were tested using a com-

puter-controlled universal testing machine (Favigraph, Tex-
techno), in order to measure their tensile strengths. All the

tests were performed in a displacement control mode at a rate

of 2 mm/min and at ambient temperature and pressure. All

samples were maintained under load until mechanical failure

occurred, with failure being defined as the point in which the

glass fiber no longer supported the externally applied load.

Tensile strength was taken as the ratio of the maximum load

applied to the cross-sectional area of the specimen. All the

precautions about material, specimen preparation, specimen

conditioning, environment of testing, specimen alignment

and gripping, speed of testing are taken to ensure additional

flaws are not introduced into the glass fibres during testing.

It is explicitly mentioned in the literature that the failure

strength of the brittle material varies a lot and it is difficult

to determine the strength value to be used for modeling of

brittle materials. Weibull distributions [28, 29] have been

widely used to predict the appropriate tensile strength of the

glass fibers from experimental findings. The two-parameter

Weibull distribution for prediction of tensile strength of the

glass fibers can be expressed as follows [30]:

P rð Þ ¼ 1� e
r
r0

� �m

ð7Þ
where P(σ), in the range of [0, 1], is the failure probability

of single fiber under an applied stress less than or equal to

σ. σo is a characteristic value of stress σ at which 63% of

the population of specimens has failed (also known as al-
pha(α) - characteristic life). m is the Weibull modulus

which describes the variability in the failure strengths. The

common values for ‘m’ of fibers range from 2 to 20 [31]. A

high Weibull modulus is desirable as it indicates better

predictable failure behavior. The stress, σ, is simply

obtained from the experimental results, while there are

several probability estimators, also known as ranking

methods, available in the literature [32]. The most common

probability estimators for brittle failure with small sample

size can all be written in the form [33]:

P ¼ i� 0:5

n
ð8Þ

where i denotes that it is the ith, specimen in the lot, while n

represents the sample size. Taking the natural log on the

both sides of the Equation (8), results in:

Yi ¼ In In
1

1� P rð Þ
� �� �

ð9Þ

Xi ¼ In rið Þ ð10Þ
C ¼ �mIn r0ð Þ ð11Þ
Yi ¼ mXi þ C ð12ÞFigure 4. Schematic representation of the failure criterion used

for all the constituents.
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As shown in Equation (12), theWeibull distribution function

can be linearized. A linear plot between Xi and Yi, is termed as

Weibull probability plot (WPP). If the correlation coefficient of

the plot is closed to 1, the strength distribution can use the two

parameter Weibull distribution function. Figures 5(a) and

(b) show WPP and Weibull plot, respectively. The correlation

coefficient is 0.9, which is close to 1 as required. Figure 5(b) is

used for estimating parameters m and C.

The values of parameters are determined as m=6.217 and

σ0=1745.85 MPa from the data given in figure 5.

The Weibull distribution has an expected value (or mean

value) of tensile strength is given by [30]:

rm ¼ r0C 1þ 1

m

� �
ð13Þ

where C is the gamma function.

Substituting parameters m, σ0 in Equation (13), the mean

value of the tensile strength is found to be 1623.3 MPa. The

meanmeasured tensile strength of the glass fiber is 1621MPa

which is close to the value obtained from the Weibull dis-

tribution. The maximum principal stress failure criterion has

been conventionally used to capture the failure of brittle

materials [27]. Therefore, the maximum principal stress

criterion is used for modeling the failure of glass fibers.

2.5b Matrix failure The epoxy matrix (EPOFINE-556) has

been assumed to behave as an isotropic, elastic-plastic solid

following the Mohr-Coulomb yield criterion [24]. The

Mohr-Coulomb criterion given in Equation (14) assumes

that the yielding takes place when the shear stress, τ, acting
on a specific plane reaches a critical value, which depends

on normal stress, σn, acting on that plane. This criterion

incorporates the effect of tri-axiality on the yielding under

shear stress. The corresponding yield surface is expressed

in terms of the maximum and minimum principal stresses

(σI and σIII) in Equation (15).

sj j ¼ c� rn tanu ð14Þ

F rI;rIII
� 	 ¼ rI � rIIIð Þ þ rI þ rIIIð Þ sinu� 2c cosu ¼ 0

ð15Þ
where c is the flow stress of epoxy matrix under pure shear

and φ stand for the epoxy matrix friction angle that

accounts for the effect of tri-axiality. The values of c and φ
are determined as 37.7 MPa and 15°, respectively, by using

tensile and compressive strength of the matrix material.

Details about the implementation of Mohr-Coulomb crite-

rion can be found in Soni et al [21].

2.5c Fiber-matrix interface failure The progressive fiber-

matrix interfacial decohesion has been simulated using

standard cohesive surface elements in ABAQUS Standard®

as shown in figure 6 [4]. The mechanical behavior of the

interface has been modeled using a traction-separation law

which correlates the displacement across the interface with

y = 6.2176x - 46.41
R² = 0.9007
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the force vector acting on it. Without any damage, the

interface behavior is assumed to be linear with very high

initial stiffness (K=35 GPa) for maintaining the displace-

ment continuity at the interface.

The linear behavior ends at the onset of damage which

can be expressed as follows for maximum stress criteria:

max
tn

N
;
ts

S

n o
¼ 1 ð16Þ

where tn and ts are normal and tangential stresses trans-

ferred by the interface, respectively. tn is either positive or

zero because compressive normal stresses do not cause the

opening of the crack. N and S are the normal and tangential

interfacial strengths, respectively, assumed to be equal in

this work. Equation (16) is generalized elaboration of

tractions separation law. A default tolerance of 1% has been

used for normal and tangential stresses.

In all the simulations in previous studies by Soni et al
[21] as well in this study maximum deformation observed is

less than 4%, hence it can be said that traction-separation

assumption is consistent with small deformation

assumption.

In addition to the cohesive strength (N, S), the fracture

energy, �C, also governs the interface behavior. The energy

consumed during the fracture of the interface is considered

to be independent of the loading path in the interface failure

model. Fracture energy, C, is given by:

C ¼ 1

2
tDd ð17Þ

where t (tn or ts) is the cohesive strength of the interface and
‘δ’ is the displacement across the interface. Zhou et al [34]
conducted various experiments on determining interfacial

strength and fracture energy (Gamma). It has been found

that interfacial strength values lie between 24 MPa and

38 MPa by fragmentation testing and 28 MPa and 58 MPa

by a push-out test for the same glass fiber/epoxy composite

system. There is a variation of as much as 6 times in some

cases in the values estimated using these two methods. The

measurement of the interface properties involves complex

and costly experiments which yield substantial variation in

the results. To address this issue, various values of inter-

facial strengths and fracture energy have been used in

accordance with experimental results in Soni et al [21]. The
realistic value of interfacial strength Γ=100 J/m2 is

assumed in the current work, in accordance with value

suggested by Zhou et al [33].

2.5d Delamination between plies failure The progressive

delamination between plies has been simulated by using the

traction-separation law with cohesive (COH3D6) elements.

In the absence of any damage, the interface behavior is

assumed to be linear with an initial stiffness equal to the

stiffness of the matrix material, i.e., 4.7 GPa because in

case of cross ply laminate fiber bridging effect can be

neglected [25]. A fracture energy of 100 J/m2 has been kept

constant throughout the simulations [34]. Damage initiation

has been captured using quadratic nominal stress criterion

expressed as [5]:

tn

t0n

� �2

þ ts
t0s

� �2

þ tt
t0t

� �2

¼ 1 ð18Þ

where tn, ts and tt are normal and tangential stress in one

direction and tangential stress in another direction respec-

tively. tn is considered as positive all the time, as com-

pressive stress does not cause the opening of the crack. t0n,

t0s and t0t are normal and tangential strength in one direction

and tangential another direction respectively. The adhesive

strength of the delamination is varied above and below

30 MPa (close to the measured shear strength of the matrix

material) to study its effect on overall material response.

Equation (18) has been used for implementation of traction

separation law in the simulations.

3. Experimental work (in-plane tensile loading)

Experimental data was not available in the literature for the

epoxy/fiber combination used in the model; therefore, exper-

iments were conducted on glass fiber-epoxy laminate speci-

mens. [0/90] E-glass fiber/epoxy matrix laminates were

manufacturedusing a hand lay-up technique.Thefiber volume

fraction (Vf) was found to be equal to 28%, determined

experimentally, according to ASTM D2584 (ASTM D2584–

11, 2000) [35]. The edges of the laminate were removed and

rectangular specimens (259250 mm2) were cut from the [0/

90] laminate according to ASTM standard D3039 (D3039/

D3039M–08, 2008) [29] as shown in figure 7. A calibrated

electronic strain indicator was used to note the strain devel-

oped in the strain gauge during the loading of the specimen.

In-plane tensile strength tests were performed for the

E-glass/epoxy [0/90] laminates as per ASTM 3039 (ASTM

D3039/D3039M–08, 2008) [36]. The specimens were tes-

ted in tension using a LS 100 plus universal testing machine

by LLOYD instruments under stroke control and at a con-

stant cross-head speed of 1 mm/min. The applied load was

measured simultaneously with a 100 kN load cell. The

corresponding tensile strain, ε11, was noted using a strain

gauge mounted on the specimen. The in-plane tensile

stress-strain curve, up to 2.5% strain, is plotted in figure 8

(a) for [0/90] laminates.

4. Global stress-strain response for in-plane tensile
loading

The FE analysis has been performed using Rik’s algorithm

for nonlinear analysis in ABAQUS Standard®[4]. Rik’s

algorithm is a type of ‘arc length’ method used for solving
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complex nonlinear problems [4, 37]. At the end of each

load step in the non-linear analysis, volume average stres-

ses and strains for the [0/90]n laminate have been plotted

along with the experimental response, as shown in figure 8

(a).

The initial region of the stress-strain curve perfectly

matches with the experimental results up to a tensile strain

of approximately 0.5%. Beyond this point, the simulation

results overpredict the stresses as compared to the experi-

mental response. The failure strength predicted by the

simulation was 14% higher than the failure strength

determined experimentally. This error may be attributed to

a stiffer matrix in the experimental specimen as compared

to the FE simulation. Another plausible explanation can be

automated incremental checking of the fiber failure crite-

rion in the finite element code so some of the fiber failure is

detected in the subsequent time step which can result in

higher stress values. Each fiber was assigned a strength

value between 1100 MPa and 1800 MPa. When the

maximum principal stress in the fiber material reaches the

limiting value, the stiffness of the element has been reduced

significantly ([90%) which mimics the fiber failure. The

stiffness value is not reduced to zero in order to avoid the

stress singularity. However, as soon as the minimum

strength is reached in any element (1100 MPa in the present

case), the strength of the entire RVE reduces significantly

and the remaining fibers fail within a single step. Hence, a

random distribution of the strength is not advisable as it

will trigger failure close to the lowest value. Consequently,

the mean value of the fiber strength obtained from the

Weibull distribution has been used instead. When the

maximum principal stress in any element in the fiber

material is greater than 1623 MPa then the element is

considered to have failed and the stiffness of the particular

element is reduced significantly ([90%). Failure strain

predicted by simulation is almost equal to the failure strain

predicted by experiments. Fiber-matrix interfacial proper-

ties are kept as stiffness=35 GPa/m, strength=30 MPa and

250 mm

25 mm

2.5 mm

Strain gauge

Figure 7. Specimen dimensions in-plane tensile loading tests.
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Fracture energy=100 J/m2. Delamination layer material

properties are strength=30 MPa, stiffness=4.7 GPa (the

same as the matrix material) and fracture energy=100 J/m2.

To address the sensitivity of these properties, the effect of

these parameters on the material response has been char-

acterized later in the paper.

5. Study of damage evolution mechanisms

As explained previously, the aim of the paper is to

demonstrate capability of M2RVE to capture all the possi-

ble damage mechanisms in composite laminates. Therefore,

the damage evolution studies have been conducted for

different scenarios are shown in figure 3.

5.1 Tensile failure dominated damage mechanism

It is known that in-plane tensile loading leads to a fiber

failure. To simulate in-plane tensile loading, M2RVE is

subjected to displacement in direction 1 as shown in fig-

ure 3(a). To capture fiber failure, a Fortran® based user

subroutine “USDFLD” has been used. The maximum

principal stress developed in each element of the E-glass

fiber material is called by using another user subroutine

“GETVRM”. The stress developed in each element of the

E-glass fiber material is then compared with the average

failure stress obtained from a Weibull distribution plot

(1623 MPa) to detect the fiber failure. The top and bottom

lamina of M2VE are referred to as 0° (along the applied

displacement) and 90° (perpendicular to the applied dis-

placement), respectively. It can be observed in figure 8

(b) that all the fibers in 0° lamina have failed where the

loading is in-line with the fiber if the applied stress

exceeded 1623 MPa. As shown in figure 8(a), the M2RVE

also captures the global stress-strain response with rea-

sonable accuracy. Figures 8(b) and (c) show the contours of

the maximum principal stresses that developed in fibers

prior to the onset of failure and post failure, respectively. It

must be noted that all the experiments are conducted on [0/

90]n composites lay-up

To study the effect matrix properties on the global

response, the matrix fraction angle is varied between 5° and
15°. Consequently, the cohesive strength of the matrix is

varied between 41 MPa and 48.8 MPa. It has been observed

that there is no effect of the change in matrix properties on

the global stress strain response. Similarly, in order to study

the effect of fiber-matrix interfacial and interlaminar

properties, a parametric study has been performed. The

cohesive strength of the interfacial material has been varied

from 5 MPa to 90 MPa while the stiffness of the cohesive

layer has been kept as 35 GPa/m. It has been found that

there is no effect of the interfacial strength on the global

stress strain response. It has also been found that there is no

effect of the properties of the delamination layer between

the two laminae on the global stress strain response for

in-plane tensile loading. Based on these results, it can be

inferred that fiber failure is the dominant mechanism and

other modes of failures are inappreciable.

5.2 Matrix and interface dominated failure
mechanism

In order to study matrix damage and fiber-matrix interfacial

failure simultaneously, an in-plane shear loading has been

applied as shown in figure 3(b). The M2RVE has been

subjected to a 4% shear strain, since the experimental

results are available up to 4% shear stain [21]. The maxi-

mum principal stresses developed in the E-glass fibers at a

4% shear strain is much lesser than 1623 MPa, therefore, no

element in the fiber experiences failure which indicates that

fiber failure can be ignored in in-plane shear loading. The

mean of the maximum principal stresses is about

*300 MPa which indicates that fiber failure can be ignored

in in-plane shear loading.

It has already been demonstrated by Soni et al [21] that
the matrix material properties affect the global stress strain

response. Figure 9 (a) shows the volume averaged in-plane

shear stress-strain response of the M2RVE along with the

experimental response. It can be observed that simulated

response is in good agreement with the experimental

response. The matrix friction angle is varied between 5°
and 15° in increments of 5° as shown in figure 8 (a). It can

be observed that with an increase in the friction angle and,

therefore the matrix cohesive strength, there is an increase

of *17% in shear stresses if the friction angle in increased

from 5° to 15° .
It can be observed in figure 9 (b) that the global response

gets significantly affected by the interface properties as

well. The shear strength of the material for an interfacial

strength of 5 MPa is *36% lower than the shear strength

for the material with an interfacial strength of 30 MPa.

However, any further increase in the interfacial strength

does not affect the global shear stress-strain response.

QUADSCRT is a damage initiation criterion for cohesive

elements. Similar to the tensile loading, the onset of

interlaminar decohesion does not occur, however, the

magnitude of “QUADSCRT” is higher for in-plane shear

loading as compared to the tensile loading indicating that

the interlaminar traction is higher for in-plane shear. Since,

decohesion does initiate, the effect of delamination on the

global stress-strain response is negligible.

5.3 Interfacial and interlaminar decohesion driven
failure mechanism

The previous two conditions do not exhibit any sensitivity

to the interlaminar decohesion (delamination). To demon-

strate interfacial failure between fiber-matrix and
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delamination between layers, out-of-plane shear loading

has been applied as shown in figure 3(c). M2RVE has been

found to be reasonably accurate for different loading con-

ditions; it is expected that it can capture the response of

complex loading conditions which are difficult to realize

such as out-of-plane shear loading.

The interfacial strength and stiffness have been kept as

30 MPa and 35 GPa/m, respectively (as used in case of in-

plane tensile loading and in-plane shear loading). Delami-

nation layer strength and stiffness have been kept as

30 MPa and 4.7 GPa/m, respectively. The material response

obtained from the above-mentioned parameters has been

used as a baseline for comparing the parameter sensitivity.

It is expected that the fiber failure is unlikely to occur in

this type of loading where fibers will not be experiencing

tension. The maximum principal stresses are much below

(\1000 MPa) the fiber failure limit of 1623 MPa. In

addition, the effect of the matrix damage parameters has not

been found to be significant on the out-of-plane shear

stress-strain response.

The strength of the interfacial layer is varied from 5 MPa

to 60 MPa, keeping the stiffness of the interfacial layer as

4.7 GPa. Figure 10 (a) shows that the effect of the inter-

facial strength on the material response is significant and

the out-of-plane shear stresses have increased by 28% if the

interfacial strength increased from 5 MPa to 30 MPa. Any

additional increase does not improve the material response.

To study delamination between 0° ply and 90° ply, the

strength of the delamination layer is varied from 5 MPa to

90 MPa keeping stiffness equal to 4.7 GPa. It is observed

that the complete failure of the cohesive elements in the

delamination layer occurs at 1.5% out-of-plane shear strain

when delamination layer strength of 5 MPa which does not

change appreciably till 30 MPa. However, if the strength of

the delamination layer is increased to 90 MPa, the

delamination failure takes place at *3.2% out-of-plane

shear strain as shown in figure 10 (b).

The contour plot of variable “QUADSCRT” in figure 11

(a) shows that, if the delamination layer strength is equal to

5 MPa, the complete damage in the delamination layer

takes place and value of QUADSCRT reaches 1. However,

if the delamination layer strength equals 90 MPa, the

maximum value of the damage parameter is limited 0.201

as shown in figure 11 (b).

5.4 Combined failure driven by fiber damage,
fiber-matrix debonding and interlaminar
decohesion

To demonstrate the capability of the M2RVE to capture

multiple (more than two) failure mechanisms simultane-

ously, a multi-axial complex loading shown in figure 3

(d) has been applied. It is a combination of in-plane tensile

loading and out-of-plane shear loading. The applied dis-

placement in the case of in-plane tensile loading and out-of-

plane shear loading has been maintained at a ratio of 1:12

(δt/δs=1/12) to avoid predominant tensile failure.

Figures 12(a) and (b) show the contour plot of the

principal stresses developed in the E-glass fibers. In this

case, the fibers in the 0° lamina take the entire load and it

can be observed that the stresses in the fibers reduced

drastically after fiber failure criteria was reached, as shown

in figure 12 (b).

To study the effect of complex loading on epoxy matrix

damage, the matrix friction angle has been varied between

5° and 15°, as shown in figure 12 (c). It can be observed

that the failure of the composite occurs at 0.6% tensile
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strain, which is *70% less than the failure strain obtained

under pure in-plane tensile loading. The tensile stress at

fiber failure is *105 MPa which is *60% lower than the

tensile strength obtained in pure in-plane tensile loading. In

case of out-of-plane shear loading response, failure strain

has been *1.5%, which is same as in case of pure out-of-

plane shear loading. The shear stress at the failure is also

same as that obtained in pure out-of-plane shear loading.

Unlike pure out-of-plane shear response, there is no dis-

cernible variation in the shear response when combined

loading has been used for different matrix friction angles,

as shown in figure 12 (c). Figure 13 (a) shows the material

response in case of combined loading for different

interfacial material properties. It can be observed that there

is no effect of the variation of interfacial properties on fiber

failure. However, out-of-plane shear strength is lower if the

interfacial strength is less than 30 MPa.

To study the effect of the interlaminar properties on the

material response, the strength of the delamination layer

(interlaminar cohesive strength) is varied between 5 MPa

and 60 MPa, keeping the stiffness at 4.7 GPa as shown in

figure 13 (b). It is observed that there is no effect of this

change on the fiber failure, however, the composite failure

takes place at a much lower stress and strain (5 MPa and

0.2%) for the interlaminar cohesive strength of 5 MPa.

Figure 13 (b) shows that the failure occurs at 30 MPa and

(a) (b)

O
ut

-o
f-p

la
ne

 sh
ea

r  
st

re
ss

 τ 2
3 

(M
Pa

)

Out-of-plane shear strain ϒ23 (%)

0

5

10

15

20

25

30

35

0.0% 0.5% 1.0% 1.5% 2.0%

Interfacial strength=5MPa

Interfacial strength=30MPa

Interfacial strength=60MPa O
ut

-o
f-p

la
ne

 sh
ea

r  
str

es
s τ

23
 (M

Pa
)

Out-of-plane shear strain ϒ23 (%)

0

5

10

15

20

25

30

35

40

45

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

Delamination layer strength=5MPa

Delamination layer strength=30MPa

Delamination layer strength=90MPa

Figure 10. (a) Effect of fiber-matrix interfacial properties on the stress-strain response of M2RVE for [0/90]n laminate. (b) Effect of

delamination layer properties on the stress-strain response of M2RVE for [0/90]ns laminate subjected to out-of-plane shear loading.

Figure 11. QUADSCRT for delamination layer strength: (a) 90 MPa; (b) 5 MPa at 1.5% out-of-plane shear strain.

Sådhanå (2020) 45:64 Page 11 of 14 64



1.5% shear strain under pure out-of-plane shear loading

for a delamination layer strength of 5 MPa. In compar-

ison, under combined loading with same interlaminar

cohesive strength, the failure occurs at a substantially

lower out-of-plane stress and strain values as shown in

figure 13 (b).

In the previous work by Soni et al [21] as well as in the

present study, it has been observed that the results are

mainly functions of material properties of fibers and matrix,

fibermatrix interface properties and inter-layer properties.

Therefore, it can be said that the simulation response

observed in the present study may remain the same for

higher volume fractions of the fibers.

6. Conclusions

The work has presented a use of multi-layer multi-fiber

representative volume element (M2RVE) to predict global

stress-strain material response for various failure mecha-

nisms operating under simple and multi-axial loading. The

results show that this strategy has been able to reproduce,

accurately, the physical behavior which has been observed

experimentally. The model has the potential to reproduce

very complex stress states and the ability to carry out sys-

tematic parametric studies to optimize composite proper-

ties. The following specific conclusions can be drawn from

the current work.
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● M2RVE can be used to capture all the failure modes,

viz, fiber failure, matrix cracking, fiber-matrix debond-

ing and the delamination between plies in a periodic

media. Fiber failure dominates all other failure mech-

anisms when fibers have been subjected to tensile

loading.

● In case of 0.6% of in-plane tensile strain and at 1.5%

out-of-plane shear, the fiber failure occurs at much

lower global stresses (*60% lower) which can be

observed from figure 12 (c).

● The fiber-matrix interface properties affect the material

response under in-plane shear loading. However, under

combined out-of-plane shear and tensile loading the

effect of fiber-matrix interface properties is not as

pronounced as the interlaminar properties.

● Composite failure occurs at much lower stress and

strain values (5 MPa and 0.2%) for a relatively low

interlaminar strength of 5 MPa under combined in-

plane tensile and out-of-plane shear loading. Hence, it

can be inferred that the interlaminar properties play a

significant role in the global material response in

complex multi-axial loading.

7. List of symbols

ε Macroscopic Strain Tensor

σ Applied Stress

K Stiffness

Vf Fiber volume fraction

σn Normal Stress

P(σ) Failure Probability of Single Fiber

alpha(α) Characteristic Life

m Weibull Modulus

C Gamma Function

c Flow Stress of Matrix under Pure Shear

φ Matrix Friction Angle

tn Normal Stresses at Interfaces

tn Tangential Stresses at Interfaces

N Normal Interfacial Strengths

S Tangential Interfacial Strengths

Ѓ Fracture energy

δ Displacement across the Interface

QUADSCRT Damage Initiation Criterion for Cohesive

Elements
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