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Abstract. Network Function Placement (NFP) involves placing virtual network functions (VNFs) on the

nodes of a network such that the data that flow through the network are processed by a chain of service functions

along their path from source to destination. There are three aspects to this problem: (i) routing the flows

efficiently through the network, (ii) placement of the VNFs on the nodes and (iii) steering each flow through a

chain of VNFs, known as the service function chain (SFC). Routing must attempt to find ‘‘optimal’’ paths

through the network (for e.g., shortest paths), possibly subject to constraints such as path latency and link

bandwidth. The VNFs consume resources on the nodes where they are placed and are constrained by the

capacity of the nodes. Steering must ensure that each flow has along its path a sequence of VNFs, likely in a

certain order. One way to specify this problem is to define a multi-commodity flow problem with additional

constraints based on the steering and placement requirements. Simultaneously solving all three aspects of this

problem, trying to optimize various parameters and within the various constraints, is a hard problem, with even a

simplified version shown to be NP-complete in this paper. Attempting to optimally solve this problem in real

time while flows are getting provisioned and de-provisioned in parallel is an intractable problem, especially in

large networks. Hence various types of heuristics have been used to solve this problem. In this paper we

introduce a distributed, online solution that employs a message-passing protocol for nodes to negotiate the

placement of the VNFs, with the minimization of the number of VNF instances being the primary objective. We

compare the performance of the solution to that of the theoretically optimal solution and other proposed

heuristics on both the Fat-tree topology and the BCube topology. The results show that this solution performs

better than other heuristics. The average ratio of the result of the proposed solution to that of the optimal

solution, taken as the approximation ratio, is found to be 1.5 for the tested scenarios.

Keywords. Software-Defined Networks; Network Function Virtualization; Network Function Placement;

distributed.

1. Introduction

Software-Defined Network (SDN) and Network Function

Virtualization (NFV) have gained much research and

industry attention. The main objective of these research

areas is to avoid proprietary- and hardware-based solutions

in data and wireless networks. Software-Defined Net-

working aims to ‘‘open up’’ networking by creating

abstractions of the control plane and data plane. This allows

users to create their own implementation, enabling them to

change the policy and behaviour of the networks according

to their needs. NFV, on the other hand, allows for mid-
dlebox [1] hardware to be replaced by Virtual Network

Functions (VNFs) [2]. The use of virtual functions has the

advantage of upgrading the functions easily, making them

elastic to be able to scale based on demand and allowing

them to be placed or moved wherever resources are avail-

able within the network as needed to optimally meet the

demand.

In this paper, we address Network Function Placement

(NFP), a specific problem in NFV. NFV virtualizes network

functions that operate on data flows into VNFs. They were

traditionally implemented in dedicated hardware. Data flows

through the network require a sequence of VNFs to be placed

along their path. Such a sequence of VNFs is called a service

function chain (SFC), sometimes referred to as a VNF For-

warding Graph (VNF-FG) [3]. The NFP problem involves

(i) routing the flows through the network from source to

destination, (ii) placing VNF instances in a network and (iii)

steering the flows through SFCs such that the SFC require-

ments of all flows through a network are satisfied.

Part of this paper was presented as a Poster at the IEEE LCN 2017

Conference in Singapore.
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Each aspect of this problem has various possible objec-

tives for optimization and a set of constraints. For example,

routing the flows likely attempts to take the shortest path

for each flow subject to constraints such as latency or

bandwidth. Steering must follow an ordered sequence of

VNFs for each flow with each VNF instance being able to

handle a certain amount of flow, usually measured as bit

rate. Placement must adhere to the resource constraints on

the nodes (servers and switches) in the network and mini-

mize the number of VNF instances in the network. Jointly

optimizing all three aspects of this problem subject to all

constraints is an intractable problem. In fact, later in this

paper, we show that, even if the optimal paths for given set

of flows through the network are fixed, placing the VNFs

such that the number of VNF instances is minimized is an

NP-complete problem. It is this definition of the problem

(with fixed optimal paths for the flows and the objective to

minimize the VNF instances) that we will solve in this

paper. A distributed message-passing protocol that allows

network nodes to negotiate the placement of VNF instances

among themselves is presented as the proposed solution.

An illustration of placement of VNF instances given the

flows, their paths through the network and their SFC

requirements is shown in figure 1. F1–F3 are flows, each

with a sequence of VNFs in its SFC. The VNFs are rep-

resented by the various shapes. Each instance of a VNF is

shown within the node hosting the instance and placed on

the flow(s) serviced by that instance. In this example, the

total number of VNF instances is 4.

The main contributions of this paper are (i) proposing a

distributed approach to NFP, where network nodes nego-

tiate the placement of VNFs, (ii) presenting an algorithm to

minimize number of VNF instances required to satisfy the

SFC requirements of a given set of flows, (iii) showing that

the solution works online by taking an ‘‘always on’’

approach where optimal VNF placement is continually

computed and implemented even as flows get provisioned

and de-provisioned. This paper is an extension of our ear-

lier work titled Funplace: A protocol for Network Function
Placement [4]. Our prior paper published our preliminary

work on the Funplace protocol for NFP. This paper is a

more detailed analysis of the NFP problem in general,

including proof of its NP-completeness and comparison to

other published heuristic solutions. Moreover, the current

paper includes more detailed experimentation of the pro-

tocol on networks of various sizes and topologies and

corresponding results.

The details of the content newly added in this paper are

(i) the sequence diagram of exchange of protocol messages,

shown in figure 3, (ii) a more detailed comparison of our

work to other published work in this area, included in

Section 2 and summarized in table 1 and (iii) more use

cases of the protocol provided in Section 4.5, illustrating

consolidation (Section 4.5a), branching of a request (Sec-

tion 4.5c) and symmetry breaking (Section 4.5d), illus-

trated in figures 5, 7 and 8, respectively, (iv) an illustration

of the use case involving a tie-breaker, as shown in figure 6,

(v) testing of Funplace on much larger networks compared

with the previous paper such as the Fat-tree topology of

varying sizes, described in Section 5 and shown in fig-

ure 11, (vi) detailed results from testing Funplace on a

104-node network of the Fat-tree topology, shown in fig-

ures 13 and 14 and described in Section 5.2a, (vii) results

from testing the protocol on a 656-node network of Fat-tree

topology, shown in figures 15 and 16 and described in

Section 5.2b, (viii) testing of Funplace on a 704-node net-

work with a BCube topology, shown in figure 17 and

described in Section 5.2c, (ix) the results of testing the

distributed solution for an online (dynamic) case, described

in Section 5.2d and shown in figure 18 and (x) NP-com-

pleteness proof of the NFP problem as given in Appendix I.

Based on the experimentation presented in this paper, it

is observed that the convergence time of the distributed

solution using Funplace does not increase with the number

of flows in the network and depends only on the length of

the SFCs. Test results for networks with Fat-tree [5] and

BCube [6] topologies show an approximation ratio of 1.5,

taken as the average ratio of the number of function

instances computed by the proposed solution to that of the

globally optimal solution. The optimal solution is computed

using an Integer Linear Programming (ILP) formulation of

this problem, which is shown in this paper to be NP-com-

plete. Funplace is shown to be a dynamic (i.e. online)
solution where optimization can proceed while flows are

being provisioned in the network continually. This is a

distinct advantage of this distributed solution over any ILP-

based centralized solution. Moreover, a distributed solution

where the network elements negotiate the placement of

VNF instances among themselves using a protocol has not

been addressed in any prior work by other researchers.

The rest of the paper is organized as follows. Section 2

presents the required background material and related

work. Section 3 presents the NFP and its complexity.

Section 4 describes the proposed distributed approach for

solving the NFP problem using Funplace. It provides details

of the protocol, the message format, the algorithm and its

analysis. Section 5 provides the details of the simulation-Figure 1. An illustration of Network Function Placement.

   33 Page 2 of 18 Sådhanå           (2021) 46:33 



based performance study and the key findings. Section 6

summarizes the paper and presents the important

conclusions.

2. Background and related work

This section presents the relevant background material and

a summary of key related works.

2.1 Background

NFV allows network functions such as Firewall, Transco-

der, Deep Packet Inspection (DPI), etc. to be implemented

in software as VNFs instead of using proprietary hardware

known as middleboxes. There has been a lot of work in this

area addressing various aspects such as the virtualization,

placement, scaling, performance, etc. In this paper, the

focus is on the problem of placement of VNFs, commonly

termed as Network Function Placement (NFP). It includes

aspects of routing of flows, steering of flows through SFCs

and placement of VNFs in the network. Prior instances of

work on this problem have defined the problem and the

objectives of solving it differently depending on the specific

aspects of the problem being addressed. In this section, we

will summarize the various approaches to this problem and

the common assumptions made when solving this problem.

There is no single, well-known definition of this problem

per se. Roughly speaking, the problem considers a physical

network, a set of SFCs and a set of flows. The network

comprises links with capacity to carry the flows and nodes

(switches and servers) with capacity to host the VNFs. The

objective is to place the VNFs and form the SFCs and

simultaneously route the flows through the SFCs, with each

flow being routed from its source to destination. This is

similar to solving a multi-commodity flow problem, but

with additional constraints [7]. Sometimes, a set of flows is

not given; rather, the maximum possible aggregate flow

through the SFCs is determined for a given placement of

VNFs.

A key issue to be considered is the optimization criteria.

The solution to the problem may try to optimize one of the

following: (i) maximize the flow through the SFCs, (ii)

minimize the maximum congestion on any link in the

network for a given set of flows or (iii) minimize the

number of VNF instances for a given fixed set of flows. In

this paper, our optimization objective is to minimize the

number of VNF instances for a given set of flows and their

SFC requirements.

The assumptions made while solving the problem must

also be noted. One of the advantages of virtualizing the

network functions is that they can be implemented wher-

ever processing and memory resources are available and

scaled according to demand. Another possible advantage is

that network function may be implemented as fine-granular

functions and placed along the flows [8]. This also means

that these fine-granular functions can be migrated dynam-

ically from one network node to another to accommodate

more flows or consolidate the instances in order to mini-

mize the overall number of instances. Prior work in this

area has shown that it is possible to dynamically migrate

VNFs between nodes or servers [9]. In this paper, we

assume that the VNF instances are fine-granular and can be

migrated between nodes to facilitate optimization. We also

assume that VNFs can be migrated with relatively low

overhead and can be instantiated on generic nodes with

minimal processing power and memory. This is possible

since fine-grained VNFs can be implemented on containers
or unikernels rather than separate servers or even virtual

machines.

Another assumption is about the type of resources such

as computation, network and storage available to process

the flows. One approach is to assume, without loss of

generality, that there is one type of resource and that one

unit of processing is required to process a single unit of

flow [7]. We make this assumption in this paper. Resources

can also be available on network switches or servers con-

nected to the switches. It must be noted that when it comes

to routing, steering and placement this does not make a

significant difference and this detail can be abstracted away

as a method of simplification. In other words, the resources

Table 1. Comparison with related work on NFP.

Authors Online Distributed ILP/MIQCP Heuristic Flow based VNF Migration

Beck and Botero [3] 9 9 4 4 4 9

Charikar et al [7] 9 9 4 9 4 9

Baumgartner et al [10] 9 9 4 9 9 9

Mehraghdam et al [11] 9 9 4 9 4 9

Kodirov et al [12] 9 9 4 4 4 9

Moens and Turck [13] 9 9 4 9 9 9

Mohammadkhan et al [14] 4 9 4 4 4 9

Lin et al [15] 9 9 4 4 4 9

Addis et al [16] 9 9 4 4 4 9

Ghaznavi et al [17] 4 9 4 4 4 4

Our approach/solution 4 4 4 4 4 4
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can be thought of as available on the network nodes that are

either switches or switches with servers attached to them.

This is another assumption followed in this paper, similar to

the assumptions made in [10].

Some of the prior work considers or allows re-ordering

of the SFC during optimization [11]. This is because it is

possible that middleboxes can be placed in different orders

along the path of flows and still achieve the same end-to-

end behaviour. However, there may be a requirement for a

partial order where certain functions must occur before

certain other functions along the path. In this case, the

functions can be sorted in a topological order before

placement [12]. It must also be noted that network func-

tions can increase, decrease or copy the flow as a result of

the processing. As an example, a transcoder may result in a

compressed flow as its output and load balancer may pro-

duce multiple streams of the same flow. This can be taken

advantage of by placing the VNFs that compress flows

closer to the source [11] and by placing the VNFs that

increase or multiply the flow closer to the destination.

Finding the optimal ordering of the VNFs is sometimes

referred to as the Chain Composition problem [3]. In this

paper, we assume that the VNFs are pre-ordered and pro-

vided as input.

Another factor to consider is whether to optimize the

placement and the chaining for each individual flow or for a

group of flows. In other words, a portion of the flow space

can be considered as a single unit for which VNF placement

is considered [8]. In this paper, we consider all flows

between the same source–destination pair and the same

SFC requirement as belonging to a flow class. Rather than
optimizing VNF placement for individual flows, we opti-

mize for flow classes. This greatly enhances the scalability

of our solution.

Given that a particular definition of this problem has a

maximization or minimization objective with several con-

straints to be satisfied, Integer or Mixed Integer Program-

ming is frequently used as a method to solve the problem

[10, 11, 13]. Due to the time required to compute optimal

solutions using this method, it is not suitable for real-time

use. Hence, several heuristic solutions have been developed

[12, 14]. Our approach can be considered as a heuristic

approach. However, it is completely distributed with none

of the nodes working with global information about all

flows or end-to-end SFC requirements and involves local

negotiation between neighbouring nodes to optimize the

placement. This is a unique approach compared with prior

work in this area.

2.2 Related work

Most of the prior works on this problem include a form of

Integer or Mixed Integer Programming with linear or

polynomial constraints to solve the problem [3, 11, 15, 16].

They attempt to solve NFP as a unified problem handling

routing, steering and placement. As mentioned earlier, the

optimization criteria may differ based on the problem

definition. The work by Mehraghdam et al [11] includes a
Pareto analysis to compare various objectives and shows

that the three metrics can have trade-offs but are not nec-

essarily conflicting.

A detailed comparison of the work presented in this

paper with similar work on the NFP problem by other

researchers is shown in table 1. This table indicates whether

or not the following characteristics can be attributed to each

paper: (i) dynamic placement of VNFs is possible while

flows are provisioned in parallel, indicating an online
solution, (ii) a distributed solution was used where nodes

negotiated the placement among themselves, (iii) an ILP or

an MIQCP formulation and a solver were used to identify

optimal solution, (iv) a heuristic solution was used, (v) the

problem considered individual flows with each flow being

routed between a source–destination pair and (vi) migration

of VNF instances between nodes was considered or

allowed. It can be observed from this table that this paper is

unique in its distributed approach to the problem where

network nodes negotiate the placement of VNF instances

among themselves.

A survey of NFP-related research work is presented in

[18]. Some of the more recent works on NFP such as

[19, 20] have introduced new methods, but follow a

familiar theme of ILP-based solution and heuristics. Prior

works by the authors have considered other solutions for

NFP in SDNs [21, 22].

3. The NFP problem

The objective of the NFP problem, as defined in this paper,

is to minimize the number of instances required to satisfy

the SFC requirements of the flows. Prior work primarily

treated this as a constraint satisfaction problem, using linear

programming to find optimal solutions. In contrast, a dis-

tributed approach that uses a message-passing network

protocol to solve the problem will lend itself naturally to

using the switches for computation and allow them to

negotiate the placement of VNF instances among them-

selves. Funplace is used to demonstrate the distributed

approach as a viable alternative. An ILP formulation is used

to find optimal solutions for comparison and to show that

the protocol yields fairly optimal solutions.

3.1 Problem definition

Before describing the details of our solution, the problem

being solved is formally defined in this section. Let the

network be represented as usual by a graph G ¼ ðN ; EÞ.
Each node Nn 2 N in the network has the ability to host

one or more VNF instances. Cn is the capacity of Nn to host

VNFs given in flow units. Let V be the set of VNFs. Let F

   33 Page 4 of 18 Sådhanå           (2021) 46:33 



be a set of flows through the network, each being a single

unit of flow. The path taken by flow Ff is given by Pf ;n ¼ k,

where k is the position of node Nn along the path of Ff . SFC

of flow Ff is denoted as Sf ;v ¼ l where l is the position of

the VNF Vv in the chain. The problem involves finding

Lf ;v;n – the value being set to 1 if for flow Ff , VNF Vv is

serviced at node Nn and 0 otherwise. Each flow must be

serviced by the sequence of VNFs in its SFC, in the same

order along the path taken by the flow through the network.

Each node hosts at most one instance of a given VNF. The

total number of VNF instances in the network is given byP

n

P

v
ðmaxf Lf ;v;nÞ. The objective of solving the problem is

to minimize the number of VNF instances in the network.

3.2 NFP is NP-complete

The NFP problem defined earlier is NP-complete. This can

be proved by reduction from the Set Cover problem. This

reduction proof is given in Appendix I.

3.3 ILP formulation

To find the optimality of the solutions computed by Fun-

place, we use an ILP formulation of the NFP problem to

solve the exactly same problem instances as those of Fun-

place and compare the results. In this section, we describe

this formulation. The input parameters, variables, con-

straints and the objective are listed in table 2.

The objective is to minimize the total number of VNF

instances in the network to satisfy the SFC requirements of

the flow. This is given by
P

n

P

v
ðmaxf Lf ;v;nÞ in table 2c,

where Lf ;v;n is the decision variable. This decision variable,

as shown in table 2b, indicates whether a given function v is
placed at a given node n for flow f.

The ILP parameters are given in table 2a and provide the

input of flows, their paths and their SFC requirements.

Parameter Pf ;n is used to identify the path taken by each flow

through the network. For a given flow f, Pf ;n is the position of

node n along the path taken by f. Parameter Sf ;v specifies the
SFC of each flow in the network. For a given flow f, Sf ;v
indicates the position of VNF v in the SFC of the flow.

The constraints shown in table 2d are used to ensure that

VNF instances are placed according to the SFC require-

ments of each flow in the given order along the part of the

flow. The constraint C1 given by Sf ;v ¼ 0 ! 8n Lf ;v;n ¼ 0

ensures that if a given VNF v is not applicable to a flow f,
then it is not placed for that flow on any node in the net-

work. The constraint C2 given by Sf ;v [ 0 ! 9n Lf ;v;n ¼ 1

is the converse of C1 and ensures that if VNF v is applicable
to f, then a node n must exist where v is placed for the flow

f. The final constraint C3 is given by 8v1;v2;f Sf ;v1\Sf ;v2 !
9n1;n2 Lf ;v1;n1 ¼ 1; Lf ;v2;n2 ¼ 1;Pf ;n1 �Pf ;n2 . For a given flow

f and a given pair of VNFs v1 and v2, if v1 occurs before v2

in the SFC, the node n1 where v1 is placed for f must not

occur after the node n2 where v2 is placed for f along the

path of f. Constraints C1 and C2 ensure that a VNF instance

is placed for a given flow if and only if required by its SFC.

Constraint C3 ensures that the VNF instances are placed in

the same order as specified in the SFC, while C4 is used to

make sure that each node’s capacity to host VNFs is not

exceeded.

This ILP formulation was implemented using AMPL
code, solved using a Gurobi solver and used to compute the

globally optimal solution for instances of the NFP problem.

Even though the ILP formulation is useful for this purpose,

it is not a scalable and practical solution in a real network as

the number of decision variables required is OðjF jjVjjN jÞ
where F ;V and N are the sets of flows, VNFs and network

nodes, respectively. Note that the formulation shown here is

illustrative and includes non-linear constraints and objec-

tives for readability. The actual formulation to solve the

problems used standard conversion techniques to avoid

non-linearity. The ILP approach yields optimal results for

static instances of NFP. It cannot handle dynamic NFP

when flows are being added and removed from the network.

In contrast, Funplace is a dynamic protocol that constantly

evaluates current network state and adjusts the placement

of VNF instances.

4. Funplace: a distributed protocol for NFP

The NFP problem, as shown in Appendix A, is NP-com-

plete even with a single network function. Therefore, for

large networks having a large number of flows, the problem

of finding the globally optimal solution with the least

number of function instances is intractable. The problem

therefore lends itself naturally to a distributed algorithm

where switches negotiate locally optimal placements of the

function instances. Funplace [4] is a message-passing

protocol that allows switches to perform such negotiations

in parallel throughout the network. The protocol allows the

switches to compute fairly optimal placement of the net-

work functions.

4.1 Overview of the protocol

Funplace assumes that each node (switch) in the network is

aware only of its local state. The local state of a node com-

prises the set of flows passing through the node, the SFC of

each such flow and the fragment of each SFC that is serviced

at that node, which could be a null fragment (if none of the

VNFs in the chain are serviced at that node). The node is thus

aware of VNF instances that are serviced both at upstream

and downstream nodes of each flow, but unaware of the exact

location of such instances. This is illustrated in figure 2 for a

single flow (F1) passing through three nodes (N1–N3). At

each node, a start (S) and an end (E) pointer delineate the
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fragment of the SFC hosted locally. Each node is aware of the

VNFs hosted in the upstream (U/s) and downstream (D/s)

directions.

In each round of the algorithm, each node considers its

current local state and the potential reduction in the number

of VNF instances by possibly negotiating the migration of

VNF instances from upstream and downstream nodes for

the various flows; thus, it coalesces more flows for pro-

cessing locally. VNF transfers are negotiated one at a time

with the upstream or downstream neighbour. Funplace

therefore ensures that the SFC sequence for every flow is

maintained at all times. At the core of the algorithm is the

concept of utility of a VNF at a node, defined as the number

of flows serviced by that VNF at that node. Each node

computes both its current utility of each VNF as well as the

potential maximum utility by considering flows that are

currently not serviced by the VNF locally, but can poten-

tially be serviced locally instead of an upstream or down-

stream node. The difference between the current utility and

the maximum utility is taken as the differential, which

becomes useful for tie-breaking in certain use cases that are

explained later.

If a node identifies a better maximum utility of a local VNF
instance (the number of flows processed by that instance) or

finds it meaningful to spawn a local instance of a VNF, it

sends a request to ‘‘transfer’’ the VNF from neighbouring

nodes to itself. Conceptually, each node ‘‘pulls’’ VNF

instances from either direction to optimize their utility. To

increase the scalability of the protocol, Funplace operates on

flow classes rather than flows. Each flow class is defined as

the set of flows between the same pair of source and desti-

nation using the same path through the network, and having

identical SFC. This avoids the protocol having to address

individual flows and greatly reduces the size and the number

of the protocol messages. For the rest of the paper, while

discussing the protocol and its use cases, the term ‘‘flow’’ is

used to mean a flow class for simplicity.

Each node generates transfer requests based on its local

state to its neighbours. A neighbouring node that receives

such a request makes a decision based on its own local state

and takes one of the following actions: (i) rejects the

transfer request since it has a higher utility of the VNF

instance being requested, i.e. it can service more flows with

the VNF instance than the requesting node, (ii) yields to the

transfer request and offers to transfer the VNF instance to

the requesting node or (iii) forwards the transfer request

along the same direction in which the request was gener-

ated (either upstream or downstream) for the next node

along the path of the flow(s) to consider the request. A

three-way handshake is required to complete the transfer of

a VNF instance at a node to another requesting node to

Table 2. ILP formulation.

8n;Nn2N , 8v;Vv2V , 8f ;Ff2F

(a) Parameters

P1 Pf ;n The path taken by the flow. Pf ;n is the position of Nn in the path taken by Ff .

P2 Sf ;v The SFC for flow Ff . Sf ;v is the position of VNF Vv in the SFC of flow Ff .

P3 Cn The capacity of Nn to host VNFs measured in flow units.

(b) Decision variable

D1 Lf ;v;n The placement of VNFs along the path of each flow. Lf ;v;n ¼ 1

indicates that for flow Ff , VNF Vv has been placed on node Nn.

(c) Objective

O1 Minimize
P

n

P

v
ðmaxf Lf ;v;nÞ

(d) Constraints

C1 Sf ;v ¼ 0 ! 8n Lf ;v;n ¼ 0 (If a VNF is not required for a flow, it must not be placed.)

C2 Sf ;v [ 0 ! 9n Lf ;v;n ¼ 1 (If a VNF is applicable to a flow, it must be

placed on a node.)

C3 8v1 ;v2 ;f Sf ;v1\Sf ;v2 ! 9n1;n2 Lf ;v1 ;n1 ¼ 1; Lf ;v2;n2 ¼ 1;Pf ;n1 �Pf ;n2

(VNFs for a flow must be placed in the same order as in the SFC.)

C4 8n;v;f
P

n
Lf ;v;n �Cn

Figure 2. An illustration of a flow and the SFC fragments at each

node along the flow.
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reliably complete the transfer. A successful transfer request
is responded to with a transfer offer in the opposite direc-

tion and finally the offer is accepted using a transfer con-
firmation, which proceeds in the same direction as the

request. These three messages and their contents essentially

constitute the protocol.

4.2 An illustrative example

An illustration of how the nodes use the messages to

negotiate VNF placement is presented in figure 3. At each

node Nn there is at most one VNF instance of each type,

each instance servicing one or more flows. There are two

flows F1 and F2 in the network and their SFC requirements

are as shown. The VNFs are represented by the various

shapes: h, 4 and s. The initial placement of the VNFs

results in a total of four VNF instances in the network.

The sequence of messages that are used to negotiate a

more efficient VNF placement is shown. Node N1 identifies

h as a VNF that can be ‘‘pulled’’ from the downstream

nodes (Of flow F1) and initiates a request message. This

message indicates a utility of 2 flows. Since N2 does not

host this VNF it forwards the message further downstream

to N3, which responds to the request with an offer message

since its own utility for h is lower than that of the

requesting node. The offer message is forwarded hop-by-

hop back to N1. On seeing the offer message, N1 modifies

its VNF-node for h to include F1 and responds with a

confirm message back to N3. N3 completes the transfer by

removing F1 from its corresponding VNF-node and pro-

ceeds to destroy it since there are no other flows using it.

All three nodes update their SFC fragments for the flows in

the confirm stage of the transfer. After the transfer, the total

number of VNF instances in the network is reduced to 3.

4.3 The messages

In this section we will describe the various messages that

are used in the protocol, namely the transfer request, the
transfer offer and the transfer confirmation messages.

These messages are used by nodes along the paths of the

flows to negotiate the placement of the VNF instances such

that their utility is maximized. The messages are identical

in format, which is shown in figure 4. However the

semantics of the fields vary based on the type of message,

which are discussed in this section.

The message has a fixed part and a variable part. The

fixed part comprises the type of the message (transfer

request, offer or confirmation), its length, the VNF being

requested, offered or confirmed, source and destination

node IDs, maximum utility and the differential. The fixed

part of the message requires 24 bytes as shown. The vari-

able part contains the flow IDs of the applicable flows for

which the VNF transfer is being requested, offered or

confirmed by the message. This part requires 4 bytes for

each flow included in the message.

The Src node ID field contains the ID of the node that

originates the message. Thus, for the request and the con-

firmation messages, it is the requesting node. For the offer

message, it is the node responding to a transfer request.

The Dst node ID field contains the ID of the node to

which the message is addressed. When a node generates a

transfer request, it addresses it to all nodes by setting a

wildcard value to this field. This is because it does not

know which downstream or upstream node will respond to

the request. However, when an offer message is generated

by a responding node, it sets the ID of the requesting node

Figure 3. An illustration of a VNF transfer.
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in this field. Similarly, in the confirm message, the ID of

responding node (which made the offer) is used.

The max utility and differential fields are applicable only
for the request message and not used in the other two

messages. They are used by the requesting node to adver-

tise its maximum utility for a VNF to its neighbours and its

difference from the current utility. The maximum utility

serves as the primary decision making parameter by the

receiving node. It essentially yields to a request if the

requesting node has a higher maximum utility for a VNF.

However, if the two nodes have the same maximum utility,

the node that has the higher differential (and is therefore

currently servicing flows to a lesser extent) yields to the

other node.

4.4 Funplace algorithm

In this section, we will use pseudo-code to describe the

distributed algorithm executed by the nodes in the network.

The algorithm proceeds in rounds with each node receiving

messages, taking actions on them and generating messages

for neighbouring nodes in each round. Algorithm 1 shows

the steps taken by a given node in a given round. The

handling of incoming offers, confirmations and requests are

addressed by algorithms 2, 3 and 4, respectively. These

algorithms handle some special cases such as two offers

‘‘crossing in the wire’’, which are illustrated in a subsequent

section. Based on the incoming requests and local maxi-

mum utility, generating either local requests or forwarded

requests is handled by 5 and 6.

Figure 4. Funplace message format.
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Note that Funplace starts with the flows already routed

and SFC for each flow provisioned. It is assumed that the

path computation and provisioning are already done. The

placement of the VNFs can be done using another trivial

algorithm that places the VNF instances along the path of

each flow. For example VNFs can be placed sequentially

starting from the source, one instance at each node. Alter-

natively, the algorithm can place as many VNFs as possible

at each node before proceeding to the next node. Similarly,

when a new flow enters the network, it is routed and VNFs

are placed using this initial method. Obviously, such an

algorithm will result in a highly inefficient placement as an

initial state. Funplace is an online solution that continu-

ously iterates and improves the efficiency of this placement,

starting from this initial state.

It must also be noted that Funplace was tested using

discrete event simulation for the purpose of presenting the

results in this paper, where the simulation proceeds in

rounds. The messages generated by a node in a round reach

the neighbour in the subsequent round. The time duration of

a round in a real implementation may vary based on the

network size, number of flows, etc. For example this

duration can be set to 500 ms, which determines the fre-

quency at which the transfer requests are generated.

4.5 Use cases

In this section we present a few use cases as further illus-

tration of the algorithm and some of the complex scenarios

that must be handled by the algorithm.

4.5a Consolidation: When two or more flows converge at a

common node, but the VNF instances are placed down-

stream or upstream from the common node, the VNFs can

be consolidated at the common node. This is illustrated in

figure 5.

4.5b Tie-breaking: In some cases, two nodes compete with

each other for a VNF instance with both computing the

Figure 5. Consolidation of VNFs at a common node.
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same value as the utility for the VNF. In this case, the

difference between the current utility and the target utility

of a VNF instance at a node is used to break the tie. This

difference is termed as the differential. This is illustrated in

figure 6. Nodes N1 and N3 both have a utility of 2 flows for

the VNF represented by h. However, node N1 has a dif-

ferential of zero. This indicates that it is already servicing 2

flows. Node N3 generates a transfer request to N1, which is

rejected as N3 has a higher differential, avoiding an

unnecessary transfer.

4.5c Branching of a request: Consider the VNF placement

shown in figure 7. Here, N4 sends a transfer request to N3

since a consolidation of h is desirable for the two flows.

When the request is received at N3, it must be forwarded

along both flows in their respective directions away from

N4. The ‘‘pull’’ from N4 is essentially transmitted after

branching the request into two separate requests, one

towards N1 and the other towards N2. The utility and dif-
ferential are preserved in the forwarded requests to indicate

the utility of the VNF instances in their intended target

node (N4). In this case a successful completion of the

individual transfers is allowed, consolidating h at N4.

4.5d Symmetry breaking: Figure 8 illustrates a use case

where using the differential as tie-breaker is not effective.

Here, both N1 and N2 have the same utility (2 flows) and

differential (1 flow). In this case, the node with the higher

node ID yields to the one with the lower node ID. In this

case, N1 ends up hosting the VNF for both flows in the

illustration.

4.5e Simultaneous requests: (a race condition) Sometimes

two nodes, one downstream from the other for one or more

flows, may generate simultaneous transfer requests for two

different VNF instances, one in each direction. This is

illustrated in figure 9. Here, N1 has a higher utility for 4
and requests a transfer for F1 from its upstream neighbour.

Also, N2 has a higher utility for h and may simultaneously

generate a transfer request for it in the downstream direc-

tion. Clearly, only one of these requests must be allowed to

be completed to avoid swapping the VNF instances and

violating the SFC requirement. This race condition cannot

be handled by either node when the requests are received

since neither one knows if the other node is going to

respond with an offer. Thus, both nodes are allowed to

generate their respective offers. However, when the offers

are received at the two ends, one of the nodes (the one with

the lower ID) rejects the offer, thus ending the handshake

process in one of the directions, resolving the race

condition.

Thus Funplace attempts to incrementally and continually

increase the utility of each VNF instance in the network,

resulting in overall optimization of the number of VNF

instances in the entire network. It does so by consolidating

VNF instances on different nodes wherever possible con-

sidering both upstream and downstream directions of flows

as seen from each node. The protocol includes techniques

to break ties, handle symmetry and prevent race conditions.

4.6 Analysis of the algorithm

In this section, we prove the correctness of the Funplace

algorithm by showing the following lemmas given a set of

flows and an SFC for each flow.

Lemma 1 A VNF transfer completed by Funplace will
never result in a higher number of VNF instances in the
network.

Lemma 2 Whenever it is possible to lower the overall
number of VNF instances by transferring a VNF instance
from one node to another, Funplace will complete the
transfer.Figure 6. Differential used as tie-breaker.

Figure 7. Branching of an incoming request.

Figure 8. Symmetry breaking using node ID.

Figure 9. Simultaneous requests leading to race conditions.
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Lemma 3 Funplace always reaches a steady state where
no transfer offers are being made.

These lemmas can be proved by considering a single

arbitrary flow F and an arbitrary VNF denoted by s in its

SFC. Let N be the nodewhere theVNF is hosted at the start of

round R0 of the algorithm. Since Funplace works symmet-

rically in both upstream and downstream directions, we will

consider potential transfers of this VNF in the downstream

direction only without loss of generality. Let us assume that

s is the next VNF available for transfer in the downstream

direction at the end of some roundRt and therefore, at the start

of round Rtþ1. This VNF is transferred to some downstream

nodeN’ as shown in figure 10, if and only if (i) N0 has a higher
utility fors than NOR (ii) N and N0 have the same utility but

N0 has a higher differential OR (iii) N and N0 have the same

utility and differential, but N0 has a lower node ID. The higher
utility for this VNF at N0 implies an overall reduction in the

number of VNF instances since, by definition of utility, more

flows can be serviced by the VNF instance at N0. Clearly,
Lemma 1 and Lemma 2 are followed by this transfer based on

the conditions. Also note that once a downstream transfer is

completed for s, it cannot be transferred back in the

upstream direction based on the conditions. Moreover the

transfer will be completed by round Rtþ3h, where h is the

number of hops fromN toN0 since 3h is the number of rounds

taken to complete the 3-way handshake. Assuming that there

are no loops in the flow and since the path of the flow has a

finite length the VNF instance will reach a node where no

further transfer offers are made. Therefore, Lemma 3 is also

followed for this flow andVNF. Sincewe showed the lemmas

to be true for an arbitrary flow andVNF, it can be shown to be

true for all flows and their SFCs by extension.

Since Funplace is a distributed solution, it is meaningful

to analyse the average time complexity of Funplace on any

node in the network. If FN is the set of flows through node

N, L is the average length of the SFCs and P is the average

path length of the flows, then Funplace reaches steady state

in OðjFN jLPÞ. This is because the node may participate in

the transfer of each VNF instance in the SFC along the

entire path of the flow.

5. Performance results

In this section we present the details of the discrete event

simulation of the protocol, various test cases and the results

from the simulation, along with comparison of the

performance of the protocol to that of the optimal solution

generated by the ILP formulation.

5.1 Test network

Fat-tree topology [5] and BCube topology [6] are among

the most commonly used topologies in modern networks

such as Data Center Networks (DCNs). They are highly

meshed and present the most challenging conditions for

testing the efficiency of a protocol like Funplace. Figure 11

illustrates the Fat-tree topology that was used for testing the

protocol. Networks of varying sizes of this topology are

used for testing by varying the height of the tree (the

illustration shows a height of 3) and the number of pods in

the topology. A network with k pods and a height of h has

OðkhÞ nodes and Oðkhþ1Þ links. Later in this section, the

results from a topology generated with k ¼ 8 and h ¼ 3

with 104 nodes and 512 links and also from a topology

generated with k ¼ 16 and h ¼ 3 with 656 nodes and 6144

links are presented.

Funplace is also tested on the BCube topology shown in

figure 12, which is also used in DCNs. A BCube topology

is recursively defined using two parameters k and n, where

a BCubek is constructed using nk switches and nk�1

instances of BCubek�1. At the lowest level, a BCube0 has n
host nodes that are capable of switching and a single n-port

switch. Overall, a BCube network has ðnþ k þ 1Þnk nodes
and ðk þ 1Þnkþ1 links. For testing the protocol, a topology

with k ¼ 2 and n ¼ 8 is used, resulting in 704 nodes and

1536 links. The results for this topology are also presented

later in this section.

Flows (flow classes) were provisioned between various

{src, dst} pairs of switches. Equal Cost Multi-Path (ECMP)

routing was used to ensure that the various paths through

the network were used to evenly distribute the flows. The

simulation was conducted with a short SFC (a sequence of

3 VNFs), a medium SFC (5 VNFs) and a long SFC (8

VNFs). The default algorithm places the VNFs in the SFC

of each flow, one VNF at each node starting with the source

node of the flow in sequence, essentially, in a highly inef-

ficient configuration. Funplace was then used to optimize

the placement. The output thus generated is labelled as

Figure 10. Transfer of an arbitrary VNF instance of a flow from

node N to N’. Figure 11. Fat-tree topology used for testing.
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Funplace in the graphs and compared with (i) a heuristic

placement specified in [12] as NetPack, (ii) another

heuristic algorithm specified in [14] as Heuristic-A and (iii)

the optimal solutions generated by the ILP formulation

(labelled as optimum). NetPack and Heuristic-A algorithms

are described in Sections 5.1a and 5.1b, respectively. The

average ratio of the output of Funplace to the optimal

solution for various instances of the problems tested is

taken as the approximation ratio of this distributed solu-

tion. This ratio was also plotted for the various test sce-

narios. The simulation was also used to collect information

about the convergence speed (the number of iterations or

time steps taken by the protocol to converge).

5.1a NetPack heuristic NetPack algorithm [12] attempts

to optimize bandwidth usage in the network by following a

sequence of optimization steps. First, VNFs are sorted in

topological order. Then, network-locality is used in trying

to place all VNFs of the chain on the same server. If this is

impossible, it explores servers on the same rack, then ser-

vers within the same cluster, etc. Finally, server-locality is

used to attempt to re-use previously allocated servers when

placing consecutive VNFs.

5.1b Heuristic-A Heuristic-A [14] is a multi-step greedy

algorithm that attempts to place VNFs one flow at a time.

VNFs are placed along the shortest path of each flow,

wherever capacity is available. While doing so, the algo-

rithm tries to share the capacity already allocated on the

shortest path. If this is not possible, the algorithm looks at

neighbouring switches to use available capacity on those

switches and tries to reuse the capacity allocated on them. If

after these steps a flow does not have all the necessary

services, Heuristic-A adds a node from the neighbouring

switches to the shortest path and repeats all the afore-

mentioned steps.

5.2 Observations

In this section, the observations made on the performance

of Funplace on networks of various sizes and topology are

given.

5.2a Fat-tree topology with 104 nodes: Figure 13 compares

the number of VNF instances as computed by Funplace in

comparison with other heuristics and also the globally

optimal solution computed by the ILP formulation on a Fat-

tree topology with 8 pods and 3 levels. It can be observed

that Funplace greatly optimizes the number of VNF

instances compared with other heuristic solutions. As

expected, performance of Funplace (the number of VNF

instances in each case) is worse than that of the ILP for-

mulation but the Funplace-to-optimum ratio ranges from

1.22 to 1.5 for this network as shown in figure 13d. Given

that the underlying problem is an NP-complete problem,

this is reasonable performance. It can be noted that this

performance degrades with the length of the SFC, based on

the increasing value of the ratio.

As seen in figure 14, for a given network, the conver-

gence time does not scale with the number of flows, but

only with the length of SFC for the flows. This is because of

the protocol operating in parallel and optimizing the

placement of VNF instances at various parts of the network

simultaneously. It is clear that a distributed protocol like

Funplace will scale much better compared with a central-

ized solution as the size of the network and the number of

flows become larger. The latency involved in ferrying state

from the nodes to the centralized controller and the com-

putation time involved in finding a globally optimal solu-

tion will eventually degrade the performance of a

centralized solution.

5.2b Fat-tree topology with 656 nodes: Figures 15 and 16

show the results from similar testing on a Fat-tree topology

with 16 pods and 3 levels. It can be observed the results are

similar to that of a smaller network. In the case of this

larger network, the Funplace-to-optimum ratio ranges from

1.44 to 2.0. The overall average of this ratio for all test

cases for Fat-tree networks presented here was computed to

be 1.5 and taken as the approximation ratio.

5.2c BCube topology with 704 nodes: Funplace was tested

on a BCube topology with k ¼ 2 and n ¼ 8, which has 704

nodes and 1536 links. The performance observed for SFC

length of 3 on this topology is similar to that of the Fat-tree

topology with Funplace outperforming both the NetPack

and the Heuristic-A algorithms, as shown in figure 17. Note

that comparison with the optimum was possible only for

SFC of length 3. For longer service chains, with 200 or

more flow classes, the ILP solver takes in excess of 24 h to

find the optimum solution for each instance of the problem

on a 32-core server with 2-GHz Intel Xeon processors and

128 GB of RAM running 64-bit Ubuntu 18.04.3 LTS due to

the size of the optimization problem. This further under-

scores the value of a distributed solution such as Funplace.

5.2d Illustration of dynamic solution: Figure 18 illustrates

Funplace solving the NFP problem when flows are added to

the network dynamically. In this example, 20 new flows are

provisioned in every 50 rounds of the protocol simulation.

Figure 12. BCube topology used for testing.
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It can be observed that the number of VNF instances spikes

after each round of provisioning, followed by Funplace

quickly optimizing the number of VNF instances. Each

flow had an SFC of length 5 in this experiment.

5.3 Impact on network throughput

In this section, the impact of Funplace on the throughput of

the network is discussed. As explained in Section 4.3, each

Funplace message instance has a fixed component of length

24 bytes and a variable component of flow IDs with each ID

taking 4 bytes. The total number of bytes transferred by

Funplace for various numbers of flows in a 656-node Fat-

tree topology and the corresponding average number of

bytes per network link are shown in figure 19. As the

number of flows increases, even though the total bandwidth

usage increases, the average usage per link decreases due to

the flows being distributed over a larger part of the network

and more network links participating in the protocol. Note

that the average amount of data transferred by the protocol

for 400 flows and SFC length of 5 is about 8 kbytes over

approximately 20 iterations of the protocol (as observed

from figure 16). Assuming a time duration of 500 ms for

each round, this translates to less than 1 kbps data rate. This

is a small fraction of the bandwidth of a network link,

which is typically 100 Mbps, 1 Gbps or higher. It can be

concluded that the impact of Funplace on the network

throughput is negligible.

5.4 Effect of migration cost

In this section, we present the effect of migration cost on

the result computed by Funplace. When studying VNF

placement, it may be necessary to take the cost of migrating

VNFs into account especially when the VNFs are stateful

and migration can result in data loss [23]. Even though the

default implementation of Funplace does not take migration

cost into account it is relatively easy to account for

migration cost by offsetting the utility value received in the
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Figure 13. Performance of Funplace vs. other heuristics and the

optimum on a Fat-tree topology (k ¼ 8; h ¼ 3) with 104 nodes,

512 links (CI = 90%).
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Figure 15. Performance of Funplace vs. other heuristics and the

optimum on a Fat-tree topology (k ¼ 16; h ¼ 3) with 656 nodes,

6144 links (CI = 90%).
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transfer request by a certain value d to represent this cost,

before comparison with local utility at a node while

deciding to accept or reject the request. The results are

shown in figure 20 for various values of d in the 656-node

Fat-tree topology to indicate the impact of migration cost

on the number of VNF instances computed by Funplace.

It must be noted that a fixed migration cost has been used

to arrive at these results. However, the migration of a VNF

may cost a variable amount of time and resources

depending on its complexity and the size of the flows. For

example, migrating VNFs servicing smaller flows (mice

flows) may take shorter time than those servicing larger

flows. Moreover, large number of mice flows that are short-

lived may result in frequent migrations leading to possible

loss of data throughput. For the purpose of this paper, only

a simulation study of the protocol for migration is studied.

Actual migration of VNFs is not studied. However, a

Funplace implementation using implementation of real

VNFs is a suitable topic for future work.

5.5 Flow size distribution

While defining the placement problem in Section 3.1, we

assumed that each flow is a single unit of flow. However, in

a realistic network, the set of flows comprise small (mice)

flows and very large (elephant) flows. In this section we

study the effect of having a certain fraction of elephant

flows, each assumed to be 1000 times the size of a mice

flow. This was accomplished by redefining the utility of a

VNF at a node to be the aggregate data rate of the flows

serviced by the VNF at that node. Figure 21 shows the

results of testing Funplace with various distributions of

flows. Each value of c indicates the fraction of the total
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Figure 19. Bandwidth usage in bytes by Funplace protocol

messages on a Fat-tree topology with 656 nodes, 6144 links (CI =

90%)
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Figure 21. VNF instances computed by Funplace on a Fat-tree

topology with 656 nodes, 6144 links for various distributions of

flow size (CI = 90%).
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number of flows that are mice flows. It can be observed that

with a small percentage of elephant flows (10%, with

c ¼ 0:9), the number of VNF instances is marginally higher

compared with a larger percentage of elephant flows. This

is due to the small number of elephant flows dominating the

placement decisions of the VNFs and preventing a more

optimal solution overall.

5.6 Summary of results

The results from the testing of Funplace show that for a given

SFC length, the distributed algorithm does not degrade with

the number of flows in the network. The ratio of the VNF

instances as computed by Funplace to that computed by ILP

does not increase with the number of flows in the network.

Moreover, this ratio is on an average 1.5 for the various SFC

lengths tested on the Fat-tree networks. Taking into consid-

eration the fact that the NFP problem is NP-complete, this

shows that Funplace can generate reasonably optimal solu-

tions. Similarly, the number of iterations taken by the pro-

tocol to converge on a solution also does not increasewith the

number of flows. This result indicates that a distributed

algorithm will perform better beyond a certain number of

flows, since a centralized solution will degrade due to the

increased messaging between the nodes and a centralized

controller with increasing number of flows and the resulting

latency in processing the messages centrally.

6. Conclusions

NFP is a complex problem for a large network with a large

number of flows in the network. Attempting to solve the

problem dynamically and in parallel when flows are being

provisioned is an intractable problem. A distributed solution

lends itself well since the nodes can negotiate the placement

locally andmake the decision to place ormigrate the functions

themselves. This paper presented such a solution, using Fun-
place as the protocol for nodes to negotiate the placement

among themselves. The results of testing the protocol among

various networks of different topologies and sizes show that it

performs better when compared with other heuristics and

reasonably well in comparison with the optimal solution

computed using ILP formulation of the problem and a corre-

sponding solver. Future work on this problem involves actual

dynamic migration of VNF instances between nodes. Possible

loss of data due to unnecessary and frequent migration can be

studied, especially in the presence of short-lived mice flows.
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Appendix I. NP-completeness proof of NFP
problem

In this section, a simplified form of the NFP problem that

involves a single network function is taken into consider-

ation. This simplified NFP problem is termed as the Single-

NFP (S-NFP) problem. It is shown that the S-NFP problem

is NP-complete.

Appendix I.1 The Single Network Function
Placement (S-NFP) problem

Given a network, a set of paths (representing flows through

the network), a network function and a bound on the

number of instances of the network function, the S-NFP

problem involves finding whether the instances can be

placed in the nodes of the network such that each path has

at least one node (vertex) with the function placed on it.

This is more formally defined here.

Let G ¼ ðV; EÞ be an undirected graph representing a

network and P ¼ fp1; p2; . . .; pmg be a set of m paths

through the network. Each path pj connects two vertices sj
and tj, where sj; tj 2 V. The S-NFP problem is as follows:

given a constant c, is there an R � V s.t. j R j � c and

8pj 2 P; 9r 2 R s.t. r is a vertex on path pj?

Appendix I.2 Reduction from Set Cover problem
to S-NFP

The Set Cover problem can be reduced to the S-NFP

problem, proving the NP-Completeness of the S-NFP

problem. The Set Cover problem is as follows. Given U ¼
f1; 2; . . .;mg and a family of l subsets of U, F ¼
fA1;A2; . . .;Alg and a constant c, is there a set C � F s.t.

j C j � c and 8j 2 U; 9A 2 C s.t. j 2 A.
Given an instance of the Set Cover problem, a corre-

sponding instance of the S-NFP problem can be constructed

as follows.

Let U;F and c of a Set Cover problem instance be given.

A corresponding graph G and a set of m paths P through the

graph can be defined based on this input. Let sj and tj be a

pair of nodes in the graph corresponding to each element

j 2 U. sj and tj (1� j�m) are the two end nodes of path pj
through the graph. Therefore, there are m such pairs and m
corresponding paths through the graph. Additional nodes in

the graph are now defined based on F . For each set Ai 2 F ,

define a node ni in the graph. Also, for each sj � tj pair,

define l nodes nji, where 1� i� l.
Each path pj in G has its end points at sj and tj and has l

intermediate nodes. Intermediate node i of the path is either

ni if j 2 Ai, or nji otherwise. Essentially, all paths corre-

sponding to elements of Ai converge at ni as their ith

intermediate node. An example of a Set Cover problem and
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its corresponding instance of the S-NFP problem are

illustrated in figure 22.

The NP-completeness of the S-NFP problem can be

proved by proving the following lemma, thereby proving

the equivalence of an instance of the Set Cover problem

with the corresponding instance of the S-NFP problem.

Lemma A solution to a feasible instance of the Set Cover
problem with j elements in U and c as the bound on the
cover set exists iff a solution exists to the corresponding
S-NFP problem with j paths and c as the constraint on the
number of network function instances.

Proof Consider an instance of the Set Cover problem and

its corresponding instance of S-NFP problem constructed as

described above. Let a solution exist for the S-NFP prob-

lem, with R being the solution. The solution for the Set

Cover problem instance can be constructed as follows. For

each r 2 R, if r is node ni, then include Ai in the solution

set C. If the r is a node of the form nji, then include any set

Ak s.t j 2 Ak (it must exist if there is a feasible solution).

Since R has at least one node on each of the m paths, it

follows that C has at least one set which contains each one

of the m elements in U. Also, j C j¼j R j.
Conversely, let a solution set C exist for the Set Cover

problem, solution set R for the S-NFP problem can be

constructed by including in R vertex ni which corresponds

to each Ai 2 C. Thus, above lemma is proved. It follows

that S-NFP problem, and therefore the more general NFP

problem, are NP-Complete. h
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