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Abstract. The motion of a freely falling thin aluminium plate in water is studied using two-dimensional

numerical simulations. The fluid-solid interface is treated using the diffuse interface immersed boundary

method. Periodic side-to-side fluttering motion at the small dimensionless moment of inertia ðI�Þ becomes

chaotic in the intermediate range which finally settles for pure tumbling at high I�. Even the stable flutter

trajectories exhibit significant sensitivity to incremental deviation in fluid forces brought in by inaccurate time

marching. The maximum instantaneous inclination angle of the plate increases with I� during flutter with the

uniform multilevel distribution. At larger I�, such distribution collapses to nearly a single level indicating the

ability of the plate to autorotate under the influence of turning moment created by the neighbouring fluid. The

plate is observed to retain the initial orientation during its flight in the tumbling regime. The range of I� for

chaotic motion is found to extend with the increase in initial inclination angle. Tests on the effect of initial

conditions on the trajectories of the plate indicate while the chaotic regime is mostly affected by initial

orientation and velocity of release, flutter and tumble motions converge for a variety of initial states. The chaotic

motion transforms into a flutter or tumbles depending on the solid-to-fluid density ratio for a fixed geometry of

the plate. However, with a fixed solid-to-fluid density ratio, aspect-ratio of the plate does not alter the

stable trajectories appreciably.
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1. Introduction

Objects like thin paper cards, plates, and leaves do not fall

straight to the ground. Instead, they follow complex tra-

jectories owing to the coupling between their motion and

surrounding fluid. The forces which act on objects such as

drag, lift, buoyancy and weight need to be accounted for to

study their trajectories. The equations of motion of the

freely falling objects under their own weight depend mainly

on the solid-to-fluid density ratio ðqs=qf Þ and thickness-to-

width ratio ðbÞ. The object undergoes different types of

motions such as stable fall (straight downward), flutter

(oscillating from one side to another), tumble (end-over-

end rotation) or combination of any of these depending

upon the above-mentioned ratios. Moreover, it is a classic

example of two-way coupling between fluid and solid,

which requires an understanding of aerodynamic forces,

vortex shedding, and underlying Fluid-Structure Interaction

(FSI). The complex motion of a plate finds direct relevance

to various class of problems like wind pollination [1], effect

of rising bubbles in two-phase flow [2], falling of ice

crystals in cloud physics [3], hovering flight mechanism

[4], pop-up effect of buoyant ball [5], and autorotation

phenomenon in helicopters [6].

Study of natural flight of object under its weight has

always been captivating owing to a complex interplay of

forces. In one of the earliest studies, Maxwell [7] qualita-

tively described the direction of motion of a thin paper slip

undergoing tumbling through the fluid resistance acting

upon it. Since then, numerous experimental, and numerical

studies [8–10] have been carried out to understand the

motion of objects for the different dimensionless moment

of inertia and Reynolds number range. Willmarth et al [8]

conducted a series of experiments with thin disks of various

thickness and diameter in different fluids and observed

tumbling motion for large values of Reynolds number

(Re[ 2000), and moderate dimensionless moment of

inertia (I� [ 0:1). In addition, phase diagrams for the disks

undergoing steady descent and fluttering motion are also

reported. In previous mapping [8, 11] of falling patterns,

the Reynolds number is defined based on the average des-

cent velocity of the plate or disk obtained after the*For correspondence
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experiments or numerical simulations, which does not give

direct control over it. However, in recent studies [12, 13] Re
is replaced by other non-dimensional numbers like Archi-

medes number (Ar), and Galileo number (G), in which fluid

viscosity is effectively considered. Apart from different

falling patterns, numerous attempts have been made to

study the transition in trajectories of plate or disk by

varying its geometry or the property of the fluid-solid

system. Field et al [9] described the complex motion of

falling disks with only one parameter, i.e., angle h between

the disk’s normal and the vertical axis. In an experimental

study, Belmonte et al [14] showed that flutter to tumble

transition depends mainly on the Froude number, which

occurs at Frc ¼ 0:67� 0:05 for high Re. The transition of

motion based on three non-dimensional parameters I�, Re
and b is investigated by Andersen et al [15]. A quantitative

description of the transition scenario for freely falling disk

is also given by Chrust et al [13]. In their work, a limited

number of bifurcating asymptotic states observed between

stable periodic fluttering and tumbling motion.

Tumbling motion has prompted a number of works

[6, 16] due to the aerodynamic importance in understanding

various autorotation phenomena. Smith [6] experimentally

observed free fall and fixed axis autorotation of a wing and

found similar flow pattern and aerodynamic forces in both

the cases. Contrary to autorotation of a wing, Skews [16]

considered a rectangular plate in a wind tunnel in his

experiment and found that the drag coefficient is indepen-

dent of the thickness-to-chord ratio. Further, Mahadevan

et al [17] investigated autorotation of the rectangular cards

and proposed scaling for tumbling frequency (X) as X �
d1=2w�1 where w and d are width and thickness of cards,

respectively. Hirata et al [18] have experimentally inves-

tigated aerodynamic characteristics of a plate undergoing

tumbling motion, and found lift-to-drag ratio is independent

of the aspect ratio when it exceeds 10.

The vortex formation around the object plays a vital role

in the falling pattern as it can alter the forces which act on

the object by the surrounding fluid. Andersen et al [11] and
Wan et al [19] have shown the vortex shedding and wake

pattern during the rise and fall of a plate undergoing flut-

tering and tumbling motion. The lift generated from the

boundary layer separation and vortex shedding is studied by

Ern et al [20]. A different shedding pattern than the Kármán

vortex street is reported by Zhong et al [21] in an experi-

ment of freely falling disks in water for Reynolds number

larger than 2000. Several theoretical models [11, 14, 22]

have also been proposed to assess the unsteady aerody-

namics, including lift and drag forces acting on the plate

while descending. Andersen et al [11] proposed a different

mathematical model than the classical Kutta-Joukowski

theory by considering fluid circulation dependent on both

translational and rotational velocity, and have shown that

the rotational lift dominates during tumbling. Hu and Wang

[22] have presented a quasi-steady aerodynamic model to

study the effect of different aerodynamic coefficients on the

falling patterns of plates. Fernandes et al [23] have used

classical Kirchhoff equations to perform experimental

measurements for rising disks with different aspect ratios

and Reynolds number, to investigate the phase difference

between vortical force and torque.

A summary of previous studies on the free fall of thin

objects is shown in table 1. Though, much attention has

been paid to study the various motions of the objects either

by altering the geometrical parameters or physical proper-

ties of combine fluid-solid medium, the effect of initial

conditions has not been explored in detail. Andersen et. al

[11] studied the effect of initial conditions for thin plate of

I� ¼ 0:17 and 0.36, and found apparent change in trajec-

tories. Lau et al [24] have shown that only the initial

inclination of the plate can completely change the trajectory

of the falling plate from straight vertical to tumbling

Table 1. A brief review of previous studies on freely falling plate or disk in reverse chronological order.

References Object I� qs=qf Regime studied Mode of study

Present Rectangular plate 0:16� 3:0 2:7� 27 F, T, C num.

Lau et al [24] Rectangular plate 3:0� 5:0 45� 77 S, F, T num.

Wang et al [25] Rectangular plate 0:051� 1:128 1:2� 5:0 F, C, T num.

Wu et al [10] Ellipse 0:08� 0:6 1� 10 S, F, C, T num.

Heisinger et al [26] Disks 0.1 1� 8 S, F, C, T exp.

Huang et al [27] Rectangular plate \0:2 2.7 F exp.

Andersen et al [11] Rectangular plate \0:48 \2:7 F, C, T num., exp.

Mittal et al [28] Rectangular plate [ 0:17 - F, T num.

Mahadevan et al [17] Rectangular plate - - T exp.

Belmonte et al [14] Rectangular plate \4:0 0:8� 13:0 F, T exp.

Field et al [9] Disks \1 \11:3 S, F, C, T exp.

Here S, F, C, T refer to the steady fall, fluttering, chaotic and tumbling regimes while numerical and experimental studies are abbreviated as ‘‘num.’’ and

‘‘exp.’’, respectively. Dimensionless moment of inertia of the disc and rectangular plate is given as I� ¼ ðpqstÞ=ð64dqf Þ. [8] and 8bð1þ b2Þ=ð3pqrÞ,
respectively.
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motion, for I� [ 3. The previous studies have reported the

effect of initial conditions on the dynamics of the plate

either for a particular value of I� [11] or for I� [ 1 [24].

Therefore, to find the effect of initial conditions on all

possible regimes identified by I�, a systematic study is

carried out, which includes flutter, tumble and chaotic

motion of the plate. In the current study, 2D numerical

simulations are carried out for free fall of a rectangular

plate in the range of I� that includes flutter, tumble and

transition regimes. Linear and angular responses of the

plate during its flight in these regimes are investigated in

view of characterizing them in the parameter space. Effect

of the initial conditions, owing to its importance on the final

trajectory [11, 24] is studied in detail. Effect of density ratio

and aspect ratio of the plate on the uncertainty of the final

trajectory in the transition regime is investigated with the

aim to shed light into this regime.

The paper is organized as follows. Section 2 contains the

mathematical details which contain dynamical equations

and boundary conditions. A brief description of the

numerical set up is added for completeness. Effect of grid

resolution and time increment are reported separately. In

the results section, we first introduce the basic character-

istics of the three most identified regimes, flutter in section

3.1, then moving to the transition regime in 3.2 followed by

tumbling motion in 3.3. In section 3.4 PDF of descent, the

angle is discussed with reference to a possible Froude

number similarity. In a detailed discussion of the effect of

initial velocity and orientation on the final trajectories in a

wide range of I� can be found in section 3.5. Importance of

the aspect-ratio of the plate and relative density ratio

mainly in the transition regime is examined in section 3.6.

The paper concludes with a brief summary of the principal

findings in section 4.

2. Mathematical details

In this section, dynamical equations for the fluid flow and

the body are written to address the ensuing FSI problem.

The numerical method used to solve the coupled set of

equations is also described briefly. To obtain the most

suitable grid resolution and time-step, the convergence tests

are conducted whose results are reported subsequently.

2.1 Dynamical equations

The present 2D numerical study primarily deals with the

trajectories of a freely falling rectangular plate released in

an otherwise quiescent medium. The geometric details,

along with three well-known trajectory profiles, are shown

in figure 1. Note, periodic side-to-side fluttering motion,

shown in the frame (a) is characterized by mainly two

orientations which are ‘‘broadside-on’’ and ‘‘edge-on’’. On

the other hand, cumulative rotation with slow horizontal

march is identified as tumbling, shown in the frame (b) and

a combination of these trajectories is identified as chaotic

motion in the frame (c). It is apparent that the magnitude of

the instantaneous angle h in case of broadside-on position is
either 0 or p, while for the edge-on position it is either p=2
or 3p=2. Physical parameters that determine dynamics of

the problem are width (l), thickness (t) and density ðqs) of
the plate, density ðqf ) and viscosity ðm) of the surrounding

fluid. The resulting non-dimensional parameters such as

fluid-to-solid density ratio qr ¼ qf =qs and length-to-thick-

ness ratio b ¼ h=l or combinedly dimensionless moment of

inertia I� ¼ 8bð1þ b2Þ=ð3pqrÞ [11] are known to control

the trajectories as they include all geometric and physical

informations decisively. It should be noted that apart from

the flow Reynolds number Re ¼ lrur=m, a relation of the

inertial force with gravity is assessed through Froude

number Fr ¼ u2r=gl, which becomes important in view of

the fact that the weight of the plate itself partly drives it.

Though the length scale for the problem is fixed at lr ¼ l,
velocity scale ur is a non-standard description which is

taken as equivalent to the terminal velocity of the plate,

ur ¼
ffiffiffiffi

gl
p

, that makes Re ¼
ffiffiffiffiffiffi

gl3
p

=m and Fr ¼ 1. However,

most of the previous studies have calculated Reynolds

number based on the actual average descend velocity

obtained from the experiments, and numerical simulations,

defined as Rev ¼ huyil=m where huyi [11] is the measured

average descend velocity. To facilitate direct comparison of

dimensionless parameters considered in previous and pre-

sent study, Rev is also calculated, and values of these

dimensionless variables are summarized in table 2.

The mass and momentum conservation equations of

the surrounding incompressible fluid are supplemented

with dynamical equations for the three degrees of free-

doms of the plate. The vertical motion is governed by the

buoyancy force and the weight of the plate, while the

horizontal and angular motion is governed by the drag

and fluid torque, respectively. These equations when non-

dimensionalized using the scales mentioned above take

the following form

oui
oxi

¼ 0 ð1Þ

oui
ot

þ oðuiujÞ
oxj

¼ � op

oxi
þ 1

Re

o2ui
oxjoxj

ð2Þ

€x ¼ qr
b
Cx; €y ¼ qr

b
Cy � ð1� qrÞ; €h ¼ 12qr

1

b3 þ b
CM

ð3Þ

where force and moment coefficients, responsible for the

solid-fluid interaction, are defined as Cx ¼ Fx=qf u
2
r l, Cy ¼

Fy=qf u
2
r l and CM ¼ Mb=qf u

2
r l
2. In the present study qs=qf

and b range from 2:7� 27 and 1=14� 1=5, respectively,
which corresponds to 0:16\I�\3. In line with available
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data, all three motions, flutter, tumble and chaotic, are

observed in this range.

In each simulation listed in table 3, the plate is released

at an angle h0 ¼ p=4 in quiescent fluid (water) having qf ¼
1 gm/cc and m ¼ 0:0089 cm2/s which are taken from the

experimental study of [11]. The convective velocity

boundary condition is imposed at all the boundaries in order

to facilitate the smooth passage of trailing wake created by

the object during its descent. Since the extents of vertical

fall and horizontal march widely differ in different regimes,

a fixed domain for all the calculations were not possible.

Thus, preliminary tests are carried out to determine the size

of the domain for a range of I�. The fixed size

�16l� x� 16l and �50l� y� l were observed adequate

for all the cases, though preliminary tests mentioned above

did indicate a smaller domain for some cases.

2.2 Numerical method

The diffuse interface immersed boundary method [29] is

used to solve the current FSI problem where a fluid-fluid

Lagrangian boundary replaces the solid-fluid interface. A

universal equation which combines momentum equation

for the fluid domain and velocity of the rigid body through

volume fraction is solved in the entire physical domain. The

method starts with linearization of the plate, followed by a

coupled solution of the conservation equation and the

dynamical equation for the moving object. For solving the

momentum equation, a 2nd-order predictor-corrector, finite

volume formulation is used with velocity and pressure

defined in a non-staggered fashion. For better numerical

stability, implicit time integration is carried out. All the

resulting sparse linear systems are solved using the

BiCGSTAB technique pre-conditioned by a highly scalable

diagonalized version of the SIP pre-conditioner. A uniform

mesh of Dx ¼ Dy ¼ 0:01 is used for all simulations with

body resolution (db) kept in such a way that at least 8-10

computing cells are placed along the width, and db=Dx does
not become too small. The reason for such a choice is

Table 2. Summary of dimensionless parameters considered in

the present and previous studies for freely falling rectangular

plate.

I� Rev b

Present 0:16� 3:0 700� 3600 1=14� 1=5
Wang et al [25] 0:051� 1:128 Oð103Þ 1=20� 1=4

Andersen et al [11] 0:16� 0:48 700� 1800 1=14� 1=5

Edge−on 

(c)
(b)(a)

Broadside−on 

θ

l

h

θ0
x

y

Figure 1. (Color online) Schematic diagram of the plate with its centerline trajectories showing (a) flutter, (b) tumble and (c) flutter-

tumble combined chaotic motion in a fixed coordinate system where h represents the instantaneous rotational angle measured from

positive x-axis in anticlockwise direction. The top and bottom edges of the plate are drawn with different colors for better visualization of

the rotation. Two particular positions of the plate during its flight, ‘‘broadside-on’’ and ‘‘edge-on’’, which help in analyzing the dynamics

of motion are indicated by arrows. On the extreme right, initial position of the plate having thickness t, width l and initial inclination

angle h0 is shown
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decided by the convergence tests. The plate is released

from rest and is allowed to settle to a stable trajectory.

All the simulations are carried out in a multi-processor

environment with each case consumes approximately 12

hours to compute one free fall unit time on 50 computing

cores.

2.3 Convergence: grid resolution and time-step

In order to determine the effect of mesh and time resolution

on the trajectory of the plate, a fluttering case is considered.

Physical data relevant to the case are width of the plate

l ¼ 1:134 cm, length-to-thickness ratio b ¼ 1=14, fluid

viscosity m ¼ 0:0089 cm2/s and density ratio qs=qf ¼ 2:7,

which are taken from Andersen et al [11] to facilitate a

direct comparison with experimental measurements. Sim-

ulations are carried out at in a domian

�12l� x� 12l;�31l� y� l with four progressively refined

uniform meshes given by M1 : 1700� 2260ðDx;
Dy ¼ l=70Þ, M2 : 2000� 2660ðDx;Dy ¼ l=83Þ, M3 :
2400� 3200ðDx;Dy ¼ l=100Þ and M4 : 2760�
3680ðDx;Dy ¼ l=115Þ keeping Dt ¼ 0:001 and body reso-

lution fixed at db ¼ l=125. On the other hand, convergence

of time-step is carried out by simulating on mesh M4 at

three different time steps, Dt ¼ 0:005; 0:002 and 0.001

keeping db ¼ l=125.
The trajectories of the plate for all the cases are shown in

figure 2 which confirms the stable flutter motion with Dt ¼
0:001 being the most appropriate time resolution. Larger Dt
is seen to be unreliable as owing to a numerically unsta-

ble time marching; different trajectory is obtained. How-

ever, such a difference is not evident at sufficiently coarse

mesh where the basic trajectory turns out to be the same as

for the finest one. Time evolution of linear and angular

velocities, shown in figure 3, reveals only differences in

phase at different grid resolution with amplitude remaining

nearly the same. However, the effect of larger time-step is

Table 3. Four characteristic parameters width l, thickness-to-width ratio b, dimensionless moment of inertia I�, and Froude number Fr
of the plate with obtained average velocities \u[ , \v[ and \x[ .

l (cm) b I� Fr \u[ (cm/s) \v[ (cm/s) \x[ (rad/s) hmax

1.134 1/14 0.16 0.44 17.58 8.99 6.34 57�

0.9315 2/23 0.20 0.48 16.94 9.91 8.45 66�

0.96 5/48 0.24 0.53 19.43 15.74 9.38 85�

0.984 5/41 0.28 0.57 18.97 17.78 11.07 360�

1.008 5/36 0.32 0.61 16.15 30.29 7.28 360�

0.975 2/13 0.36 0.64 14.03 26.52 12.14 360�

0.944 10/59 0.40 0.68 12.84 18.73 13.81 360�

0.81 1/5 0.48 0.74 14.5 10.64 22.22 360�

0.81 1/5 0.6 0.82 17.26 8.28 29.1 360�

0.648 1/8 2.0 1.24 20.32 13.5 58.98 360�

0.648 1/8 3.0 1.87 16.19 35.94 19.53 360�

hmax shows the maximum inclination angle during its flight.

x(cm)0 5

M2

x(cm)0 5

M2

x(cm)0 5

M2

x(cm)0 5

M2

x(cm)0 5

M2

x(cm)0 5

M2

x (cm)
-5 0 5

t=0.001

x(cm)
0 5

M2

x(cm)
-10 -5 0

t=0.005

x(cm)
-5 0 5

t=0.002

x(cm)
-5 0 5

M3

x(cm)
10 -5 0

M4

x(cm)

y(
cm

)

-5 0

-20

-15

-10

-5

0 M1

Figure 2. Trajectories of the falling plate at various mesh and time resolution which are seen strongly sensitive to Dt, but only weakly

dependent on the mesh resolution. The flutter case considered here assumes l ¼ 1:134 cm, b ¼ 1=14 and h0 ¼ 45�
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most evident from the time history of linear and angular

velocities. The right column of figure 3 clearly shows sig-

nificant departure to a wrong prediction of the motion of the

plate at a larger Dt. Thus, to obtain the accurate trajectory

of the plate, smaller time-step should be used. Based on

these observations the uniform mesh resolution Dx ¼ Dy ¼
0:01; db ¼ 0:008 and time step Dt ¼ 0:001 are used in all

subsequent simulations.

3. Results and discussion

In the present study, numerical simulations are carried

out by progressively increasing I� from 0.16 to 3. These

simulations assist in analyzing the dynamics of the plate as

it moves from one regime to another. The relevant input

parameters, along with the corresponding computed aver-

age velocities and maximum inclination angle, are listed in

table 3. Based on the obtained results with increasing I� in
the selected range, four different types of motion of the

plate are observed, as shown in figure 4. Fluttering is

observed at lower values of I�, i.e., in the range of

0:16� 0:24. Two distinct tumbling motions are observed:

(a) tumbling along cusp like trajectories for I� = 0.48 and

0.6, and (b) tumbling along straight-line trajectories for I� =
2 and 3. A combination of flutter and tumble is termed as

chaotic motion and obtained in the range I� = 0:28� 0:4.
The current study is focused on finding the explanation of

changing trajectories with an increase of I�. The effect of

initial conditions on the falling pattern in different regimes

is also reported. Finally, the significance of density and

aspect ratio in the transition regime is investigated.

3.1 Flutter regime

Flutter regime is usually defined for the range of I� in

which the plate oscillates from one side to another while

descending. This regime is clearly identified from the tra-

jectories of the plate up to I� = 0.24 in figure 4. Quantita-

tively, the maximum value of inclination angle ðhmax\90�Þ
in table 3 indicates that the flutter regime continues until I�

= 0.24. In this regime, it is observed that maximum incli-

nation angle ðhmaxÞ and vertical descent height (d) in a

cycle increase with I�, as shown in figure 4. Such an

increase can be explained from the horizontal and vertical

velocity orbits of the plate with the angle of inclination

during its flight, as shown in figures 5 (a, b). The maximum

inclination angle in the frame (a) corresponds to the turning

point of the plate where the magnitude of horizontal

velocity changes its sign. It is important to note that vertical

velocity is maximum near the turning point and also

increases with increasing I� as shown in the frame (b).

Thus, at the turning point, the plate falls with greater ver-

tical velocity, and covers a larger descent height, as I�

increases. A significant drop in number of completed side-

to-side cycles from I� ¼ 0:16 to 0.24 is evident from fig-

ure 4. At I� ¼ 0:24, the maximum inclination angle reaches

85�, which is the highest among all the flutter cases. Thus,

the effect of angular velocity is never observed to dominate

the other two linear motions, and the plate never undergoes

full rotation about its centroid. The two-lobe orbits of

1 1.2 1.4 1.6 1.8 2
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-10

0
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1 1.2 1.4 1.6 1.8 2

-10
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d/

s)
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Figure 3. (Color online) Time evolution of linear and angular velocities; on the left effect of progressively refined mesh and on the right

sensitivity to time increment Dt
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vertical velocity indicate that the periodicity of the vertical

velocity is twice the horizontal motion. This suggests the

plate has a greater tendency to return back to its position

horizontally as the vertical velocity repeats itself at a rate

twice the other. With further increase in I� under the same

initial conditions, the motion of the plate will progress to

the transition regime.

3.2 Transition regime

In the transition regime, the plate undergoes a combi-

nation of fluttering and tumbling motion, as shown in fig-

ure 4 in the range 0:24� I� � 0:4. Such a motion is also

reported by Wang et al [25] for a relatively lower range

(0:21� I� � 0:31), with an initial inclination angle

jh0j ¼ p=5. However, they have reported that the transition

regime can be extended by increasing jh0j which is in

agreement with present data as we have used jh0j as p=4.
With the increase in I� of the plate hmax increases which is

evident from the previous section. Therefore, a particular

value of I� results in hmax ’ p=2 which causes the plate to

fall in a straight vertical path in an edge-on position to a

large descent height due to the absence of drag force. Once

the drag force develops sufficiently, the plate again starts to

move slowly in the horizontal direction, as shown in fig-

ure 4 for I� ¼ 0:36. With further increase in I�, the angular
velocity of the plate tends to rotate it as it descends, leading

to a tumble-like motion which changes its course owing to

a switch in horizontal velocity.

The combination of flutter and tumble motion is depicted

in figure 6, which shows variation of the inclination angle

(h), vertical velocity (v), and angular velocity (x) with time

θ
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Figure 5. (Color online) Variation of (a) horizontal velocity, and (b) vertical velocity with the instantaneous inclination angle ðhÞ
during the fluttering motion corresponding to I� = 0.16, 0.20 and 0.24. Note, while the horizontal velocity does not change appreciably,
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for I� ¼ 0:28 and 0.36. When the magnitude of inclination

angle h at the turning point becomes closer to p=2 or 3p=2,
the plate can either tumble or descend to a large vertical

height, depending upon the magnitude of angular velocity

at that point. Tumbling is observed for a relatively higher

value of x, while the plate descends in edge-on position

with increasing vertical velocity for lower x. For I� ¼ 0:36,
the time signal reveals that the vertical velocity reaches the

maximum at h ¼ �p=2, and the plate continues to fall with

a constant vertical velocity until the angular velocity

becomes greater than zero to cross over the edge-on posi-

tion. The inclination angle increases gradually and reaches

h ¼ p=2 with sufficient positive angular velocity to cross

the next edge-on position, resulting in the tumbling motion.

The intermediate tumbling stints between fluttering

motion can also be explained in terms of energy interaction

between the plate and the surrounding fluid. In this regime,

I� lies in the range where the plate can not maintain the

continuous rotation during its flight. After its release from

the initial position, it acquires the edge-on position and

descends to a large height. During the descent, fluid

transfers energy to the plate which causes it to cross over

the next edge-on position due to the large value of angular

velocity, and thus the tumbling motion is obtained. After a

short interval of time, the excess energy gained during the

large descent loses its impact, owing to which plate starts

fluttering again, and these cycle of events continue. Thus,

the transition regime can be thought of as intermittent

occurrences of tumbling while the plate can sustain its

rotation, while a ‘‘cooling-off’’ period reflects fluttering in

the horizontal direction.

3.3 Tumble regime

In the tumble regime, the plate undergoes complete rotation

while drifting in the horizontal direction. This regime is

obtained for I� [ 0:4, however, two distinct tumbling

motions are observed in the range 0:44\I�\1:0 and

I� [ 1. The motion in the former regime is along cusp like

trajectories, whereas in the latter one it is along straight

lines, as shown in figure 4. The obtained regimes are con-

sistent with those reported by [24]. The transition from

chaotic to pure tumbling motion is described by using the

time history of velocity components and inclination angle,

as shown in figure 7. Rotation of the plate in this regime is

apparent from the time evolution of h, which changes

continuously from 0 to 2p. The angular velocity of the plate

at the turning point in this regime is very high which causes

a quick change in plate position from the vertical edge-on

position, and thus it prevents the plate from falling verti-

cally downward as in the transition regime. Moreover,

figure 7 shows that the horizontal velocity never crosses the

zero line, which indicates that the plate moves in a par-

ticular direction, unlike flutter regime where the plate

oscillates from one side to another. For I� ¼ 0:6, the for-

mation of cusp at the turning point is attributed to the

positive value of vertical velocity, whereas the large values

of angular velocity and small range of fluctuations in ver-

tical velocity explain the reason for tumbling in a straight

line for I� ¼ 2:0.

3.4 PDF of instantaneous angle and Froude
number similarity

The inclination angle of the plate, which continuously

changes during its flight is found to be an important

parameter to describe its motion. In the present study,

probability density function (PDF) of the inclination angle

is computed for a deeper insight into these complex

motions, as shown in figure 8. The PDF denotes the time

interval for which the plate stays at a particular inclination

angle during its flight. It is observed that as I� increases, the
plateau formed by the PDF gets flattened, and ultimately
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collapsed to zero in the tumble regime. The fall in the

height of the plateau can be attributed to the increase in

angular velocity of the plate, and consequently leads to a

smaller PDF. Moreover, the maximum value of PDF in the

tumble regime indicates that the plate descends at an angle

approximately equal to the initial angle of inclination ðh0Þ
for the maximum duration of descending motion. A multi-

level uniform distribution during the flutter slowly breaks

down as it passes through the transition zone where uniform

distribution is punctured by high probability at certain

angles which are completely unpredictable. Finally, nearly

uniform distribution in the tumble regime indicates that the

plate acquires all possible orientations as it rotates

continuously.
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For a freely falling plate, the Froude number similarity

was proposed by Belmonte et al [14] to study the transition

in the motion of a plate from a flutter to tumble regime.

Since fluttering of a plate is very similar to the motion of a

pendulum, they defined the Froude number as a ratio of the

time scale for a buoyant pendulum to vertical descend in

free fall. In their experimental study, they have only

reported fluttering and tumbling motion of the plate. The

transition between these two motions is observed at

Frc ¼ 0:67� 0:05. In the present study, sinðhmaxÞ � Fr
similarity shows the flutter to tumble transition at

Frc ¼ 0:7þ 0:05, as shown in figure 9. The observed

deviation in Frc can be attributed to the sensitivity of

motion of the plate towards initial conditions near the

transition regime.

3.5 Effect of initial conditions

The effect of initial conditions on the motion of the plate

plays a significant role, as discussed in the previous sec-

tion. Four sets of initial conditions are tested which include

a number of initial orientations. The plate is impulsively

released in some cases while it is given horizontal and

vertical velocity of varied magnitude in some other. Table 4
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lists all the combinations with an average velocity of

descending, and angular velocity is tabulated for a quanti-

tative comparison. Their effect on the dynamics of the plate

is examined from the trajectories and velocity histories of

the plate, as shown in figures 10 and 11, respectively. It is

evident from figures 10 (a, c) that the fluttering (I� ¼ 0:16)
and tumbling (I� ¼ 0:6) at low I� are very stable as the

trajectories of the plate remain nearly the same with

different initial conditions. The variation in magnitude of

average velocities is found to be very less for I� ¼ 0:16 and

0.6, as listed in table 4, which supports the above obser-

vation. Trajectories of the plate for I� ¼ 0:4, which lies

between stable fluttering and tumbling motion of the plate

are found to be dependent on initial conditions as shown in

the frame (b). The motion of the plate for different initial

conditions for this I� undergoes chaotic and tumbling with a
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Table 4. List of the combinations used to test the effect of initial condition in different regimes of descent.

case h0 u0 (cm/s) v0 (cm/s) \u[ (cm/s) \v[ (cm/s) \x[ (rad/s)

I� ¼ 0:16, b ¼ 1=14 i p=4 0 0 18.52 9.18 6.33

ii 3p=4 0 0 19.04 9.29 6.32

iii p=4 �17:96 �11:90 19.46 9.46 6.29

iv 3p=4 17.96 �11:90 20.92 10.35 6.18

I� ¼ 0:4, b ¼ 10=59 i p=4 0 0 12.27 17.3 14.37

ii 3p=4 0 0 16.34 14.24 17.3

iii p=4 �16:73 �15:82 17.13 13.98 15.96

iv 3p=4 16.73 �15:82 18.71 11.5 17.40

I� ¼ 0:6, b ¼ 1=5 i 2p=3 0 0 17.16 8.3 28.92

ii p=3 0 0 16.97 8.46 29.47

iii 2p=3 16.07 �15:78 17.59 9.41 30.2

iv p=3 �16:07 �15:78 17.69 10.44 29.47

I� ¼ 3, b ¼ 1=8 i p=4 0 0 16.19 35.94 19.53

ii 3p=4 0 0 27.88 33.51 48.92

iii p=4 �12:60 �12:60 34.23 26.04 70.42

iv 3p=4 12.60 �12:60 34.27 26.08 74.24

Average linear and angular velocities obtained for all the cases are tabulated alongside.
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single, and double period which is also reported Andersen

et al [11]. Further, tumbling at high I� is also found to be

independent of initial conditions as shown in the frame (d).

The time signal of velocity profiles and the inclination

angle of the plate provides a better insight into its

dynamics. Figure 11 shows the time signal of horizontal

(u), vertical (v), angular (x) velocities and inclination angle

(h) of the plate. It is noticed that the effect of initial

conditions is not present for all distinct motion of the plate

with a particular I�. However, for I� = 0.4, it is observed

that the velocity histories for case iare different than the

other three cases, and they become more obvious as time

increases. In case of fluttering and tumbling at I� ¼ 0:16
and 0.6, respectively, the time signals of velocity and

inclination angle show similar increment with different

initial conditions. Thus, the flutter and tumble regimes are

found to be independent of initial conditions at low I�. The
velocity cycles for all cases except iattain steady-state

rapidly. Apart from this, the angular velocity of the plate

for case iiiabruptly changes its direction from the positive

anti-clockwise to clockwise rotation. Thus, the initial con-

ditions of the plate affect the chaotic and tumbling motion

significantly at high I�.

3.6 Significance of b and qs=qf in the transition

regime

The previous section reveals the sensitivity of motion of the

plate to initial conditions which pave the way to examine

the effect of the other two parameters qs=qf and b in the

transition regime. The effect of aspect ratio (b) is investi-
gated keeping qs=qf constant and vice-versa. Moreover, the

inclination angle ðh0 ¼ p=4Þ and initial velocity compo-

nents ðu0; v0 ¼ 0Þ is kept constant for this investigation. It
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is observed that the trajectories of the plate for b = 1/7 and

1/6 are a combination of flutter and tumble, as shown in

figure 12. However, the trajectories are not sufficiently

developed for b ¼ 1=8 and 2/13 in the present domain, and

it appears as a combination of flutter and tumble. Therefore,

to identify the motion for b ¼ 1=8 and 2/13, the time

evolution of the inclination angle is investigated and pre-

sented in figure 13. Since the inclination angle crosses 2p
for both the b values, it implies the plate has completed one

rotation. The time series of inclination angle for all b seems

to be a combination of fluttering and tumbling, as shown in

the inset of figure 13. Thus, it can be claimed that the nature

of the motion of the plate remains largely unaffected to a

change in aspect ratio in the transition regime.

The effect of density ratio on the dynamics of the plate is

examined similarly, and shown in figures 14 and 15. The time

evolution of the inclination angle is similar to tumbling, as

shown in the inset of figure 15 for all values of qs=qf except
for 3.5which shows a fluttering behavior. Thus, themotion of

the plate transforms from a flutter to tumble without passing

through the chaotic regime for the considered density ratios at

a fix aspect ratio. However, the average angular velocity

increases with density ratio, except qs=qf ¼ 3:5, which is

evident from the increase in the slope of the inclination angle,

as shown in figure 15. Therefore, the motion of the plate in

transition regime is found to be sensitive to solid-to-fluid

density ratio (qs=qf ) while it remains insensitive to the aspect

ratio (b) of the plate.

4. Conclusions

2D numerical simulations are carried out for free fall of a

rectangular plate inwater. The two dimensionless parameters

that govern the motion of the falling object are solid-to-fluid

density ratio (qs=qf ) and thickness-to-width ratio (b). The
dimensionless moment of inertia of the plate, which includes

the effect of bothqs=qf andb is found to control the dynamics

of the plate effectively. In the selected range of density ratio,

2:7� qs=qf � 27, and thickness-to-width ratio,

1=14� b� 1=5, dimensionless moment of inertia lies in the

range 0:16� I� � 3. The motion of the plate changes from a

flutter to tumble with an increase in I�. In between these two
regimes of motion, a transition regime is observed where the

motion of the plate is chaotic, a combination of flutter and

tumble. The reason for such a motion is explained in terms of

the edge-on position, vertical descent height and energy

interaction between the plate and the surrounding fluid.

Froude number similarity predicts the transition from flutter

to tumble which occurs at Froude number Frc ¼ 0:7þ 0:05.
Chaotic and tumbling (I� [ 1) motions are found to be sen-

sitive to the initial conditions. For the chaotic motion, the

effect of initial conditions is found on the falling pattern of

the plate. In case of tumbling motion at I� [ 1, the initial

conditions only affect initial transients of the trajectories and

velocity histories, while final falling patterns of the plate are

found to be independent of it. Study of PDF of instantaneous

angle shows that in the tumble regime, the inclination angle

of the plate is approximately equal to the initial angle of

release for the maximum duration of motion. The effect of

density ratio and thickness-to-width ratio on the dynamics of

the plate in transition regime is investigated which reveals

that the motion of the plate in the transition regime is more

sensitive to the change in qs=qf than b. For constant

qs=qf ¼ 2:7, with increase in b, the chaotic motion prevails

in transition regime. On the other hand, for constant

b ¼ 1=10, with the increase in qs=qf motion of the plate is

found to change from a flutter to tumble without moving into

the chaotic regime.
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