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Abstract. In order to rapidly build an automatic and precise system for image recognition and categorization,

deep learning is a vital technology. Handwritten character classification also gaining more attention due to its

major contribution in automation and specially to develop applications for helping visually impaired people.

Here, the proposed work highlighting on fine-tuning approach and analysis of state-of-the-art Deep Convolu-

tional Neural Network (DCNN) designed for Devanagari Handwritten characters classification. A new

Devanagari handwritten characters dataset is generated which is publicly available. Datasets consist of total

5800 isolated images of 58 unique character classes: 12 vowels, 36 consonants and 10 numerals. In addition to

this database, a two-stage VGG16 deep learning model is implemented to recognize those characters using two

advanced adaptive gradient methods. A two-stage approach of deep learning is developed to enhance overall

success of the proposed Devanagari Handwritten Character Recognition System (DHCRS). The first model

achieves 94.84% testing accuracy with training loss of 0.18 on new dataset. Moreover, the second fine-tuned

model requires very fewer trainable parameters and notably less training time to achieve state-of-the-art per-

formance on a very small dataset. It achieves 96.55% testing accuracy with training loss of 0.12. We also tested

the proposed model on four different benchmark datasets of isolated characters as well as digits of Indic scripts.

For all the datasets tested, we achieved the promising results.

Keywords. Deep learning; Deep Convolutional Neural Network; VGG16; bottleneck features; fine-tuned;

computing time.

1. Introduction

Pattern identification is a perpetual area of specialization in

the context of artificial intelligence, computer vision and

machine learning [1]. Optical Character Recognition

(OCR) is one of the leading dynamic applications of an

image classification and gaining additional interest due to

its numerous applications. The applications include auto-

matic postal card sorting [2, 3], digital signature verifica-

tion [4], automatic processing of bank cheques [5],

processing of historical documents [6] and automatic

handwritten text detection in classroom teaching [7]. So

there is a prodigious need of OCR in the area of pattern

identification. OCR method is used to recognise handwrit-

ten, printed or typed text by using its scanned images.

Basically, OCR technique is used to convert these scanned

images into an editable form which improves the interac-

tion between humans and computers. Handwritten Char-

acter Recognition (HCR) mainly entails the OCR method.

Many researchers worked on HCR and also achieved good

recognition accuracy; however it is impossible to get 100%

accuracy to any character recognition system in real-life

example. Here, reliability is also very important than high

recognition rate. In many real-life applications which are

mentioned above required high reliability to reduce losses.

The higher complexity of handwritten character versus in

print character can be attributed to: i) Presence of clatter

during collection process for while writing, ii) Individual’s

writing style causing significant discrepancy and variation

in strokes of a character, iii) Influence of a situation

resulting variation in Individual’s handwriting on different

occasions, iv) Form and shape resemblance and v) Com-

binations with matra and composite letters add further

intricacies. Due to the above stated reasons, it is not always

feasible option to implement a common classifier to clas-

sify handwritten characters written by various writers [8].

India has several dialects, languages and scripts. Offi-

cially over twenty two languages are recognized in India

[9]. An ancient and still one of the most widely used script

in India is Devanagari, an important writing base for Indic*For correspondence
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languages such as Marathi, Hindi, Gujrati, Nepali, and

Sanskrit [10]. With 58 characters including 12 vowels, 36

consonant and 10 numbers this script poses a challenge to

design an efficient system to identify unconstraint hand-

written Devanagari writing. Many classification tasks in

computer vision make use of multilayer perceptron net-

works. However, selection of virtuous features is prime

reliant for performance of such a network [11–13]. To

achieve good recognition rate extracted features play a very

important role. But to extract manually features from

images required more time and it is very tedious job and

they can not process raw images also. On the other side,

there is no need to describe any explicit features for deep

convolutional neural networks instead they make use of raw

pixel information to generate the best features for classifi-

cation [14]. Nowadays popularity of DCNN is increasing

due to its number of applications in the area of pattern

identification, natural language processing, speech detec-

tion, computer vision, and commendation systems [15].

A DCNN consists of multiple layers between input and

output layers which required more number of trainable

parameters and more number of connections. Each layer

has a specific task of categorizing and ordering of extracted

features. With DCNN other various popular deep learning

networks have been presented like recurrent neural net-

works (RNN) and deep belief networks (DBN). A convo-

lutional neural network (CNN) is one of the popular DCNN

architectures, most commonly used for classification pur-

poses. Xiao Niu et al [16] presented CNN-SVM hybrid

methodology for handwritten digits classification. In this

hybrid approach, features are automatically extracted using

CNN and these features are sent for recognition to the SVM

classifier. Author used MNIST dataset and reported

promising recognition rate and also performed experiments

on reliability analysis. In another example of HCR given in

paper [17] also used an automatic features extraction

approach using the LeNet5 convolutional neural network

and classification done using SVM and achieved high

performance, whereas various deep convolutional neural

networks like VGG Net, ResNet, FractalNet, DenseNet, etc.

are evaluated and their performance is discussed on the

application of Handwritten Bangla Character Recognition

in [18]. Comparisons are done between all latest models of

DCNN mentioned above and found DenseNet performing

better for them among all. Younis [19], presented deep

CNN based approach to categorize handwritten Arabic

characters. After applying the presented model author

achieved classification accuracies 94.8% and 97.6% on

AIA9k and AHCD datasets respectively, whereas in [20]

integrated small convolutional neural networks are pre-

sented to identify different 11 Indic scripts. Authors

implemented small trainable individual CNNs for each

script which varied in different levels of CNN architecture

and combined them for script identification. Jangid, et al
[21] presented a layer-wise-trained deep CNN model and

achieved a good recognition rate compared with standard

deep CNN. Authors designed six different architecture of

deep CNN by taking a number of combinations of convo-

lutional-pooling layers and number of neurons. In [22],

authors introduced deep quad-tree based new model for

prediction. It is the network of multiple level trees which

perform recognition in faster way. Addition to this, multi-

column multi-scale CNN architecture also presented. This

architecture consists of three-level columns. The first-level

of individual column comprises of a distinct CNN, however

the succeeding two levels comprises of four and sixteen

CNNs respectively. Proposed model evaluated on number

of different datasets and shows promising results. Gupta

et al [23] presented multi-objective Harmony search algo-

rithm to identify local regions of the character in less time.

With this two more objectives are achieved: minimum

recognition time with less redundancy in local regions and

higher classification rate using SVM classifier. In this

paper, the best cost effective approach is presented to rec-

ognize isolated handwritten characters and digits. Deep

CNN architecture with the dropout layer and dataset

increment approach is presented in [24] to recognize large

scale i.e., 92 thousand images of handwritten Devanagari

characters. This large new benchmark dataset of 92000 of

Devanagari script is created by the author and achieved

promising accuracy. Aneja et al [25] presented transfer

learning approach to recognize Devanagari alphabets in

which various pre-trained networks such as VGG 11, VGG

16, VGG 19, AlexNet, DenseNet 121, DenseNet 201and

Inception V3 are implemented. Highest accuracy of 99% is

achieved using Inception V3 model due to different regu-

larization techniques. AlexNet achieved better performance

in the term of execution time means transfer learning is one

of the good optimization method to increase the efficiency

of the system. Guha et al [26] analysed different CNN

models in terms of training parameters, memory space, and

execution time. Mainly authors focused on designing part

of the model to produce efficient model in the terms of less

space and time. In this work, the presented model is exe-

cuted on publicly accessible datasets and achieved

promising results. Designed model is simple. It has less

number of layers hence required less time for training.

As per deliberated above deep learning techniques,

mostly convolutional neural network architecture is used

for image classification. It has also been effectively

implemented to recognize different languages of different

scripts like Roman (MNIST) [16], Arabic [19] and Bangla

[27–31].

Our core contributions are summarized below.

1. Created a new dataset of handwritten Devanagari

characters is which is publicly available.

2. Presented a two-stage model to recognise Devanagari

handwritten characters. The first model is trained using

bottleneck features of a pre-trained network. The second

model is fine-tuned on top of the pre-trained network to

achieve better accuracy.
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3. Various researches have been done in the area of deep

learning using various deep networks to the best of our

knowledge fine-tuning approach is not yet explored on

small handwritten Devanagari dataset. Therefore, in this

work a fine-tuned Devanagari Handwritten Character

Recognition System (DHCRS) is presented to classify 58

isolated unconstrained characters using VGG16 archi-

tecture of deep CNN on small dataset. Here, features are

extracted automatically from the handwritten character

images by our proposed model and then it classifies an

unknown character image to its relevant class.

The paper is structured as follows. Section 2 discussed

about characteristics of the Devanagari script. Corpus cre-

ation is deliberated in section 3. The proposed work is

discussed in section 4. In section 5, training model and the

experimental results are discussed. Finally, the conclusions

are given in section 6.

2. Devanagari script

In India, Devanagari script is one of the highly popular

scripts and used as basis for the most spoken languages

such as Marathi, Hindi, Nepali, and Sanskrit [10].

Devanagari script follows left to right direction for reading

and writing. Horizontal line is used at the top of the letters

which continue till end of each word. The horizontal line is

called as “Shirorekha” and used to separates one word from

other. With its origin in Sanskrit, the script has been

adopted and modified for native languages in India.

Handwritten Devanagari script is peculiar compared to

English script as there is no cursive connected writing and

one has to scribble letters or even curves, matras by lifting

the hand. Upper case and lower case categorization is not

included in Devanagari script.

2.1 Devanagari characters and numerals dataset

Devanagari script comprises of total 58 characters. Apart

from these characters it also consists of composite char-

acters which are combination of two or more basic char-

acters. Printed vowel and consonants are depicted in

figure 1 with numbering. Figure 2 represents handwritten

vowel and consonant characters. Writing system of

Devanagari script is mixture of characters, numerals and

syllabary. It follows phonetic principle where many char-

acters follow mixture of vowels and consonants as well as

writing is also accordingly to the sounds of the characters.

So Devanagari script is also called as phonetic script. It also

consists of 14 modifiers which is nothing but the part of

vowel and used with consonants. These modifiers can use at

top, down and right of the consonant letter to form Bar-

akhadi letters. For example Barakhadi letter “का ” is written
like “क?आ=का ” . Further, consonants are categorised in

many classes like stops, semivowels, spirants, etc.

Accordingly to the character’s structural feature 60%

characters consists of vertical lines either in middle or at the

end and 40% with not having vertical line. Some characters

are rounded in shape. Handwritten numeral characters are

shown in figure 3.

Figure 1. Printed samples (a) vowel characters and (b) consonant
characters.

Figure 2. Handwritten samples of Devanagari vowels and

consonants.
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2.2 Different challenges occur in handwritten
Devanagari character recognition

The significant factor which makes Devanagari more

complex is the similarity of characters as depicted in fig-

ure 4. This similarity in characters makes it difficult to

distinguish characters especially when those characters are

handwritten. In Devanagari script there are many characters

found to be similar in shape. The only small difference is

there in their structure like dot, loops, presence of hori-

zontal line which is shown in figure 4. Due to their struc-

tural similarity, difficulty occurs while recognition.

Different writing style of the same character with different

pressure makes it further complex. Such examples are

shown in figure 5.

3. Dataset corpus creation

Data pattern plays important role and has necessities in

many applications of pattern recognition. A good quality

data pattern always helps us to implement better recogni-

tion system. Formation of database is certainly a

cumbersome and lengthy job. The objectives of creating

new dataset are: i) To check the reliability of the proposed

model on newly created dataset along with standard data-

sets; ii) To improve deep learning performance by pro-

viding new data samples on the basis of data collection

method, by adding new variant data samples. This also

helps to contribute towards the academic community for

further research. Devanagari handwritten characters are

collected under direction from different local writers. Piece

of paper is given to them for writing isolated handwritten

characters using ball pen. Constraints like quality of paper,

ball pen and writing style are not kept while writing. Fig-

ures 2-3 show sample of handwritten Devanagari characters

and numerals collected by one writer. Devanagari Hand-

written Character corpus is generated by 100 writers of

various age groups. Age group limit kept between 15 and

60 year old. Then all papers are scanned using scanner

separately to create dataset of Devanagari characters. Each

scanned image is labelled manually by its class name and

sequence number. For example, first image of character

“अ” of class 1 is labelled as C1_1.jpg. The character sample

size was 160091600 pixels. Our Devanagari characters

dataset consist of 58 character classes out of those 12

classes for vowels, consonant classes were 36 and 10 are

numeral classes as depicted in figures 2-3. Class one con-

sists of 100 samples of character “अ”, class two consists of

100 samples of character “आ” and so on. Hence the total

size of the dataset is 5800 images with 4800 characters and

1000 numerals. The newly created dataset has the following

features:

● UCI Devanagari dataset consists of total 46 classes

containing of 36 consonants and 10 numerals. Our new

dataset consist of total 58 classes which contain 12

vowels along with 36 consonants and 10 numerals.

● No restriction on ball pen, writing pressure, quality of

the paper and age of the writer.

● No restriction on the size, style and the location of

written character on paper.

4. Proposed system

4.1 Pre-processing and data augmentation

The data is collected without keeping restriction on size and

location as mentioned in earlier section may contain errors

or outliers. So that before passing the data for training,

needs to clean or pre-processed. Pre-processed data sup-

ports to boost the performance of the model. By using

XnConvert batch processing tool consistent dataset is cre-

ated by applying various filters like minimum filter. Mini-

mum filter is used to increase the thickness of each

character in the batch and curves are used to change the

colour channels of an image to highlight or reduce some

specific features. With consistent and noise free data

Figure 3. Devanagari numerals.

Figure 4. Similar shape characters with their structural

differences.

Figure 5. Different writing style.
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DCNN also requires a transformed data to developed

generalized model [32]. Data augmentation is the one

which consists of many methods to generate new training

samples from the original samples. When the network

continuously takes modified new data for training, it learns

more robust features of input data. So we performed real-

time data augmentation to increase the generalizability of

the proposed model.

ImageDataGenerator class of Keras is used for obtaining

data augmentation when the model is training on the bat-

ches of images. Then applying different random transfor-

mations it create new random transformed batch of images

which is used for training model as shown in figure 6. In

our work, translation, rotation, scaling and zooming aug-

mentation techniques are applied to the existing dataset

[33]. Image normalization is also performed during train-

ing. One more reason to perform these mentioned aug-

mentation operations is, ConvNet is not invariant to

translation, rotation, scaling so to handle images with ran-

dom transformations and to improve the efficiency of our

model different data augmentation techniques are used. It

also helped us to prevent model from overfitting.

4.2 VGG16: Convolution Neural Network
Architecture

Convolution Neural Network (CNN/ConvNet) is a superior

multi-layer neural network, aimed to automatically extract

features right from the raw pixel images which required

minor pre-processing [27]. One of the features of ConvNet

is that it has the ability to learn features from the small

dataset using a pre-trained model like ImageNet. ImageNet

Large Scale Visual Recognition Competition (ILSVRC)

held in year 2014. In this competition, Visual geometry

group (VGG) was at second place [34]. VGG Net catego-

rized into 3 types based on their architecture. They are

categorized based on number of layers present while

building network. These three types are: VGG11, VGG16,

and VGG19. Devanagari Handwritten Character Recogni-

tion System (DHCRS) is trained using VGG16 and VGG19

architectures. On ImageNet VGG16 architecture achieved

92.7% top-5 test accuracy. ImageNet dataset consist of over

fourteen million images of 1000 classes [35]. In the field of

deep learning the VGG architecture is the first deep CNN to

achieve most promising results. As well as it is very

appealing network because of its simple and unifying

architecture. VGG Net is mostly used to take out baseline

features from the given input images. It is also not very

deep to drop any features at the end of the network while

training. It works finely on our small dataset that we have

created. For balancing the computational cost in the Ima-

geNet 2014 challenge, VGG architecture deploys smaller

convolutional filters (393) and a lesser number of recep-

tive field channels in exchange to enhance the depth in

networks [36]. The VGG19 architecture is similar to

VGG16 only difference that it is deeper as compared to

VGG16 architecture. In VGG19 there are total 19 weight

layers and three more convolution layers are added in Conv

Block 3, 4 and 5 respectively. VGG16 architecture mainly

comprises of 3 layers [35]: convolution layer, pooling layer,

and fully connected layer as depicted in figure 7.

A) The convolution layer is the essential layer of a

convolutional neural network. It makes use of small

learnable filters to extract various features from the

input image.

B) To decrease the training features and computations in

network the pooling layer is employed. The pooling

operation is done by the five max-pooling layers using

292 kernel. Max pooling extracts the maximum value

of the block and produces a single output. Another way

of doing pooling is taking average value or combination

of both maximum and average value.

C) The fully connected layer mainly used for classification

purpose. This layer can be changed as per our

requirement.

The VGG16 architecture consists of 13 convolutional

layers, 5 max-pooling layers and 3 dense layers. Conv1 has

64 filters of 393 kernel while Conv2 has 128 filters of 393

kernel, Conv3 has 256 filters of 393 kernel while Conv4

and Conv5 has 512 filters of 393 kernel as shown in fig-

ure 7. All max-pooling layers has 292 kernel. The ReLu

activation function is added to each convolution layer and

two dense layers so that it will not pass negative values to

the subsequent layers. Softmax activation function is used

by the last dense output layer for prediction.

Mainly for training network, weights are updated to

reduce loss in network. Here learning rate plays an

important role to determine weights adjustment in each

layer of the network. Slow learning rate takes more time

to minimize errors occur in the network where high

learning rate distract network to get minimum error.

Hence adaptive gradient optimizers are best choice for

training network faster. In this paper for evaluating our

DHCRS model two adaptive gradient optimizers,

RMSprop and Adam are used.

The Root Mean Square Propagation (RMSprop) is one of

the faster adaptive learning optimizers proposed by Geoff

Hinton [37]. RMSprop automatically adjusts learning rate

of all parameters separately. Next, the weight updations are

done using following formula for each parameter (Eqs. (1)-

(2)):

Figure 6. Real-time augmentation process.
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Xt ¼ qXt�1 þ 1� qð Þ � G2
t ð1Þ

Wtþ1 ¼ Wt þ �g� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xtþ 2p� �

� Gt ð2Þ

where Xt is exponential average of all gradients squares and

Gt gradients at time t. It updates gradient components

accordingly parameters directions. Wt is previous weight

and Wt?1 is updated weight using learning rate η.
The Adaptive Moment Estimation (Adam) [38] is com-

bination of RMSprop and Momentum. It basically gives us

first and second order moments of gradients. These

moments are calculates using following formula (Eqs. (3)-

(4)):

Xt ¼ b1Xt�1 � 1� b1ð Þ � Gt ð3Þ

Yt ¼ b2Yt�1 � 1� b2ð Þ � G2
t ð4Þ

where Xt and Yt are 1st and 2nd order moments of gradients

and β1 and β2 are hyper- parameters and its default values

are set to 0.9 and 0.99, respectively.

4.3 Proposed architectures of DHCRS

Here effective two-stage architecture to recognize

Devanagari handwritten characters using very small train-

ing samples is proposed. In the first stage, VGG16 pre-

trained network is used. We removed its fully connected

(FC) layer and built our own FC in place of it. And in the

next stage fine-tuning is done on the upper layers of this

pre-trained network.

4.3a First stage: DHCRS architecture: In first stage we only

instantiate the convolution part indicated by bottleneck

features in figure 7 and then added our fully connected

layer on the top of the network. Figure 8 depicts the first

stage of DHCRS model with one dense layer of 1024 units

with ReLU activation function, one dropout layer having

0.5 dropout rate and the last output dense layer of 58 units

with softmax activation function. ReLU is non-linear acti-

vation function stated as Eq. (5),

f zð Þ ¼ max 0; zð Þ ð5Þ
The reason for using ReLU function instead of other pop-

ular and widely used nonlinear functions like sigmoid and

hyperbolic tangent (Tanh) is because training with gradient-

descent is moderately much faster [39] and ReLU does not

face gradient vanishing problem also. ReLu activation

function is less computationally costly than Tanh and sig-

moid because it contains easy mathematical operations.

One dropout layer is also added to avoid overfitting in our

model. Dropout means eliminating the units both visible

and invisible in the network [40]. Arbitrary units are

removed temporarily along with all connections from the

networks. During every training iteration, after elimination

of arbitrary units from denser architecture a lighter network

is left. Then this new network is trained and tested. Each

Figure 7. VGG16 architecture.

Figure 8. DHCRS Model.
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unit is reserved with the fixed probability say p and it is not

dependent on other units. Here, p is assigned to 0.5 which is

the optimal choice by many deep learning models to avoid

overfitting problem. In paper [41], author has performed

experiments on speech recognition by varying dropout rate

from 0.2 to 0.5 and they achieved good result when the

dropout rate is increased towards 50%. Dropout technique

makes a network to learn very powerful features. It

approximately doubles the number of iterations. However,

the training time is less for each epoch. In dense_2 layer,

the softmax function is applied to predict output classes. It

uses softmax loss function to compute cross- entropy loss

which is defined as Eq. (6),

Li ¼ � log efyi
.P

j e
fj

� �
ð6Þ

The main goal of the network is minimizing the cross-

entropy to reduce loss between the estimated output and

target output. Finally, weights are saved for the fine-tuned

network which is implemented in next stage.

4.3b Second stage: New Fine-tuned DHCRS architecture:
To improve our result obtained by first stage architecture,

we fine-tuned our model at the next stage. Convolutional

block 5 and 4 which is the last block of the VGG16 model

is fine-tuned. Initially, trained network is considered for

fine-tuning approach, then doing minor weight updates re-

trained it on our dataset. To fine-tune our model following

three steps are performed: i) Instantiate the VGG16 con-

volutional base and load its weights, ii) Use our formerly

trained first stage model, iii) Freeze top layers of the

VGG16 model up to the convolutional block 3. Figure 9

shows our fine-tuned DHCRS model.

To fine-tune network on top of pre-trained network, we

can not initialize fully connected network arbitrarily

because after initializing randomly weights to the network

large updation occur in gradient which can ruin the learned

weights. So initially we have to begin with properly trained

weights. Firstly, we make use of previously trained model

and then only can start fine-tuning convolutional weights

beside it. In order to prevent overfitting problem which

occurs due to high entropic ability of entire network,

instead of fine-tuning whole network we only fine-tuned

convolution blocks 4 and 5 as shown in figure 9. By fine-

tuning mentioned convolutional blocks more specific

features are updated rather than more general features

getting from first few blocks of the network so we kept first

few blocks fixed (frozen). The new fine-tuned network

trained using optimizer with slow learning rate because

slow learning will keep magnitude of the updates less and

so it will not ruin the previously learned features. Results

are improved using a fine-tuning approach on DHCRS.

5. Experiments, results and discussions

5.1 Model training

The proposed model is evaluated on our own new hand-

written Devanagari characters dataset which contains total

5800 Devanagari character images shown in figures 2 and

3. Out of 5800 samples, 4800 are vowels and consonants

samples and 1000 are numerical samples collected from

different 100 users. Dataset is split into training and testing

dataset. We consider 80 random samples in training dataset

any 20 random samples in testing dataset out of 100 sam-

ples of each class. The statistics of dataset used for

experiment is summarized in table 1. Input shape of all

character images are considered [224922493] for per-

forming experiments.

The DHCRS model is trained using two different

approaches. The first stage model is broad and includes

multiple different parameters. The training parameters of

the first model are listed below and table 2 shows summary

of parameters used in first model.

● Optimizer: RMSProp optimizer. It is an adaptive and

faster learning optimizer and it work well on our

sequential network than other optimizers like Adam.

Results obtained using Adam optimizer is shown in

table 3.

● Learning rate: 0.0001 (lr=1e-4)

● Number of epochs: 20

● Dropout : 0.5

● Mini-Batch size: training batch size=20 and validation

batch size=10

The second stage model is fine-tuned last convolution block

of our first model along with top-level classifier. It is a

compact network as compared with the first network

Figure 9. New Fine-tuned DHCRS architecture.
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because we are freezing other layers up to the last layer. It

also increases overall efficiency of the first stage model.

The training parameters of the second model are listed

below.

● Optimizer: RMSprop optimizer with very slow learn-

ing rate because the magnitude updation remains very

small and so that it will not ruin the previously learned

features.

● Learning rate: le-6

● Number of epochs: 10

● Dropout : 0.5

● Mini-Batch size: training batch size=20 and validation

batch size=10

In second model specification remain same only trainable

parameters are zero. Also trainable parameter in maxpool-

ing layer is zero because it passes max value to the next

layer.

5.2 Execution details

The DHCRS is executed using Keras and TensorFlow

framework using GPU runtime. One of the key attributes of

using Keras is choice of hyper-parameters required for

training network. They are based on preprogramed guide-

lines; hence the programmers can test with default param-

eters. All experiments are performed on Google

Colaboratory which is free cloud service for developing

deep learning applications. Google Colaboratory provides

free single 12 GB NVIDIA Tesla K80 GPU. Real-time data

augmentation is done using ImageDataGenerator class of

Keras. Random horizontal flips, scaling and random rota-

tion by 20 degree, data augmentation techniques are applied

on batch of original input images to generate new batch of

transformed images. Each optimizer has its default frame-

work. In this work for testing the proposed model, the

optimizer parameters are set by the authors. RMSprop

optimizer is used for our two-stage model with low learning

rate to avoid destruction in previously learned features.

5.3 Results and discussion

5.3a Recognition accuracy archived on newly created
Devanagari dataset: Initially, the first model is executed

using 10 epochs and achieved 93.28% testing and 91.67%

training accuracy. As a number of epochs increased accu-

racy also increased approximately by 2%. For 20 epochs

94.83% testing and 95.7% training accuracy is achieved as

epoch plays an important role in training network. Mini-

batch training is faster than training on complete data set

because it can take advantage of vectorised operations to

process the entire mini-batch at once. It also helps in

improving the flow of features properly. A mini-batch size

of 20 instead of quite large 50 is chosen because if a larger

mini-batch size is picked for our small dataset it slows

down model and also minimizes accuracy. This is impor-

tant for proposed model because the value is required for

the gradient descent without degrading.

To avoid overfitting problem which may occur due to a

huge amount of the trainable parameters real-time data

augmentation and dropout techniques are applied while

training proposed model. As well as these data augmenta-

tion techniques make our model invariant to translation,

rotation, and scale.

Table 3. Performance of proposed two-stage model with different optimizer.

Optimizer Model Training Loss Accuracy (%) Average time/epoch Total time

RMSprop First stage Model 0.18 94.83 3.63 m (20 epochs) 72.68 m 20 s

Second stage Model 0.12 96.55 2.58 m (only 10 epochs) 25.88 m 8 s
Adam First stage Mode 0.24 92.76 3.53 m (20 epochs) 70.6 m 14 s

Second stage Model 0.20 94.05 2.51 m(15 epochs) 37.67 m 10 s

Table 1. New Devanagari dataset statistics used for experiment.

Dataset

Training

samples

Testing

samples

Total

samples

Number

of

classes

Devanagari

characters

(vowel?

consonants)

3840 960 4800 48

Devanagari numerals 800 200 1000 10

Total 4640 1160 5800 58

Table 2. First model parameter specifications.

Layer(type) Output shape Parameters

vgg16(Model) (None, 7, 7, 512) 14714688

flatten_3(Flatten) (None, 25088) 0

dense_5(Dense) (None, 1024) 25691136

dropout_3(Dropout) (None, 1024) 0

dense_6(Dense) (None, 58) 59450

Total parameters: 40,465,274

Trainable parameters: 32,830,010

Non-trainable parameters: 7,635,264
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In deep learning fine-tuning approach gives good

performance especially image classification [42]. The

DHCRS recognition model also evaluated using VGG19

architecture. The testing accuracy results while training are

depicted in figure 10. VGG16 model performing better than

VGG19 clearly noted from figure 10. It also required more

storage space compared to VGG16. Hence we decided to

do fine-tuning on VGG16 architecture only using different

adaptive optimizers. Second fine-tuned model is a very

powerful model which improves result compared with the

first model. It involves fine-tuning the pre-trained model

function f() with a smaller learning rate so that it will make

fine adjustments in weights to further improve our result.

With improving results overfitting issue is also handled by

using aggressive data augmentation and regularization

techniques.

Table 3 presents the obtained experimental results for the

first and second models using different optimizers. The

recognition results are promising. From table 3, it is clearly

observed that our second fine-tuned model is more efficient.

It achieved good performance in 10 epochs only and

accuracy has also improved by approximately 2% with

training loss of 0.12. Fine-tuning of pre-trained model

really speeds up the training process with improved accu-

racy. The pre-trained model speeds up training process on

new data especially when dataset size is small and it also

results in more accurate and effective model. It provides

initial point for other similar task. Hence transfer learning is

optimization method which enhances the efficiency of other

task [25]. For direct supervised setting large amount of

high-quality data is required. We had also implemented

small network from scratch with total five layers of Con-

v2D- Batch Normalization- ReLu- MaxPooling2D. Initially

the data was divided in batch size of 32 samples. Due to

less number of samples used for validation, we encountered

inconsistency in validation accuracy. We achieved 85.64%

accuracy only. Then the experiment performed by

increasing batch size with entire testing and training sam-

ples. With this the testing accuracy increased to 93.17%,

but resulted in very high training time of 45.88 minutes.

Our proposed fine-tuned network achieved 96.66% accu-

racy in 25.88 minutes. The accuracy is improved by

approximately 3.5% in lesser time as compared to the

model tested under supervised setting (no pre-training).

Distortion like scaling, rotation and transformation is

done in both model using run-time data augmentation.

Figure 11 depicts testing accuracy obtained by different

adaptive gradient optimizers. For our DHCRS RMSprop

optimizer is good choice which is giving us good accuracy

with faster convergence rate. With this proposed fine-tuned

model is also tested on our separate characters and

numerals datasets. Testing accuracy achieved on character

and numeral dataset is 97.20% and 95.50%, respectively.

5.3b Recognition accuracy archived on standard Devana-
gari and other different datasets: The proposed approaches

are also evaluated on four standard publically available

datasets belonging to Devanagari and Bangla Indic scripts.

These datasets consist of characters and numerals data of

above mentioned scripts. These scripts are dissimilar from

one another. Apabrhramsha is base for the Devanagari

script [43], degraded from Prakrit [43] where the Bangla

script inspired by Sanskrit as well as Magdhi Prakrit [44].

Hence the proposed model can be completely tested on

these two different scripts. For experiments we considered

total four benchmark datasets: UCI Devanagari character

dataset [24] consist of both characters and digits, CMA-

TERdb 3.1.1 of Bangla digit [45] and CMATERdb 3.1.2 of
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Figure 11. Testing accuracy obtained by different optimizers.

Table 4. Two-stage model performance on various benchmark

datasets.

Proposed

models

Datasets with size

Devanagari

characters

(72000)

Devanagari

digits

(20000)

Bangla

characters

(15000)

Bangla

digits

(6000)

First

stage

model

96.19% 98.90% 94.33% 94.55%

Second

stage

model

97.80% 99.40% 95.83% 97.45%

Sådhanå (2020) 45:243 Page 9 of 13 243



Table 5. Relative analysis of proposed method with UCI Devanagari character dataset.

Dataset Ref. No. Methodology and Experimental Protocol Features

Accuracy

(%)

UCI

Devanagari

character

[49] Deep feed-forward neural network with 2 hidden layers Features

extracted by

CNN

95.57

Convolutional neural network (1 Convolution layer, 1 Max-pooling

and 2 fully connected layers) with RMSprop optimizer

97.33

Convolutional neural network with Adam optimizer 96.02

[50] Convolutional neural network (3 Convolution layer, 3 Max-pooling

and a fully connected layer) with Adam optimizer

Features

extracted by

CNN

93

Tool: Tensorflow and Keras API, 4 GB NVIDIA GPU

Proposed Fine-

tuned model

Second stage fine-tuned VGG16 Model with RMSprop optimizer Features

extracted by

CNN

97.80

Tool: Tensorflow and Keras API, Google Colaboratory

Table 6. Relative analysis of proposed method with Devanagari numerals dataset.

Dataset Ref. No. Methodology and Experimental Protocol Features

Accuracy

(%)

UCI Devanagari

Numerals

[24] First model-Deep CNN Features extracted

by CNN

98.47

Second model- LeNet CNN 98.26

[47] Backpropagation neural network Projection

Histogram

92.2

Tool: MATLAB Chaincode

Histogram

92.7

Deep Auto-encoder network-Restricted Boltzmann

Machine(RBM)

Binary obtained by

RBM

98.20

Tool: MATLAB

Proposed Fine-tuned

model

Second stage fine-tuned VGG16 Model with

RMSprop optimizer

Features extracted

by CNN

99.40

Tool: Tensorflow and Keras API, Google

Colaboratory

Table 7. Relative analysis of proposed method with Bangla basic character dataset.

Dataset Ref. No. Methodology and Experimental Protocol Features

Accuracy

(%)

Bangla basic

character

[27] Convolutional neural network (2 Convolution layer, 2 Max-

pooling and 2 fully connected layers)

Features extracted by

CNN

85.96

[28] Multilayer perceptron-Backpropagation(MLP-BP) NN Chaincode histogram 92.14

[29] Deep CNN((2 Convolution layer, 2 Max-pooling and 3 fully

connected layers)

Features extracted by

CNN

91.23

[31] Support Vector Machine(SVM) with linear kernel Noise Adaptive Local

Binary Pattern

93.40

Proposed Fine-

tuned model

Second stage fine-tuned VGG16 Model with RMSprop

optimizer

Features extracted by

CNN

95.83

Tool: Tensorflow and Keras API, Google Colaboratory
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Bangla basic characters [46]. Table 4 shows the good

recognition results achieved on these four different standard

datasets. Such promising results achieved on benchmark

dataset of two Indic scripts prove the efficiency of our two-

stage model.

5.3c Comparison study: Experiments done on different

datasets implies promising results obtained by the proposed

model. In this section comparison with other popular work

presented on the different dataset as mentioned in table 4

using the proposed method. The comparative study reveals

that the DHCRS model put forward by us is most sophis-

ticated when working with small Devanagari character

database. Our test outcomes are better than other as indi-

cated in tables 5-8 and result of the proposed work marked

in bold. Numbers highlighted in bold indicates the results

obtained by our proposed model for comparison purpose.

Table 5 shows comparative analysis on Devanagari

character dataset. This study reveals that the results

obtained by the proposed Fine-tuned model on our dataset

and on UCI dataset giving good accuracy. Our new data-

set’s statistics are given in table 1. UCI dataset is consisting

of total 72000 character samples which are split into

training (85%) and testing (15%) dataset.

Table 6 shows comparative analysis on Devanagari

numeral dataset. Our new dataset’s training statistics are

given in table 1. UCI dataset is consisting of total 20000

numeral (17000 training and 3000 testing) samples. The

proposed model achieved maximum accuracy on UCI

numeral dataset as depicted in table 6.

Table 7 shows comparative analysis on Bangla basic

character dataset. CMATERdb 3.1.2 isolated Bangla char-

acter dataset used for experiments. Dataset consist of total

15000 samples of 50 basic Bangla characters out of which

12000 used for training and 3000 used for testing.

Table 8 shows comparative analysis on Bangla digit

dataset. Experiments are performed on CMATERdb 3.1.1

isolated Bangla digit dataset. Dataset consist of total 6000

samples of 10 Bangla digits out of which 4000 used for

training and 2000 used for testing. Results are testimonial

to the efficiency of the recommended model performing

well of diverse datasets.

Hence the implemented handwritten Devanagari

character recognition model is more powerful for a small

dataset as well with a fine-tuning technique. In addition

to this, more aggressive data augmentation techniques

and dropout layer also added to prevent model from over-

fitting. The main advantage of the proposed model is

good accuracy on trivial dataset. With this we also

achieved good accuracy on different benchmark datasets.

Secondly VGG architecture of CNN is most simple and

found more suitable to fine-tune to improve result on our

small size dataset. However the limitation of the pro-

posed model is intensive memory of the model due to

more number of training parameters. In the future we will

address memory size reduction problem by working on

model compression techniques without much reduction

in accuracy.

After analysing, the misclassification errors occurred

during testing phase it is found that the characters (table 9)

are mostly confused with other class of characters due to

their shape similarly and structure. The structure is also

plays important role due to individual’s cursive ways. Some

characters are confused with numerals. Other problem for

confusion occurs due to people’s bad handwriting and

scanning quality.

Table 8. Relative analysis of proposed method with Bangla digits dataset.

Dataset Ref. No. Methodology and Experimental Protocol Features

Accuracy

(%)

Bangla

digits

[30] K- Nearest Neighbor Local binary pattern histogram 96.7

[31] Support Vector Machine(SVM) with linear

kernel

Local Adaptive Image Descriptor 97.26

[48] Support Vector Machine(SVM) with RBF kernel Gradient based directional and

quad-tree based

97.45

Tool: WEKA

Proposed Fine-tuned

model

Second stage fine-tuned VGG16 Model with

RMSprop optimizer

Features extracted by CNN 97.45

Tool: Tensorflow and Keras API, Google

Colaboratory

Table 9. Mostly confusing characters.

Characters Confused with 

,

,
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6. Conclusions

Identification of Indic languages is cumbersome and com-

plex due to individual’s style of writing. Devanagari is

foundation of many Indic languages. Recently demand for

deep networks is increasing in many research areas espe-

cially to solve image classification problems. In this work, a

two-stage model has been developed to classify the isolated

handwritten Devanagari characters of our newly created

dataset. Newly created dataset which is publically available

consists of a total of 5800 images of vowels and conso-

nants. 80 images of each 58 classes are used for training the

DHCRS model and 20 images of each 58 classes are used

for testing. The VGG16 architecture of DCNN assisted us

to detect the key attributes automatically and to also cate-

gorize them. The best classification accuracy of 96.55% is

achieved using fine-tuned VGG16 architecture. It is the best

result achieved on our trivial database. To make the

DHCRS model more powerful we added more aggressive

runtime data augmentation and some regularization tech-

niques like Dropout and Batch Normalization. Results

obtained by the recommended modes on two Indic scripts

show the effectiveness of the proposed approach.

In future, deploying further compact deep convolution

network to classify handwritten Devanagari character is

planned. Also, we want to explore different deep convo-

lution network architectures on compound Devanagari

characters as well as Devanagari words. Structural features

like concavity need to be explored to improve accuracy of

similar shape characters.

Dataset accessibility Our newly created Handwritten Devanagari

character dataset is publically available at https://www.kaggle.com/

shalakadeore/handwritten-marathi-devanagari-characters.
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