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Abstract. Due to the vital role of rivers and canals, the protection of their banks and beds is critically

important. There are various methods for protecting beds and banks of rivers and canals in which ‘‘cross-vane

structures’’ is one of them. In this paper, the scour hole depth at the downstream of cross-vane structures with

different shapes (i.e., J, I, U, and W) is simulated utilizing a modern artificial intelligence method entitled

‘‘Outlier Robust Extreme Learning Machine (ORELM)’’. The observational data are divided into two groups:

training (70%) and test (30%). After that, the most optimal activation function for simulating the scour depth at

the downstream of cross-vane structures is selected. Then, using the input parameters including the ratio of the

structure length to the channel width (b/B), the densimetric Froude number (Fd), the ratio of the difference

between the downstream and upstream depths to the structure height (Dy/hst) and the structure shape factor /ð Þ,
eleven different ORELM models are developed for estimating the scour depth. Subsequently, the suitable model

and also the most effective input parameters are identified through the conduction of an uncertainty analysis. The

suitable model simulates the scour values by the dimensionless parameters b/B, Fd, Dy/hst. For this model, the

values of the correlation coefficient (R), Variance accounted for (VAF) and the Nash-Sutcliffe efficiency (NSC)

for the suitable model in the test mode are obtained 0.956, 91.378 and 0.908, respectively. Also, the dimen-

sionless parameters b/B, Dy/hst. are detected as the most effective input parameters. Furthermore, the results of

the suitable model are compared with the extreme learning machine model and it is concluded that the ORELM

model is more accurate. Moreover, an uncertainty analysis exhibits that the ORELM model has an overestimated

performance. Besides, a partial derivative sensitivity analysis (PDSA) model is performed for the

suitable model.

Keywords. Cross-vane structures; scour; outlier robust extreme learning machine; uncertainty analysis; partial

derivative sensitivity analysis.

1. Introduction

Rivers and canals have played a vital role in the devel-

opment of human civilization. Big cities have been

mainly developed in the vicinity of rivers. Rivers are

used to transport goods and passengers to downstream

and upstream as well as access to free waters such as seas

and oceans. Furthermore, the supply of required water for

drinking, agriculture, industry, and other purposes is

feasible from the water flowing in rivers and artificial

canals. The stability of the general form of the bed and

banks of an erodible river is a function of eight different

variables such as slope, width, velocity, discharge,

roughness, concentration, and sediment dimensions [1].

In general, secondary circulations and the redirection of

river currents occurring in straight and meandered rivers

increase the boundary shear stress. Therefore, the sta-

bility of banks and the erodible bed of rivers and canals is

extremely important. In recent years, various techniques

have been proposed for protecting banks and the erodible

bed of rivers and canals, for example Iowa vanes, sub-

merged vanes, deflectors, bank barbs, spur dikes, and

rock weirs are some structures employed to protect beds

and banks. Generally, a protective structure must satisfy

the following criteria.

• Maintenance of the ratio of the width to the

stable depth of the channel.

• Maintenance of the channel stability according to the

amount of shear stress for the movement of the largest

sediment particles.
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• Reduction of velocity adjacent to banks, shear stress or

flow strength.

• Maintenance of the stability of the protective structure

during the flood.

• Maintenance of the passageway of fish in all parts of

the stream.

• Providing or increasing the passageway of ferry boats.

• Improving aquatic habitats.

• Compatibility with the nature of the channel.

• Reduction of construction costs compared to tradi-

tional structures.

• Reduction of maintenance costs.

• Prevention from sedimentation, erosion and reduction

of scouring in the vicinity of piers and other structures

[2].

Therefore, cross-vane structures are one of the best options

for protecting the stability of rivers and canals against

erosion. Due to the importance of cross-vane structures,

many experimental studies have focused on the scour pat-

tern in the vicinity of this type of structures. For instance,

Scurlock et al [3] installed several rock weirs at the bend

location of an open channel to evaluate the flow pattern

near the inner and outer walls of the channel. They pro-

posed a series of formulae for approximating the ratio of

the maximum velocity of the inner and outer walls. Pagliara

et al [4] established an experimental study to find the scour

pattern around J-shaped cross-vane structures located on

straight channels in the clear-water condition. They ana-

lyzed the experimental results to exhibit that by increasing

the Froude number the location of the maximum scour

depth is shifted towards the downstream. They also stated

that the scour hole width is about 0.7–0.9 the channel

width. Besides, Pagliara and Kurdistani [5] experimentally

measured scour hole dimensions at the downstream of

cross-vane structures with I and U shapes installed in a

rectangular channel. By changing the hydraulic and geo-

metric conditions of the flow, they calculated the scour

dimensions in the clear-water condition and then conducted

a dimensional analysis to evaluate the influence of the

effective parameters. It is worth mentioning that they pre-

sented several equations for calculating the depth, length

and width of the scour hole. Pagliara et al [6] experimen-

tally measured scour values at the downstream of W-shaped

cross-vane structures located in a rectangular channel in the

clear-water condition. The analysis of the experimental

results exhibited that the tailwater depth plays a critical role

in forecasting the scour parameters. After that, Pagliara

et al [7] experimentally utilized log-vanes for controlling

the scour occurring in the straight path of rivers in the clear-

water condition. By changing the position of log-vanes,

they managed to assess the scour pattern in the vicinity of

such structures. It should be noted that in this paper the

maximum dimensions of the formed dunes are measured.

Mahmoudi Kurdistani and Pagliara [8] conducted an

experimental study to compare the scour pattern at the

downstream of log-Vanes and log-Deflectors. They per-

formed the experiments in a straight rectangular channel for

unified sediments in the clear-water condition. The analysis

of the experimental results proved that the position angle of

such structures plays an important role in the formation of

the scour hole. Pagliara et al [9] experimentally evaluated

the influence of the layout of log-Deflectors on the scour

pattern around this type of barrier. They exhibited that the

position angle of log-Deflectors and the tailwater depth are

the most important parameters affecting the scour pattern.

Also, Pagliara and Kurdistani [10] evaluated the parameters

affecting scour hole dimensions in the vicinity of log-De-

flectors. They defined two types of bed morphology for

these protective structures.

In contrast, artificial intelligence techniques have great

ability in estimating and simulating various linear and non-

linear phenomena. These numerical models have consid-

erable flexibility and are utilized as efficient tools for sav-

ing the research time and conducting experimental studies.

In recent years, such techniques are used for simulating the

scour around different structures such as abutments [11, 12]

and submerged vanes as well as other scour controller

structures [13–18].

Reviewing the previous studies indicates that the pre-

vention of the bed of rivers and canals is extremely

important and the detection of the effective factors is

essential for providing an optimal scheme. On the other

hand, artificial intelligence techniques are powerful tools

for modeling the scour phenomenon at the downstream of

hydraulic structures. Moreover, the scour depth at the

downstream of cross-vane structures has not been simulated

by artificial intelligence models so far and in this study, for

the first time, it is done using a modern approach entitled

‘‘outlier robust extreme learning machine (ORELM)’’. In

other words, first, the input parameters are introduced for

simulating the scour depth. After that, the most optimal

activation function of the numerical model is selected.

Then, eleven ORELM models are defined using the input

parameters and the suitable model along with the most

effective input parameters are identified through the con-

duction of a sensitivity analysis. The results of the ORELM

suitable model are compared with those of the extreme

learning machine. Subsequently, an uncertainty analysis

and a partial derivative sensitivity analysis are performed.

2. Method

2.1 Extreme learning machine (ELM)

Extreme Learning Machine (ELM) introduced by Huang

et al [19, 20] is an educational algorithm for the single layer

feed-forward neural network (SLFFNN). Consider a dataset
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consisting of N arbitrary training samples in the form of

ðxi; yiÞf gNi¼1. In this dataset, xi 2 Rn is the matrix of the

problem inputs and yi 2 R is the output of the interested

problem. Given L neurons in the hidden layer and defining

g(x) as the activation function, the mathematical structure

of ELM is defined for nonlinear mapping between the input

matrix and the output of the problem as follows:

yj ¼
XL

i¼1

bigðwi � xj þ biÞ; j ¼ 1; 2; . . .;N ð1Þ

where, wi ¼ ðwi1;wi2; . . .;winÞ is the matrix of the input

weight connecting the ith hidden layer neuron to input

neurons. This matrix is randomly initialized. bi is known as

the bias of the ith neuron in the hidden layer. The matrix bi

represents the output weight matrix connecting the ith
hidden layer neuron to the output neuron. In the above

relationship, wi:xj is known as the inner product of two

matrices: the matrix of input weights (w) and the matrix of

problem inputs (x). The output node in the mathematical

form of ELM is linearly defined. The matrix form of the

above relationship which includes N different equations is

expressed as follows:

Hb ¼ y ð2Þ

where, y ¼ ½y1; . . .; yN �T , b ¼ ½b1; . . .; bN �T and H is defined

as follows:

Hðw1;w2; . . .;wL,x1; x2; . . .; xL; . . .; b1; b2; . . .; bLÞ

¼
g(w1 � x1 þ b1) � � � g(wL � x1 þ b1)

..

. . .
. ..

.

g(w1 � xN þ b1) � � � g(w1 � xN þ bL)

0
B@

1
CA ð3Þ

where, H is the output matrix of the hidden layer. It is seen

from equation (2) that in the structure defined for ELM, all

parameters except the output weight matrix (b) are con-

stant. Thus, the main purpose of finding an equivalent

precise model is to solve the linear equation provided in

equation (2) to obtain the matrix .b Given that the matrix H

is a non-square matrix, the solution of equation (2) may be

unlike a linear problem. To solve this problem, the mini-

mization of the loss function value is utilized in the optimal

least square solution process, i.e., min y�Hbk k. Thus, the

optimal result obtained from the minimization of l2-norm is

as follows:

b̂ ¼ Hþy ð4Þ

where, H1 is the Moore-Penrose generalized inverse [21]

of H. Given that the number of samples taken into account

as training samples is greater than the number of nodes

considered in the hidden layer (L\N), equation (4) can be

rewritten as follows:

b̂ ¼ ðHTH)�1HTy: ð5Þ

2.2 Outlier robust ELM (ORELM)

In modeling by artificial intelligence (AI) based models,

there are always outliers and because of the fact that in

many cases such samples often refer to the nature of the

problem, there is no way to remove them. Thus, it com-

prises a percent of the total learning error (e). In order to

deal with such data, the existence of outliers is defined by

sparsity. Zhang and Luo [22] knowing that the use of the l0-

norm reflects sparsity better than the l2-norm, to calculate

the output weight (b), instead of using the l0-norm, con-

sidered the learning error (e) so that to be sparse.

min
b

C ek k 0 þ bk k2
2 subject to y�Hb ¼ e ð6Þ

The above relationship is a non-convex programming

problem. According to the analysis of the robust principal

component and compressive sensing, the term of sparse is

obtained using the l0-norm. Displacement of the l0-norm by

the l1-norm (equation (6)) not only leads to the convex

minimization, but it also guarantees sparse characteristics.

Therefore, the convex relaxation of equation (6) is calcu-

lated as follows:

min
b

ek k 1 þ
1

C
bk k2

2 subject to y�Hb ¼ e ð7Þ

The above relationship is a constrained convex opti-

mization convex which completely fits the proper range of

the Augmented Lagrangian (AL) multiplier approach.

Thus, the AL function is presented as follows:

Llðe; b; kÞ ¼ ek k1þ
1

C
bk k2

2þk2ðy�Hb� eÞ

þ l
2

y�Hb� ek k2
2 ð8Þ

where, l ¼¼ 2N= yk k1 [23] denotes the penalty parameters

and k 2 Rn is the Lagrangian multiplier vector. The optimal

solution (e, b) and k as Lagrangian multiplier are achieved

through the iterative minimization of the AL function as

follows:

ðekþ1; bkþ1Þ ¼ arg min
e;b

Llðe; b; kÞ ðaÞ

kkþ1 ¼ kk þ lðy�Hbkþ1 � ekþ1Þ ðbÞ

8
<

:

9
=

;: ð9Þ

2.3 Goodness of fit

In the current study, in order to assess the accuracy of the

introduced numerical models, the correlation coefficient

(R), variance accounted for (VAF), Root Mean Square

Error (RMSE), and the Nash-Sutcliffe efficiency coefficient

(NSC) are employed as follows:

R ¼
Pn

i¼1 Fi � F
� �

Oi � O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Fi � F

� �2Pn
i¼1 Oi � O

� �2
q ð10Þ
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VAF ¼ 1 � var Fi � Oið Þ
var Fið Þ

� �
� 100 ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
Fi � Oið Þ2

r
ð12Þ

NSC ¼ 1 �
Pn

i¼1 Oi � Fið Þ2

Pn
i¼1 Oi � O

� �2
ð15Þ

where, Oi is observational values, Fiis values predicted by

numerical models, O is the average of observational val-

ues and n is the number of observational values. In the

next sections, the activation functions are studied. After

that, the suitable model and the most effective input

parameters are identified. Furthermore, the ORELM suit-

able model is compared with the ELM suitable model. In

addition, an uncertainty analysis and a partial derivative

sensitivity analysis (PDSA) are conducted for the

suitable model.

2.4 Experimental models

To verify the results of the numerical models, the experi-

mental vakues measured by Pagliara et al [6], Pagliara and

Kurdistani [7] and Pagliara et al [8] are employed. The

experimental models of cross-vane structures are with the

shapes of J and W in a rectangular horizontal channel with

the length, height and width (B) of 20 m, 0.75 m and 0.8 m,

respectively. Also, the scour depth was measured in the

vicinity of cross-vane structures with the shapes of I and U

in a flume with the length, width and height of 7 m, 0.342 m

and 0.63 m, respectively. They managed to measure the

scour depth (Zm) at the downstream of a stone trap with the

height of hst and the width of b for densimetric Froude

numbers equal to Fd. Besides, the flow depth difference

between the downstream and the upstream of the stone trap

is Dy. The schematic layout of the mentioned experimental

model is shown in figure 1.

Pagliara et al [6], Pagliara and Kurdistani [7] and

Pagliara et al [8] in their experimental studies stated that

the parameters affecting the scour at the downstream of

stone traps are: scour depth (Zm), height of the stone trap

hstð Þ, width of the stone trap (b), width of the main channel

(B), the flow depth different between the downstream and

the upstream of the stone trap (Dy), flow rate (Q), viscosity

of sediment and water (qs, q), gravitational acceleration (g)

and the average diameter of sediments (d50). Thus, equation

(16) is written as follows:

f Zm; hst; b;B;Dy;Q; qs; q; g; d50ð Þ ¼ 0 ð16Þ

Pagliara et al (2013) by means of the dimensional

analysis indicated that the scour at the downstream of the

stone trap is a function of the following dimensionless

parameters:

Zm=hst ¼ f b=B;Fd;Dy=hstð Þ ð17Þ

Moreover,urepresents the shape factor of cross-vane

structures with the shapes of J, I, U and W. It is worth

noticing that the structure shape factor /ð Þ is assumed to be

0, 1, 2, and 3 for J, I, U, and W cross-vane structures,

respectively. Thus, equation (17) is rewritten as follows:

Zm=hst ¼ f b=B;Fd;Dy=hst;/ð Þ ð18Þ

where, Fd is the densimetric Froude number. Thus, in this

study, the parameters belonging to equation (18) are taken

into account as the input parameters. In other words, using

different combinations, 11 numerical models are introduced

for identifying the effective parameter. In figure 2, the

combinations of the dimensionless parameters of equation

(18) are illustrated.

To identify the best ORELM model and the most

influencing input parameters, a sensitivity analysis is

implemented for the ORELM models. This means that

eleven ORELM models using the input parameters are

defined to carry out the sensitivity analysis. For instance,

ORELM 1 simulates the target function by using all input

parameters and then effect of each input is removed.

Thus, ORELM 2 to ORELM 5 models are developed.

Lastly, all possible combinations consisting of two input

parameters are defined (ORELM 6 to ORELM 11). The

best ORELM model owns the lowest error and the

highest correlation with experimental measurements.

Moreover, the performance of ORELM model decreases

significantly as the most effective input parameter is

ignored.

3. Result and discussion

3.1 Activation function

First, the activation functions are evaluated for the

artificial intelligence model. As discussed, the ORELM

model has five activation functions entitled ‘‘sigmoid,

sine, hardlimit, triangle basis and radial basis’’. In this

section, all activation functions are assessed and then

the superior one is introduced. In figure 3, the results of

different statistical indices for the activation functions

are illustrated. Also, the corresponding scatter plots to

the activation functions are shown in figure 4. Addi-

tionally, for this activation function, the value of RMSE

in the test mode is calculated 0.572. In contrast, the

values of VAF and NSC for the sine activation function

in the test mode are also obtained 93.558 and 0.930,

respectively. However, the value of VAF for the trian-

gle basis in the test mode is calculated 86.640. Thus,

based on the results of the activation functions, sigmoid

simulates the scour values with higher accuracy.

Therefore, this function is chosen for the remaining

modeling steps.
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3.2 Sensitivity analysis

In this section, the analysis of the results obtained by the

ORELM numerical models is carried out. As discussed

above, 11 different ORELM models are developed in this

study for identifying the suitable model and also the most

effective input parameter. In figure 5, the results of all

statistical indices for ORELM1 to ORELM11 are shown.

ORELM1 estimates the scour values in terms of all input

parameters (b/B, Fd, Dy/hst, u). For ORELM1, the values

of R and VAF in the test mode are obtained 0.954 and

91.049, respectively. For this model, the values of RMSE

and NSC in the training mode are calculated 0.502 and

0.921, respectively. Moreover, ORELM2 simulated the

objective function values in terms of the parameters b/B,
Fd, Dy/hst. For ORELM2, the value RMSE in the training

mode is 0.498, respectively. In contrast, the values of R,

NSC and VAF for the ORELM2 model in the test mode

are calculated 0.956, 0.908 and 91.378, respectively. It

should be noted that among the all ORELM models,

ORELM2 has the lowest error and the highest correlation

with the experimental values. Furthermore, ORELM3

models the scour values in terms of the parameters b/B,
Fd, u. For this artificial intelligence model, the values of

RMSE and NSC in the test mode are estimated to be

equal to 1.149 and -0.517, respectively. Also, ORELM4

models the objective values by the input parameters

including b/B, Dy/hst, u. For ORELM4, the values of VAF

and R in the training mode are calculated 81.951 and

0.905, respectively, whereas ORELM5 estimates the scour

values using Fd, Dy/hst, u. For ORELM5, the values of

Figure 1. Schematic layout of experimental models of stone cross-vane structures (a) J-shaped, (b) I-shaped, (c) U-shaped and (d) W-

shaped (Pagliara et al [6]; Pagliara and Kurdistani [7] and Pagliara et al [8]).

Figure 2. Combinations of input parameters.
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RMSE and NSC in the test mode are obtained 6.10E-01

and 0.887, respectively. Furthermore, ORELM6 simulates

the values of the objective function by means of the

parameters ? b/B, Fd. The values of R and VAF for

ORELM6 in the test mode are equal to 0.621, 1.063 and

38.536, respectively. In contrast, ORELM7 simulates the

scour values near cross-vane structures by the parameters

b/B, Dy/hst. For the training mode, ORELM7 estimates the

values of VAF and NSC equal to 77.529 and 0.709,

respectively. In addition, ORELM8 calculates the scour

values by the dimensionless parameters b/B, u. The values

of RMSE and VAF for this model in the training mode

are computed 1.453, 0.913 and 38.471, respectively.

ORELM9 calculates the objective function values by the

dimensionless parameters Fd, Dy/hst. For this artificial

intelligence model, the values of NSC, VAF and RMSE in

the test mode are obtained 0.842, 86.432 and 0.723,

respectively. ORELM10 simulates the scour values by the

dimensionless parameters Fd, u. For ORELM10, the val-

ues of NSC and R in the test mode are estimated -0.753

and 0.603, respectively. Based on the simulation results,

ORELM10 has the lowest accuracy among all the artificial

intelligence models, while the values of RMSE and R for

ORELM11 in the test mode are calculated 0.958 and

0.865, respectively. Furthermore, the scatter plots for all

ORELM models are depicted in figure6.

Figure 3. Results of statistical indices for different activation functions.

Figure 4. Scatter plots for sigmoid activation function.
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Thus, according to the results of the numerical models,

ORELM2 is detected as the suitable model. This model

estimates the objective function values by the dimension-

less parameters b=B;Fd;Dy=hst. It should be noted that the

dimensionless parameters b/B, Dy/hst are identified as the

most important input parameters.

3.3 Comparison with ELM

In this section, the results of the ORELM2 model as the

suitable model are compared with the ELM model. The

scatter plots of both models in the test and training modes

are shown in figure7. Based on the obtained results, the

ORELM artificial intelligence model has a better perfor-

mance than the ELM model. For instance, the VAF values

for ORELM and ELM in the training mode are equal to

92.776 and 91.106, respectively. Furthermore, the values of

R, RMSE and NSC for the ELM model in the test mode are

obtained 0.938, 0.498 and 0.934, respectively. The ORELM

and ELM models are considered as a single layer feed

forward neural network (SLFFNN) while the ORELM

model overcomes the outlier problems in the ELM model.

For instance, the ELM model does not show a good per-

formance in small target function, whereas the ORELM

model has an acceptable performance for all scour depth

values. Regarding the simulation results, in the training

mode, the level of correlation (R index) of the ORELM

model is enhanced, with roughly 6% and 2% improvement

in the training and testing mode. Moreover, the level of

error (RMSE) for the ORELM model in training condition

is approximately 7.5% less than the ELM model. Therefore,

the ORELM model has better performance in comparison

with the ELM model. Table 1 shows the computed statis-

tical indices for the ORELM and ELM models. Indeed, the

ELM and ORELM models are considered as a single layer

feed forward neural network (SLFFNN) that the ORELM

overcomes the outlier problem of the ELM model. For

instance, as it can be seen from figure 7, the ELM does not

have a reasonable performance in target function ranging

from 0 to 4 while the ORELM model owns a better per-

formance for all scour depth values.

3.4 Uncertainty analysis

In this section, the uncertainty analysis is conducted for the

ORELM and ELM models. The uncertainty analysis is to

assess the error predicted by numerical models and evaluate

the performance of the models. Generally, the value of the

error calculated by numerical models (ej) is introduced as

the difference between computed values (Pj) and observed

values (Tj) (ej = Pj - Tj). Also, the average of the pre-

dicted error is calculated as �e ¼
Pn

j¼1 ej, while the value of

the standard deviation of calculated error values are defined

as Se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 ej � �e
� �2

=n� 1

q
. It is worth mentioning

Figure 5. Results of statistical indices for ORELM models.
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Figure 6. Comparison of scour values simulated by ORELM 2.
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that the negative sign of �e indicates the underestimated

performance of the numerical model. However, the positive

sign of �e indicated the overestimated performance of that

model. Additionally, using the parameters �e and Se, a

confidence bound is created by the Wilson score method

around value predicted from an error without continuity

correction. Then, using �1:64Se approximately leads to

95% confidence bound which is shown by 95%PEI. The

uncertainty analysis parameters are listed in table 2. In this

table, width of the uncertainty band is shown by WUB.

Based on the uncertainty analysis results, the ORELM

model has an overestimated performance, while the ELM

model has an underestimated performance. It should be

noted that the values of WUB for ORELM and ELM are

equal to -0.0669 and -0.0707, respectively. Furthermore,

the width of uncertainty band for the ORELM models is

narrower than the ELM model, with almost 5.5% narrower.

3.5 Partial derivative sensitivity analysis (PDSA)

In this section, the partial derivative sensitivity analysis

(PDSA) is performed for the suitable model (ORELM2) and

the input parameters are evaluated. Generally, the partial

derivative sensitivity analysis (PDSA) is one of the most

important methods for identifying the change pattern of input

parameters (Azimi et al [24]). It is worth noting that the pos-

itive partial derivative sensitivity analysis means that the

objective function (scour) is increasing, while the negative

sign means that the output value is decreasing. In this analysis,

the relative derivative of each input parameter is calculated

according to the objective function. In other words, the relative

derivative of f(x) is calculated for each input variable and it is

shown in figure 8. As discussed above, ORELM2 simulates

the scour values in terms of b/B, Fd, Dy/hst. For example, by

increasing values of the input parameters Fd, Dy/hst, the value

of PSDA decreases. Furthermore, for Fd, Dy/hst, the positive

values of PSDA are obtained, while most of the PSDA values

calculated for the input parameter b/B are positive.

Figure 7. Scatter plots for ORELM and ELM.

Table 1. Computed statistical indices for the ORELM and ELM

models.

Mode Model R VAF RMSE NSC

Train ORELM 0.963 92.776 0.498 0.922

ELM 0.911 91.106 0.538 0.900

Test ORELM 0.956 91.378 0.561 0.908

ELM 0.938 93.764 0.498 0.934

Table 2. Uncertainty analysis parameters for ORELM and ELM models.

Model Number of samples �e Se WUB 95% PEI

ORELM 216 1.131E-05 0.499 ±0.0669 -0.0669 to 0.0669

ELM 216 -1.130E-05 0.527 ±0.0707 -0.0707 to 0.0707
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4. Conclusion

Rivers have played a vital role in the development of

human civilization. Thus, due to the scouring threat, the

protection of their bed and banks are critically important

and there are several methods to do this. One of these

methods is the utilization of cross-vane structures which are

not only natural structures consistent with the surrounding

environment, but also are highly efficient in protecting the

river bed. In this paper, for the first time, the scour depth at

the downstream of cross-vane structures with the shapes of

J, I, U and W were simulated using a modern artificial

intelligence model entitled ‘‘outlier robust extreme learning

machine (ORELM)’’. At the beginning, the experimental

data were divided into two groups including training and

test. All the activation functions of the numerical model

were evaluated and sigmoid function was selected as the

most optimal function. After that, all the parameters

affecting the scour hole depth were detected and 11

ORELM models were developed using them. Through the

conduction of a sensitivity analysis, the suitable model and

the most effective input parameters were introduced. The

ORELM suitable model estimated the objective function

values with reasonable accuracy. For example, the values of

RMSE, SI and NSC in the test mode were approximated

0.561, 0.212 and 0.908, respectively. Moreover, the ratio of

the structure length to the channel width (b/B) and the ratio

of the difference between the flow depth at the downstream

and the upstream of the structure to the structure height

(Dy/hst) were identified as the most effective parameters.

The results of the ORELM model were compared with

ELM and it was concluded that the ORELM model is more

accurate. By conducting an uncertainty analysis, the per-

formance of the suitable model was determined and the

partial derivative sensitivity analysis exhibited that by

increasing the values of the input parameters Fd, Dy/hst, the

PSDA value decreases. It is worth mentioning that the

applied experimental values came from the precise and

reliable laboratory environment. Additionally, the current

study is not just to provide a practical solution but it can

facilitate future experimental and numerical studies. In

other words, companies and engineers are still seeking for

conducting more expensive and time consuming laboratory

and three-dimensional numerical simulations and the cur-

rent study can easily reduce such hefty expenditures.
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