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Abstract. With the proliferation of data and the appealing features of cloud computing, the data owners are

motivated to outsource their data to the public cloud. Privacy and security, especially for sensitive data, are still

a concern, as the data owners have no physical control over the outsourced data. To ensure confidentiality,

sensitive data is encrypted before outsourcing to the cloud, which obsoletes the data utilization using traditional

keyword-based search. To address this issue, a verifiable top-k searchable encryption for cloud data (VSED) is

proposed with provisions for dynamic update operations like addition and deletion of documents. Specifically,

an encrypted inverted index is constructed using a secret orthogonal vector and partial homomorphic encryption.

To support the ranked search, the widely used term frequency and inverse document frequency rule is used to

find the top-k documents. To verify the query results returned by the cloud server, this scheme provides a

verifiable search using keyed hashes. Security analysis demonstrates that the proposed scheme is semantically

secure, with correctness and privacy guarantees proved in the standard security simulation model. Simulations

performed on real-world dataset demonstrate that the proposed scheme is efficient and practical.
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1. Introduction

Cloud computing is an internet-based service model that

consists of group of remote servers integrated to provide

ubiquitous on demand service that can be provisioned

rapidly from a shared pool of configurable resources at

reduced cost [1]. Due to increase in need for computing

resources, individuals and businesses outsource their com-

puting and storage needs to the cloud [2]. The business

benefit of cloud storage is undeniable and enterprises

achieve effective functionality at a reduced price while

improving business agility. Also, the public cloud storage

option enables the Small and Medium Enterprises (SMEs)

to fully focus on their core business rather than IT man-

agement [3]. However, security and privacy are the major

barriers for adopting the cloud for both the large enterprises

and SMEs [4]. According to a survey [5], an overwhelming

majority of 91% of organizations are concerned about

public cloud security. This is because the data owner has no

physical control over the outsourced data.

The security of stored data is of concern, especially when

outsourced data is sensitive data like health records, critical

business data and credit card information to name a few [2].

The cloud server (CS) or cloud service provider (CSP) and

data owners (DOs) are not in the same trusted domain,

which may put the outsourced unencrypted data at risk.

CSPs may leak information regarding the outsourced data

to unauthorized entities or even be hacked or data could be

destroyed with malicious intents. Therefore, sensitive data

has to be encrypted by the DO prior to outsourcing to

combat unsolicited access and to preserve privacy. Addi-

tionally, to speed up retrieval, indices are sent to the CSP,

who can provide various functionalities on behalf of the

DO. The commonly used indices are index per document

(forward index) or index per keyword (inverted index).

Inverted index is a popular data structure [6] used to speed

up the search. However, the inverted index is inherently

sequential. The index has to be rebuilt in order to update

(addition/deletion) keywords and documents. Even if the

updates are handled using a separate data structure like a

delete array, the construction is complex and allows only

minimal updates [7]. Second, updates leak information

since the update information requires rebuilding inverted

index at the CSP-owned resources.

Most of the traditional searchable encryption schemes [8]

do not capture the relevance of the retrieved documents.

When applied on large data such as big data or collabora-

tive data, there are a few drawbacks. First, without fore-

knowledge of the encrypted data stored at the CSP, the

authorized data users (DUs) have to go through every

document to find the ones that match their interest. Second,

especially in the pay-per-view cost model, downloading all
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the documents that match the search query incurs unnec-

essary traffic and cost. Ranked retrieval conserves band-

width and computations, besides improving user

productivity, as only the most relevant documents are

retrieved. Hence, top-k is an essential information retrieval

technique that makes economic usage of resources like

bandwidth and computational resources. The working

principle of public cloud storage as a service therefore

relies in the exhibition of the CSPs’ competence in pro-

tecting the outsourced data by providing security mecha-

nisms. Outsourcing of data to the CSP raises new security

concerns. First, since the CSP and the DO are not in the

same trusted domain, the secrecy of the outsourced data is a

challenge. It is required that the CSP must not learn any

information from the stored data, or the way it is accessed

[9]. Second, the completeness of the search, i.e. the

retrieved result must include all the documents that match

the search query. The search results must be verifiable,

since a malicious CSP can return only fragments of the

search result in order to save computational resources.

Most of the existing literature do not provide practical

and fully functional searchable encryption construction. For

searchable encryption to be practical, the constructions

should have properties like privacy preserving, efficient

ranked search and verifiable search with provisions to

dynamically update the encrypted documents without index

reconstruction. As an effort to address these issues, verifi-

able top-k ranked searchable encryption over encrypted

cloud data (VSED) is proposed. The contributions are

summarized as follows:

1. Construction of a top-k searchable encryption

scheme based on inverted index and secret orthogonal

vector to retrieve documents based on their relevance.

2. The construction supports dynamic update on encrypted

index flexibly without reconstructing the entire index.

3. Verifiable search in order to verify the completeness of

the search result returned by the CS.

4. Security analysis to demonstrate that VSED is seman-

tically secure with provable trapdoor unlinkability,

correctness and privacy guarantees.

5. Experimental evaluations on real-world dataset is used to

show the efficiency of the proposed scheme.

1.1 Organization

The paper is organized as follows. Section 2 describes the

related works. Section 3 gives the problem formulation,

which includes the system model, system design and

notations. Section 4 presents the construction of the pro-

posed work VSED. The security model and the security

analysis are given in sections 5 and 6, respectively. The

performance analysis of VSED is described in section 7.

Finally, section 8 concludes the paper with suggestions for

future work.

2. Related works

Searchable encryption is a cryptographic primitive that has

gained considerable attention recently. A number of tradi-

tional searchable encryption techniques use symmetric key

setting with the focus on improvement of efficiency and

formalization of security definitions. Song et al [10] were
the first to put forward a practical solution for searchable

encryption with a linear search complexity. Goh [11] pro-

posed a secure per document index construction based on

bloom filter and pseudo-random. The search complexity is

proportional to the number of documents in the document

set and the construction with bloom filter results in false

positives. Chang and Mitzenmacher [12] presented a sim-

ilar construction with an index per document with linear

search time. Curtmola et al [13] constructed an inverted

index or per keyword index and pointed a link between the

index and the trapdoor. The search complexity realized is a

sub-linear search. Boneh and Waters [14] were the first to

present an asymmetric searchable encryption scheme. Their

construction has a drawback of low search efficiency and

large computation cost. The aforementioned constructions

support single-keyword and Boolean search without cap-

turing the relevance of the documents.

Multi-keyword top-k search: The common pattern used

by data users to search the outsourced data is to use mul-

tiple query keywords at a time. Cao et al [15] introduced
multi-keyword ranked search using coordinate matching

and vector space model. The search complexity is a linear

search and the scheme uses a deterministic trapdoor; thus, it

is prone to distinguishability attack. Since then, there are

numerous schemes and multi-keyword searchable encryp-

tion schemes have gained attention [16–18]. Sun et al [19]
realized a secure multi-keyword search using a searchable

index-tree based on vector space model and cosine simi-

larity measures along with the TF–IDF to rank relevant

documents. Jiang et al [20] present a multi-keyword ranked

search using an inverted index, and a special data structure

QSet to mask the correspondence between the keyword and

the document set that contains the keyword. TF–IDF values

are used to find the relevance scores.

Verifiable search: The search results returned by the CS

may not contain complete result or can contain errors. This

is possible due to malicious CS intending to save compu-

tational resource or due to software/hardware malfunction.

Therefore, a mechanism to verify the completeness of the

search result is desired. A number of verifiable search is

based on Merkle hash tree [21–26], but suffers from huge

storage overhead. Other schemes include the cryptographic

signature schemes [27, 28]. Wang et al [29] propose a

verifiable auditing scheme based on bloom filters. The

scheme suffers from computational and communication

overload.

Dynamic updates: In literature, very few schemes sup-

port addition or deletion of keywords in the document.
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Song et al [10] present a dynamic scheme where the doc-

ument is divided into fixed-size words and each word is

individually indexed. Updating is straightforward but with

varying trade-offs between security and efficiency. The

construction of Goh [11] using bloom filters updates the

document but suffers from false positives and linear search

time. Kamara et al [7] presented a construction with

inverted index but with complex implementation. Kamara

and Papamanthou [30] proposed an index based on key-

word red black tree for Boolean and single-keyword search.

Cash et al [31] proposed a dynamic searchable encryption

scheme using ‘‘T-Sets’’—a data structure for the keyword/

identity tuple. A separate database is used to add tuples, and

deleted tuples are stored in a revocation list. The con-

struction supports only single-keyword search. Naveed et al
[32] proposed a dynamic searchable encryption via a blind

storage that allows DOs to store dynamic collection of

documents with the CS. However, the scheme leaks infor-

mation on the updates. Moreover, updating the existing

document by addition or deletion of keywords is not sup-

ported. Xia et al [33] proposed an encryption scheme based

on keyword balanced binary tree and greedy depth-first

search. The cost of the search and the time complexity of

trapdoor are high.

3. Problem formulation

3.1 System model

The system model involves four entities, namely the data

owner or document owner (DO), CS or the CSP, secure co-

processor (SCP) and the data user (DU), as illustrated in

figure 1. The SCP [34] (like the IBM PCIe or the Freescale

C29x) is assumed to reside at the CSPs’ isolated execution

environment. It is assumed that the CS and the SCP do not

collude. The DO has a collection of document set

D ¼fd1; :::; dng to be outsourced to the CS. Using a secure

encryption algorithm, the DO generates the encrypted

document set C ¼ fC1; :::;Cng from the document set D.
To enable searching through the document set, an encryp-

ted searchable index per keyword (inverted index) is con-

structed from the document set D. Both the encrypted

document set C and the encrypted index ID are outsourced

to the CS. The DO computes the term frequency and

inverse document frequency T , and sends the encrypted

score index S to the SCP. To search for the documents

containing the keyword of interest, an authorised DU

acquires a trapdoor corresponding to the search keyword

from the DO. On receiving the trapdoor, the CSP executes

search over the encrypted index ID and retrieves all the

documents that match the search query. The CSP sends the

trapdoor and an optional k obtained from the DU to the SCP

to compute the top-k documents. The SCP verifies and

computes the scores for the query keyword using the

encrypted score index S, ranks according to its relevance to

the query and returns the top-k document identifiers along

with verifiable parameters to the CSP. The CSP returns the

top-k documents along with the verifiable parameter to the

DU.

3.2 Design goals

To enable dynamic, efficient and secure top-k ranked search
over encrypted cloud data, VSED’s construction aims at the

following design goals.

1. Top-k multi-keyword ranked search: The design of the

scheme must accept multiple input queries from the DU

Figure 1. Architecture of VSED.
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and return the top-k relevant results that match the search

query.

2. Dynamic index: The scheme should have provisions for

dynamic update, i.e. both addition and deletion of

documents, without reconstructing the index.

3. Search and update efficiency: The scheme should be

accomplished with sub-linear search and update time.

4. Verifiable search: The scheme should support the

verifiability of the completeness of the results returned

from the CS.

5. Privacy preserving: The construction should not leak any
information (access pattern, history, search pattern,

trace) to the CS beyond what is allowed.

4. Construction of VSED protocol (pV )

The construction of the VSED scheme aims to securely and

publicly perform computations with encrypted data or to

modify the encrypted data using special functions in such a

way that they are computed while preserving the privacy.

Such encryption mechanisms are called homomorphic

cryptosystems. Cryptosystems like RSA, Paillier and

ElGammal exhibit partial homomorphic properties. VSED

makes use of the Paillier cryptosystem’s homomorphic

addition property [35]. The preliminary set-up and related

algorithms required for construction of VSED are described

in this section. The construction of the VSED scheme con-

sists of the following algorithms.

• KeyGen: A probabilistic polynomial-time algorithm

that generates secret parameters for encryption and

index construction. The KeyGen algorithm generates

secret parameter for standard symmetric encryption

and homomorphic Paillier cryptosystem.

• Enc(pk, m, r): A probabilistic polynomial-time algo-

rithm that takes a secret parameter, message and a

random number as input to produce a cipher text.

• Dec(sk, c): A probabilistic polynomial-time algorithm

that takes a secret parameter and cipher text as input to

output the original plain text.

• BuildScoreIndexðD;W; pk;VÞ: This algorithm is exe-

cuted by the DO, which takes the data item w 2 W,

public key pk and secret vector set V as inputs, and

outputs a score index S.
• BuildIndexðD;W; pk;VÞ: This algorithm is executed

by the DO, which takes the keyword w 2 W, the public

key pk and secret vector set V as inputs, and outputs an

encrypted index ID.
• TrapDoorðwq; pk;VÞ: This algorithm takes a keyword

wi 2 W, public key pk and secret vector set V, and
generates the trapdoor Twq

to be used for searching a

keyword in the encrypted index.

• SearchðID; Twq
; kÞ: This algorithm takes an index ID, a

trapdoor Twq
and k, the number of top matching

documents, to retrieve and outputs the set of top-k file

identifiers denoted by F qk ¼ ffig8fi2wq
.

• topkðk; EF q; sk; Twq
;SÞ: This algorithm takes a value k,

encrypted binary index vector windexq (computed by

the search algorithm and derived from EF q), secret

parameter sk, encrypted score index S and a trapdoor

Twq
, generated by the DO, and outputs the top-

k document identifiers that match the query keyword.

• Updateðpk; ID;S; fu;VÞ: This algorithm takes an index

ID, trapdoor to update Ywq
; the public key pk, secret

vector set V and document or keyword to be updated as

input, and outputs an updated index and score index.

AddKeywordðpk; ID; Ywu
;S; fu;VÞ, for adding new key-

words, and DeleteKeywordðpk; ID; Ywu
;S; fu;VÞ, for

deleting keywords from the encrypted index, are the

two algorithms that constitute update.

4.1 Set-up

Let D ¼ d1; . . .; dn where D denotes the set of documents

and di denotes the i
th document in the set of documents. Let

C ¼ fC1; :::;Cng denote the set of encrypted documents

such that Ci ¼ EncðskSTD; diÞ. Any standard symmetric key

encryption algorithm proven to be a pseudo-random func-

tion like AES is assumed for encrypting the files or docu-

ments. The operation of encrypting the files is denoted as

EncðskSTD; djÞ, where skSTD denotes the secret key of such

encryption algorithm and dj denotes the document to be

encrypted. Let F ¼ f1; . . .; fn denote the file identifiers of

the encrypted documents and each fi is given by fi ¼ idðCiÞ.
Let W ¼ fw1; ::;wjWjg6¼ be the set of distinct keywords of

the document collection D.

4.2 Key generation

Key generation is a probabilistic polynomial-time algo-

rithm that generates the secret parameters used for

encryption and building index. The VSED algorithm uses

Paillier cryptosystem for generation of trapdoor and index.

Hence, its key generation set-up is assumed.

Let n ¼ pq for primes p and q; set k ¼ lcmðp� 1; q� 1Þ,
and choose g 2 Z�n2 such that gcdðLðgk mod n2Þ; nÞ ¼ 1,

where LðxÞ ¼ ðx� 1Þ=n. Then P ¼ R ¼ Zn;C ¼ Z�n and

K ¼ ðn; g; p; q; kÞ, where n; g; p; q and k are defined earlier.

Given security parameter e, the algorithm chooses two

distinct e=2�bit primes p and q, sets n ¼ pq and

k ¼ lcmðp� 1; q� 1), and chooses g 2 Z�n2 such that

gcdðLðgk mod n2Þ; nÞ ¼ 1. The tuple(n, g) is the public key
denoted by pk, and the tuple ðp; q; kÞ is a private key

denoted by sk.
The Principle of Orthogonality states that two vectors

X; Y 2 R are orthogonal or perpendicular if X:Y ¼ 0.

Moreover, X1; ::;Xp 2 Rn are mutually orthogonal if
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Xi:Xj ¼ 0 whenever i 6¼ j. A set of mutually orthogonal

vectors is called an orthogonal set. Mutually orthogonal

unit vectors v1; :::; vp 2 Rn are said to be orthonormal. Let V
be a set of mutually orthogonal vectors given by V ¼
v1; v2; . . .; vjWj where vi denotes the ith row vector and jWj
denotes the number of keywords in the keyword setW. The

row vectors in the set V exhibit mutual orthogonal prop-

erties such that fvi:vi ¼ 1 : vi ¼ vi; vi 2 Vg and fvi:vj ¼ 0 :

vi 6¼ vj; vi; vj 2 Vg.
Alternatively, v1; v2; . . .; vp is called an orthonormal set.

A square n� n matrix H with elements �1 that satisfies

H � HT ¼ nIn is called a Hadamard matrix of order n [36].

The Hadamard matrices exhibit good orthogonal properties.

The Hadamard matrix can be generated by choosing p
Hadamard arrays HA1;HA2; ::;HAp each of size, say, ei � ei
for 1� i� p where each ei is either 2; 4 or 8. Later, con-

struct e1e2. . .ep-sized matrix HAM by the tensor product of

these p matrices given as

V ¼ HM ¼ H1 � H2 � . . .� Hp: ð1Þ

4.3 Encryption

Given a message m 2 P and a public key pk ¼
ðn; gÞ;Encðpk;m; rÞ chooses a random r 2 Z�n such that

gcdðr; nÞ ¼ 1 and returns the cipher text given by

c ¼ gmrn mod n2: ð2Þ

4.4 Decryption

Given a ciphertext c 2 C and a private key sk ¼ ðp; q; kÞ,
decryption Dec(sk, c) returns the message

m ¼ ðLðck mod n2ÞÞ
Lðgk mod n2Þ mod n

: ð3Þ

4.5 BuildScoreIndex

The document score is computed based on term frequency

(tf) and inverse term frequency (idf). The product of tf and
idf is denoted by T .

Term frequency is the frequency of a keyword wi for the

document dj and is given by

tf ðwi; djÞ ¼ frequency of wi: ð4Þ

The inverse document frequency of a keyword wi for the

document collection D is given by

idf ðwi;DÞ ¼ log
jDj

jdj 2 D : wi 2 djj

� �
: ð5Þ

Inverse document frequency of a keyword wi over the

document collection D, denoted by idf ðwi;DÞ, is the log of

the ratio of the total number of documents in the document

collection, represented as jDj, to the number of documents

in the document collection containing the keyword wi,

represented as jdj 2 D : wi 2 djj. The term-inverse docu-

ment score of a keyword wi for the document dj is given by

T ðwi; djÞ ¼ tf ðwi; djÞidf ðwi;DÞ: ð6Þ

4.5a Algorithm description for S  BuildScore
IndexðD;W; pk;VÞ: The algorithm description to com-

pute the term frequency is as follows:

1. Initialize the document term frequency tf ðwi; djÞ and

inverted document frequency idf ðwi; djÞ for all keywords
and documents to be 0. Also, initialize all term-inverse

document score T ðwi; djÞ to 0.

2. For each document dj 2 D, increment the document term

frequency for the corresponding keyword wi 2 dj as

tf ðwi; djÞ ¼ tf ðwi; djÞ þ 1 .

3. For each keyword wi 2 W, compute the inverse docu-

ment term frequency as idf ðwi;DÞ ¼ log

ð jDj
jdj 2 D : wi2djj

Þ.

4. For each keyword wi 2 W and document dj 2 D,
calculate T ðwi; djÞ ¼ tf ðwi; djÞidf ðwi;DÞ.

5. Later, the encrypted per document score index denoted

by SðdjÞ is computed for all documents dj 2 D as

follows:

SðdjÞ ¼
Xjwi2djj

i¼1
viMiT ðwi; djÞ þ vrr

0 ð7Þ

where vi ¼ VðwiÞ, Mi ¼ Encðpk;wi; rwi
Þ, vr ¼ VðrÞ and

ðrwi
; r0Þ 2 Z�n such that gcdðr; nÞ ¼ 1.

The diagrammatic representation of the score index is

shown in figure 2.

4.6 BuildIndex

The index of VSED scheme denoted by ID is computed as

follows and diagrammatically shown in figure 3:

ID ¼
XjWj
i¼1
ðviMiSiÞ þ vrr

0: ð8Þ

4.6a Algorithm description for ID  BuildIndex
ðD;W; pk;VÞ: The step by step procedure to build

encrypted index is described as follows:

1. Calculate vi ¼ VðwiÞ the corresponding secret vector

assigned for the keyword wi.

2. Calculate Mi ¼ Encðpk;wi; rwi
Þ where pk is the public

key of the Paillier cryptosystem, wi is the respective

keyword and a random rwi
2 Z�n such that gcdðr; nÞ ¼ 1.
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3. Calculate Si ¼ Encðpk;LðwiÞÞ where

(a) pk is the public key of the Paillier cryptosystem,

(b) LðwiÞ ¼ windexikhwi
where

i. windexi is the binary vector index for the keyword

wi. The binary vector index denoted as windexi is a
data vector in which a value of 1 in a position

indicates the presence of a keyword in that docu-

ment. For example, consider a binary vector

windexi ¼ 1011 for a keyword wi in document

collection D ¼ d1; d2; d3; d4; then documents

d1; d3; d4 are said to contain the keyword wi:
ii. hwi

¼ Hðsk;windexiÞ is the keyed hash of windexi
for the keyword wi:

4. Calculate vr ¼ VðrÞ, a random vector, and r0 is a random
number added for randomness.

5. Repeat steps 1–4 for all keywords wi 2 W and cumu-

latively add them to obtain the index ID.

4.7 Trapdoor

The trapdoor generation of VSED can be represented as

Twq
¼ vqM

�1
wq
þ vrr

0 ð9Þ

4.7a Algorithm description for Twq
 TrapDoor

ðwq; pk;VÞ: The step by step procedure to generate trap-

door is given as follows:

1. Calculate vwq
¼ VðwqÞ, the corresponding vector for the

keyword to be queried wq.

2. Calculate M�1wq
¼ Encðpk;�wq; rqÞ where pk is the

public key of the Paillier cryptosystems, �wq is the

negation of the keyword to be queried, rq is a random

number chosen such that rq 2 Z�n and gcdðr; nÞ ¼ 1.

3. Calculate vr ¼ VðrÞ, the random vector, and r0 is a

random number added for randomness

4. Calculate the trapdoor Twq
for the keyword to be queried

wq as Twq
¼ vwq

M�1wq
þ vrr’.

4.8 Search

The search mechanism involves multiplying the received

trapdoor with the index, represented as

EF q
¼ IDTwq

: ð10Þ

4.8a Algorithm description for F qk  SearchðID; Twq
; kÞ:

The step by step description of the search mechanism is

given as follows:

1. Calculate EF q
¼ IDTwq

and find the respective document

file identifiers:

(a) If EF q
equals 0, then return null indicated by ?. This

happens when either the query keyword is not found

in the document set (i.e., jdj 2 D : wi 2 djj ¼ 0) or

when a invalid trapdoor is submitted.

Figure 3. Index.

Figure 2. Score index.
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(b) If EF q
6¼ 0 then send ðk; EF q

; Twq
Þ to the SCP

invoking the top-k algorithm. The SCP returns the

top-k document identifiers that match the query

keyword.

2. Later, the CSP returns the corresponding documents to

the user who had sent the trapdoor along with F qk ¼

F0qkkhF0qk where F 0qk is the set of top-k document

identifiers that match the query keyword and hF0qk
¼

Hðsk;F 0qkÞ is the keyed hash of those top-k document

identifiers that match the query keyword.

Hence, it can be observed that F qk can be retrieved

without revealing the keyword and hF0qk
can be used by

the user to verify whether the documents returned by the

CSP are correct. The correctness, verifiability and

security are discussed in the security analysis

subsection.

4.9 Top-k

The top-k ranking is computed by the SCP, ensuring that

neither the CSP nor the SCP learns anything about the

data involved other than the allowed information leakage

described in the security model. The SCP will have the

encrypted S score index and may have the knowledge of

the number of documents in the document set that match

the search query, but does not know to which keyword the

scores are associated. The CSP has the encrypted index

and the top-k documents only. CSP does not have the

knowledge of either the keywords being searched or the

information of all the documents that contain the query

keyword as only top-k documents are returned to it by

SCP.

4.9a Algorithm description for F qk  topkðk;
EF q; sk; Twq

;SÞ: The step by step process for computing

the top-k documents at the SCP is as follows:

1. SCP decrypts EF q
using the private key sk to obtain

windexikhwi
.

2. Calculate the hash for windexi as h
0

wi
¼ Hðsk;windexiÞ.

3. Verify whether the received hash hwi
and the computed

hash h
0

wi
are the same.

4. If there is a mismatch ðh0wi
6¼ hwi

Þ, SCP returns null

represented by ?. This prevents any modification or

fabrication of EF q
by the CSP.

5. If h
0
wi
¼ hwi

, then calculate the following:

(a) Obtain windexi from EF q
by decrypting it with sk.

(b) Calculate the score QðdxÞ for all x, if windexi½x� ¼ 1;
by computing QðdxÞ ¼ SðdxÞTwq

.

(c) Sort the scores ðsortðQ; kÞÞ; obtain the first k

document identifiers denoted by F0qk and given by

F 0qk ¼ sortðQ; kÞ.

6. Calculate the hash as hF0qk
¼ Hðsk;F 0qkÞ where hF0qk

is the hash of top-k document identifiers for veri-

fication.

7. Calculate F qk ¼ F
0

qkkhF0qk where F qk is the concatena-

tion of the set of top-k document identifiers and the

hash.

8. Send F qk to the calling search algorithm.

4.10 Update

The dynamic keyword update process involves two

algorithms, namely AddKeyword and DeleteKeyword.

4.10a Algorithm description for adding keyword
ðID;SÞ  AddKeywordðpk; ID; Ywu

;S; fu;VÞ: The step by

step procedure to add a keyword dynamically is as follows:

1. For adding a keyword that already belongs to the setW,

(i.e., wu 2 W) the old binary vector index has to be

removed and the new binary vector index has to be

added to the index:

(a) Calculate Ywu
¼ vuMuSu where wu is the keyword

whose binary vector index needs to be updated,

vu ¼ VðwuÞ, Mu ¼ Encðpk;wu; ruÞ and Su ¼ Encðpk;
LðwuÞÞ.

(b) Calculate Y
0
wu
¼ vuMuS

0
u where wu is the keyword

whose binary vector index needs to be updated,

vu ¼ VðwuÞ, Mu ¼ Encðpk;wu; ruÞ and S
0
u ¼

Encðpk;Lðw0uÞÞ is the newly generated binary vector

index in which the respective bit for the document is

set as given by windex
0
u½fu� ¼ 1 for a given keyword

wu.

2. For adding a new keyword or a keyword that does not

belong to the set W; (i.e., wu 62 W) the new binary

vector index has to be added to the index:

(a) Set Ywu
¼ 0 and calculate Y

0
wu
¼ vuMuS

0
u where wu is

the new keyword whose binary index vector needs to

be added, Mu ¼ Encðpk;wu; ruÞ, vu ¼ VðwuÞ and

S
0

u ¼ Encðpk;Lðw0uÞÞ is the newly generated binary

index vector in which the respective bit for the

document is set as given by windex
0
u½fu� ¼ 1 for a

given keyword wu.

3. The DO sends Ywu
; Y

0
wu

to the CSP and the CSP computes

ID ¼ ID � Ywu
þ Y

0
wu
, where ID is the index.

4. Compute S0ðdfuÞ  BuildScoreIndexðV; dfu ;wuÞ, the new
score index and send it to SCP.
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4.10b Algorithm description for deleting keyword
ðID;SÞ  DeleteKeywordðpk; ID; Ywu

;S; fu;VÞ: The step

by step procedure to delete a keyword dynamically is as

follows:

1. For deleting a keyword, the old binary index vector has

to be removed from the index:

(a) Calculate Ywu
¼ vuMuSu where wu is the keyword

whose binary index vector needs to be updated,

vu ¼ VðwuÞ, Mu ¼ Encðpk;wu; ruÞ and Su ¼ Encðpk;
LðwuÞÞ, and set Y

0
wu
¼ 0.

2. The DO sends fYwu
; Y

0
wu
g to the CSP and the CSP

computes ID ¼ ID � Ywu
þ Y

0
wu
, where ID is the index.

3. Compute S0ðdfuÞ  BuildScoreIndexðV; dfu ;wuÞ, the new
score index, and send the same to the SCP.

4.11 Protocol description (pV)
Let pV denote VSED protocol and the description of the

working of the protocol is given as follows:

1. Let P1 be the CSP, P2 be the DO and P3 be the SCP. P2

computes the collection of encrypted files C given by

C  EncðskSTD; d1Þ; . . .;EncðskSTD; dnÞ:

2. P2 invokes the BuildIndex algorithm to build the index

for all the keywords given by

ID  BuildIndexðD;W; pk;VÞ:

3. P2 invokes the BuildScoreIndex algorithm to build the

document scores for the keywords given by

S  BuildScoreIndexðD;W; pk;VÞ:

4. P2 sends the index, score index and the encrypted files to

P1 and document score index to P3 given by

P1  P2 : ðID; CÞ; P3  P2 : ðSÞ:

5. If an user wants to search for a keyword over the secure

cloud storage then P2 generates a trapdoor and sends it to

user, which then sends it to P1, or simply it can be

considered as P2 sending it to P1 given by

P1  P2 : Twq
 TrapDoorðwq; pk;VÞ:

6. P1 receives the trapdoor Twq
, invokes SearchðID; Twq

; kÞ
algorithm and computes EF q.

(a) P1 sends EF q to P3, which then executes the

algorithm topkðk; EF q; Twq
;SÞ and returns to P1 the

top-k document identifiers given by

P3  P1 : ðEF qÞ; P1  P3 : F qk

 topkðk; EF q; sk;Twq
;SÞ:

(b) P1 returns F qk, a set of file identifiers with the hash

returned by Search to P2, which is given by

P2  P1 : F qk  SearchðID; Twq
; kÞ:

(c) P1 receives the file identifiers F qk from P3 and

returns the top-k documents to P2.

7. For keyword addition, P2 generates Ywu
,fu,V, computes

AddKeywordðpk; ID; Ywu
;S; fu;VÞ and then sends

ðYwu
;Y

0

wu
Þ to P1 to update ID. Then it computes S0  

BuildScoreIndexðdfuÞ and sends to P3, which updates S.
8. For keyword deletion, P2 generates Ywu

,fu,V; computes

DeleteKeywordðpk; ID; Ywu
;S; fu;VÞ and then sends

ðYwu
;Y

0
wu
Þ to P1 to update ID. Then computes S0  

BuildScoreIndexðdfuÞ and sends to P3, which updates S.

5. Security analysis

The construction of the security model in VSED assumes

an adversarial entity denoted by A that controls the CSP

and can attack the execution of the protocol denoted by pV .
The parties under the control of the adversary are said to be

corrupted and follow the adversary’s instructions. A secure

protocol is said to withstand any adversarial attack,

assuming the adversary is computationally bounded.

Therefore, to formally claim and prove that a protocol is

secure, an accurate definition of secure protocol execution

is required.

5.1 Model

The problem of cloud storage is similar to a two-party

protocol problem where the two parties are CSP and DO. A

two-party problem is defined by specifying a random pro-

cess that maps pairs of inputs to pairs of outputs, one from

each party. Generally, such a process is referred to as a

functionality and denoted as f : f0; 1g� � f0; 1g� !
f0; 1g� � f0; 1g�, where f : f0; 1g� ! ðf1; f2Þ. For every

pair of inputs (x, y), the output is a vector of random

variables ðfP1
ðx; yÞ; fP2

ðx; yÞÞ where fðP1Þ and fðP2Þ are

received by entities P1 and P2, respectively. The same

process is also sometimes represented as ðx; yÞ  
ðfP1
ðx; yÞ; fP2

ðx; yÞÞ where the entity P1 is the CSP and P2

is the DO. Unlike the general two-party problem defined

earlier, in the secure cloud storage problem considered

here, only P2 receives the specified output from P1 such

that P1 learns nothing about the input. P2 does not output

anything back to P1. This is formalized as one-sided sim-

ulation by [36], and P1 is assumed to be corrupted.

The standard security simulation model formalizes

security in a general way as ideal world and real world. In

an ideal world, it is assumed that an external trusted [38]

party helps the parties to carry out their computation
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securely. In an ideal world, the parties involved in the two-

party computation just send their inputs to the trusted party,

which computes the desired function and securely passes

the correct prescribed output to each party, and each party

receives output. Hence, the adversary can force only the

corrupted parties to send their chosen inputs and cannot do

anything else. Two important security properties hold in the

ideal world.

1. Privacy: No party should learn anything more than its

prescribed outputs. In particular, the only information that

should be learned about other parties’ inputs is what can be

derived from the output itself securely. For example, while

searching for documents matching a keyword over a

secure cloud storage, the only information revealed toCSP

should be the document identifiers that match the search

query criteria without giving any information about

keywords contained in the documents or in the search

query. Privacy holds in the ideal world, because the only

message ever received by a party is its output and so it

cannot learn anything else from what it did not receive.

2. Correctness: Each party is guaranteed that the output

that it receives is correct. For example, while searching

for documents matching a keyword over a secure cloud

storage, the output should be the correct document

identifiers that match the desired keywords, which

should be guaranteed. In ideal world, correctness holds

since the trusted party cannot be corrupted and thus it

will always compute the function correctly.

The adversary considered in this security model is static

malicious polynomial time such that honest parties remain

honest throughout, while the corrupted parties remain cor-

rupted. The adversary may arbitrarily deviate from the

protocol specification. A detailed description of the exe-

cution in ideal and real model can be found in [38–40].

Let Realp;AðzÞ;iðx; y; kÞ denote the output of the honest party
and the adversary A (controlling Pi) after a real execution of

protocol p where P1 has input x; P2 has input y; A has an

auxiliary input z and the security parameter is k.
Let Idealf ;SðzÞ;iÞðx; y; kÞ be the analogous distribution in an

ideal execution with a trusted party who computes f for the

parties. Also, let ViewAp;AðzÞ;iÞðx; y; kÞ denote the view of the

adversary after a real protocol execution ofpV as before. Then,
the following definition describes the security model [26].

5.1a Computational indistinguishability: Let the security

parameter be denoted as k. A function lð:Þ is negligible if for
every polynomial p(.) there exists a value N such that for all

k[N, lðkÞ\1=pðkÞ holds. Let X ¼ fXða; kÞgk2N;a20;1� and
be the distribution ensembles. Then, it can be said thatX andY

are computationally indistinguishable, denoted X	c Y , if for
every non-uniform distinguisher D there exists a negligible

function lð:Þ such that for every a 2 f0; 1g�

jPr½DðXða; kÞÞ ¼ 1� � Pr½DðYða; kÞÞ ¼ 1�j\lðkÞ: ð11Þ

5.1b Privacy: Let f be a functionality where only P2

receives output. A protocol pV is said to securely compute f

with one-sided simulation if the following holds:

1. For every non-uniform probabilistic polynomial-time

adversary A controlling P2 in the real model, there exists

a non-uniform probabilistic expected polynomial-time

adversary S for the ideal model, such that

fRealp;AðzÞ;2ðx; y; kÞg	
c fIdealf ;SðzÞ;2ðx; y; kÞg ð12Þ

where jxj ¼ jyj, x; y; z 2 f0; 1g�; k 2 N.
2. For every non-uniform probabilistic polynomial-time

adversary A controlling P1

fViewApV;AðzÞ;1ðx; y; kÞg	
c fViewApV;AðzÞ;1ðx; y

0; kÞg ð13Þ

where jxj ¼ jy0j, x; y; z 2 f0; 1g�; k 2 N.

Since it is a one-sided simulation and P1 is the only party

assumed to be corrupted, proving the second part of Defi-

nition 2 is enough to guarantee privacy, meaning that P1

learns nothing whatsoever about P2’s input.

5.1c Search pattern ðspÞ: Let sp denote the frequency of

the keyword queries searched, which is found by checking

the equality between two queries. Formally, let

Q1;Q2; . . .;Qn be a set of n consecutive queries, and search

pattern sp is an n� n binary matrix where spði; jÞ ¼ 1 iff

Qi ¼ Qj.

5.1d Access pattern ðapÞ: Let ap denote the access pattern

and is a collection of tuples ai ¼ ðF i;QiÞ where F i is a set

of file identifiers returned for the query Qi.

5.1e History ðtnÞ: Let tn denote the history given by

tnðD; q) where q, given byQ1;Q2; . . .;Qn, and D, given by

d1; d2. . .; dn, are the set of search queries and corresponding

document identifiers returned, respectively.

5.1f Trace cðtnÞ: The trace is the allowed information

leaked to an adversary.

Let cðtnÞ ¼ fðf1; . . .; fnÞ; ðjC1j; . . .; jCnjÞ; tn; ID; Twq
; Ywu

;

Sg where Ci ¼ Encðpk; diÞ is the encryption of document

di; fi ¼ idðCiÞ is the file identifier of Ci, jCij is the size of

fi; tn is the history, ID is the index, TðwqÞ is the trapdoor(s),
YðwuÞ is the update trapdoor(s) and LðwiÞ is the hash map

data structure holding the per document index.

A secure protocol should guarantee that Definition 2

holds and no more information than the trace is leaked to an

adversary.

5.2 Analysis

Theorems 7–9 prove independently the correctness of the

protocol, and subsequently the privacy and correctness

are proved in Theorem 10 with respect to the security

model.
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The scheme is said to return top-k documents correctly

for a given encrypted binary data vector EF q
, trapdoor Twq

for a keyword wq 2 W and score index S such that

Pr½F qk  topkðk; sk;EF q
; Twq

;SÞ : F qk ¼ fi
i¼1;::k
dj2D:wq2dj � ¼ 1:

ð14Þ

The top-k algorithm described in section 4.9 returns the top-k
document denoted by F qk. The search algorithm inputs the

binary vector index or binary vector such that the binary

vector for an query keyword wq contains windexq½dj� ¼ 1 iff

wq 2 dj, where j ¼ 1; . . .; jDj, while the top-k returns

F qk ¼ fi
i¼1;::k
dj2D:wq2dj , the top-k document file identifiers fi such

that dj 2 D : wq 2 dj and the value of i ¼ 1; . . .; k. The

encrypted binary vector whose bits are set satisfies the con-

dition dj 2 D : wq 2 dj and its retrieval is given by

EF q
Twq
¼ Sq ¼ Encðpk;LðwqÞÞ ¼ Encðpk;windexqkhwq

Þ:
ð15Þ

The vector windexq contains the binary data vector as

described in section 4.6, such that windexq½x� ¼ 1 if and

only if dj 2 D : wq 2 dj. Therefore, 8x; windexq½x� ¼ 1,

then the algorithm described in section 4.9 computes

QðdxÞ ¼ SðdxÞTwq
where QðdxÞ is the document score, and

from section 4.5 it can be written as

SðdxÞ ¼
Xjwi2djj

i¼1
ðviMiT ðwi; djÞÞ þ vrr

0: ð16Þ

From section 4.7, Twq
¼ vwq

M�1wq
þ vrr

0 where M�1wq
¼ Enc

ðpk;�wq; rqÞ. Therefore, on substituting for Twq
, S, applying

the principle of orthogonality and expanding:

QðdxÞ ¼SðdxÞTwq

¼
Xjwi2dxj

i¼1
ðviMiT ðwi; dxÞÞ þ vrr

0Þðvwq
M�1wq

þ vrr
0

 !

¼ðviMiT ðwi; dxÞÞðvwq
M�1wq

þ vrr
0 Þ þ 0

¼vqvqMwq
M�1wq
T ðwq; dxÞ

¼gwqg�wqrnqðrnqÞ
�1T ðwq; dxÞ

¼T ðwq; dxÞ:
ð17Þ

Hence, the score of the document dx can be retrieved cor-

rectly. Similarly, for all other documents, 8x,
windexq½x� ¼ 1, the top-k algorithm computes the score,

sorts the score and returns the top-k scored document to the

CSP. Hence, it can be said that the algorithm correctly

returns the top-k documents, formally given by

Pr½F qk topkðk; sk;EF q
; Twq

;SÞ : F qk ¼ fi
i¼1;::k
dj2D:wq2dj � ¼ 1:

ð18Þ

The scheme is said to provide correct verifiable search for a

given trapdoor Twq
for a keyword wq 2 W:

Pr½F qk Searchðk; ID; Twq
Þ : F qk ¼ ?wq 62Worfiwq2W� ¼ 1:

ð19Þ

The search algorithm operates under two cases: wq 2 W
and wq 62 W.

5.2a Case wq 62 W: The search algorithm can be written

as EF q
¼ IDTwq

where wq is the keyword searched with the

trapdoor Twq
while EF q

is the resultant encrypted binary

vector, windexwq
½dj� ¼ 1 : dj 2 D : wq 2 dj. The index and

the trapdoor can be written as

ID ¼
XjWj
i¼1
ðviMiSiÞ þ vrr

0; Twq
¼ vqM

�1
wq
þ vrr

0 ð20Þ

where

Mwq
¼Encðpk;wq; rqÞ; M�1wq

¼ Encðpk;�wq; rqÞ;
Sq ¼Encðpk;windexqkhwq

Þ:

Substituting for ID, Twq
and expanding, the equation can be

written as

EF q
¼IDTwq

¼
XjWj
i¼1
ðviMiSiÞ þ vrr

0ÞðvqM�1wq
þ vrr

0

 !

¼0
¼?:

Since vi:vq ¼ 1 iff vi ¼ vq, by the principle of orthogonal-

ity, all vectors vi 2 V are mutually orthogonal. Therefore,

when a trapdoor Twq
is generated for a keyword wq such

that wq 62 W, then search algorithm outputs correctly null

represented by ?.

5.2b Case wq 2 W: Similar to the previous case, the

search algorithm for wq 2 W is given as follows:

EF q
¼IDTwq

¼
XjWj
i¼1
ðviMiSiÞ þ vrr

0ÞðvqM�1wq
þ vrr

0

 !

¼ðv1M1S1 þ 
 
 
 þ vjWjMjWjSjWjÞðvqM�1wq
þ vrr

0Þ
¼ðvqMqSqÞðvqM�1wq

þ vrr
0Þ

¼ðvqvqMqM
�1
wq
SqÞ þ ðvqvrMqM

�1
wq
Sqr
0Þ

¼ðvqvqMqM
�1
wq
SqÞ

¼gwqg�wqrqr
�1
q Sq

¼Sq
¼Encðpk;windexqkhwq

Þ:
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Thus, the encrypted binary vectorEF q
is retrieved correctly for

the keywordwq searchedwhenwq 2 W. The search algorithm

then sends EF q
to the SCP for retrieval of the top-k document

identifiers. From Theorem 7, it was proved that given EF q
, the

top-k algorithm returns the top-k documents correctly. Also,

the hash of the binary vector for every keyword hwq
¼

Hðsk;windexqÞ being concatenated with the binary vector

itself, theCSPcannot forge Sq sent to the SCP.Moreover, from

the top-k algorithm it can be seen that F qk ¼ F
0

qkjjhF qk
, and

the set of top-k document identifiers also contains the hash of

the top-k document identifiers sent to the user. Thus, Sq
computed by CSP andF qk computed by the SCP and returned

to the user byCSPare verifiable. Therefore, it is proved that the

VSED’s search algorithm is said to provide correct verifiable

search for a given trapdoor Twq
for a keyword given by

Pr½F qk  Searchðk; ID; Twq
Þ : F qk ¼ ?wq 62W or fiwq2W� ¼ 1:

ð21Þ

The scheme is said to provide correct dynamic index update

for a given update trapdoor Ywq
.

The index update uses an update trapdoor to make

dynamic updates. The index and the score index are

updated during addition of new keyword to a document or

deletion of a keyword from a document. For both cases,

update trapdoor is generated. The process of adding a

keyword to the encrypted index uses simple addition and

deletion of vectors represented as ID ¼ ID � Ywu
þ Y

0
wu
,

where the old sub-index is denoted by Ywu
¼ vuMuSu and

the new sub-index that needs to be updated in the index is

denoted by Y
0
wu
¼ vuMuS

0
u. Therefore, it can be written as

ID ¼ID � Ywu
þ Y

0

wu

¼
XjWj
i¼1
ðviMiSiÞ þ vrr

 !
� vuMuSu þ vuMuS

0

u

¼ðv1M1S1 þ 
 
 
 þ vjWjMjWjSjWjÞ � Ywu
þ Y

0

wu

¼ðv1M1S1 þ 
 
 
 þ vuMuS
0

u þ 
 
 
 þ vjWjMjWjSjWjÞ:

From these equations, it can be seen that the new sub-index

vector is updated in the index ID correctly. Similar rea-

soning can also be applied to the case when a keyword is to

be deleted. Hence, it can be said that the scheme is said to

provide correct dynamic index update for a given update

trapdoor Ywq
.

The Paillier encryption function is a homomorphic and

semantically secure cryptosystem and its security analysis

can be found in [35].

Assume that the Paillier cryptosystem is semantically

secure and then the protocol pV computes securely in the

presence of non-colluding static malicious adversaries in

accordance with Definition 2.

Definition 2 states that a protocol securely computes in

the presence of non-colluding static malicious adversaries if

the view of the adversary when given y and view of the

adversary when given y0 are computationally indistinguish-

able. The definition can thus be written as

fViewApV;AðzÞ;1ðx; y; kÞg	
c fViewApV ;AðzÞ;1ðx; y

0; kÞg ð22Þ

where |xj ¼ jyj ¼ jy0 | and x; y; z�f0; 1g�; k 2 N.

5.2c Game: Assume the existence of an encryption oracle

as defined by [41]. Assume a challenger who generates a key

pair (pk, sk) in accordance with and based on the Paillier

cryptosystem key set-up instructions. The challenger pub-

lishes the key pk but keeps sk private. Adversary A is given

access to an encryption oracle (encryption service), namely

E. The oracle can perform a polynomial bounded number of

encryptions or other operations. A then chooses two plain-

texts (or keywords) m0 ¼ y and m1 ¼ y0 and submits to the

challenger. The challenger selects a bit a 2 0; 1 uniformly at

random, encrypts ma as C ¼ Encðpk;maÞ and sends C to A.
The adversary may then perform any number of additional

operations or encryptions using the encryption oracle.A then

outputs its guess for the value of a. From Definition 1, for

computational indistinguishability

jPr½DðXða; kÞÞ ¼ 1� � Pr½DðYða; kÞÞ ¼ 1�j\lðkÞ: ð23Þ

From [44], it can be said that Paillier encryption mechanism

is semantically secure. Therefore, the advantage of A in

playing Game is negligible or utmost lðkÞ, which means A
can distinguish between Enc(pk, y) and Encðpk; y0 Þ though
A knows the plaintext y and y0 with only negligible prob-

ability lðkÞ. Hence, message encrypted with Enc(., .) is

computationally indistinguishable. The parameters defined

such as trapdoor Twq
, search pattern sp, access pattern ap,

history tn, trace cðtnÞ including sub-index L and document

score index S are encrypted using Enc(., .), making them

computationally indistinguishable too.

Generally, in a real world, the parties run some protocol

among themselves without the help of the trusted party,

unlike the ideal world. The real world protocol executed by

the parties without the trusted party is said to be secure if no

adversary can do more harm in a real world protocol

execution than in an execution that takes place in the ideal

world. In an ideal/real simulation paradigm for any

adversary carrying out a successful attack in the real world,

there exists an adversary that successfully carries out the

same attack in the ideal world. However, this is contradic-

tory since successful adversarial attacks cannot be carried

out in the ideal world. Therefore, it is concluded that all

adversarial attacks on protocol execution in the real world

must also fail. The security of the real world protocol or

real protocol is established by comparing the output of a

real protocol execution to the output of an ideal compu-

tation. A real protocol execution is said to emulate ideal

protocol execution if the input/output distributions of the
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adversary and the participating parties in the real and ideal

executions are essentially the same.

Hence, the parameters that constitute the view of the

adversary in Definition 2 are computationally indistin-

guishable as given here:

fViewApV;AðzÞ;1ðx; y; kÞg	
c fViewApV ;AðzÞ;1ðx; y

0; kÞg: ð24Þ

Also, the malicious adversaries are assumed to be non-

colluding since P1 and P3 compute the top-k documents

among themselves. P3 is by design embedded with the

private key sk to decrypt the encrypted binary vector

windexx. P3 leaks the tuple (document, score) but not the

respective keyword as the keyword is encrypted within the

trapdoor, which is computationally indistinguishable.

Moreover, it has to be noted that P3 does not have in its

possession the encrypted documents. Thus, P1 knows the

set of documents or top-k documents returned for a query

like any other mechanisms leaking access pattern and does

not learn anything more than that.

Hence, as long as the views of A for y and y’ are

computationally indistinguishable, the protocol pV is said to

securely compute in the presence of non-colluding mali-

cious adversaries. This guarantees privacy and correctness

of the protocol as per Definition 2.

6. Performance analysis

VSED is implemented usng Java in a Windows server with

Intel Xeon Processor (2.30 GHz) using the real-world

Enron [42] e-mail dataset. The performance of VSED is

compared to that of multi-keyword ranked searchable

encryption (MRSE) proposed by Cao et al [43]. VSED is

evaluated for the efficiency of index construction, trapdoor

generation, search and update of index. The efficiency

comparison is given in table 1 and feature comparison is

given in table 2.

6.1 Index construction

The index construction, a one-time operation performed by

the DO, is described in sections 4.5 and 4.6. The time cost

for encrypting the binary vector LðwiÞ and the keyword Mi

is dependent on the size of the dictionary jWj. The time

cost for building the index ID is equal to the number of

documents jDj in the document set and the number of

keywords in the dictionary jWj. In MRSE, the major

computation of the index involves the splitting process and

multiplication between two ðnþ 2Þ � ðnþ 2Þ matrix and a

ðnþ 2Þ dimension vector where n ¼ jWj, the number of

keywords in the document set. The size of the sub-index is

linear to the size of the data vector. Therefore, the time

complexity of MRSE is OðjDjjWj2Þ and storage complex-

ity is OðjDjjWjÞ. The time complexity of VSED is

OðjDjjWjÞ and the storage complexity is OðjDj þ jWjÞ
(jDjÞ towards score index and jWj for the index). Figure 4

shows the time cost for building the index ID by varying the

documents and size of the dictionary jWj ¼ 4000. The time

cost is linear with the size of the document set jDj. Figure 5

shows the dependence of the index ID on the dictionary.

The number of keywords in the dictionary has compara-

tively less influence than the number of documents in the

document set.

Table 1. Comparison of efficiency with other schemes.

Schemes Index Storage Trapdoor Search Update

Cao et al [43] OðjDjjWj2Þ OðjDjjWjÞ OðjWj2Þ OðjDjjWjÞ NA

Xia et al [33] OðjDjjWj2Þ OðjDjjWjÞ OðjWj2Þ OðhjWj log jNjÞ OðjWj2 log jDjÞ
VSED OðjDjjWjÞ OðjDj þ jWjÞ O(1) OðF qk ð1þ logF qkÞ OðjDjjWjÞ

jDj: # of documents, jWj: # of keywords, h: no. of leaf nodes that contain one or more keywords in the query, F qk: top-k file identifiers.

Table 2. Features comparison.

Schemes Privacy Multi-keyword Top-k Verifiable Dynamic

Kamara and Papamanthou [30] Yes No No No Yes

Cao et al [43] Yes Yes Yes No No

Sun et al [44] No Yes No Yes No

Wang et al [45] Yes Yes No No No

Ding et al [46] Yes Yes Yes No No

Jiang et al [47] Yes Yes Yes Yes No

VSED Yes Yes Yes Yes Yes
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6.2 Trapdoor generation

The trapdoor Twq
for VSED is generated by the DO using

the keyword of interest or the query keyword wq. The

computation involves a multiplication operation of the

secret vector with M�1wq
, where M�1wq

¼ Encðpk;�wq; rqÞ,
and addition with a random secret vector, which is a very

trivial operation. Figure 6 shows the time cost for trapdoor

for jDj ¼ 1000 and Q ¼ 10. The time cost for generation of

trapdoors does not depend on the document set jDj or on
the keyword set jWj: However, in MRSE, the size of the

dictionary influences the time cost for trapdoor as shown in

figure 6. The number of query keywords wq influences the

time cost of the trapdoor. Figure 7 shows time cost of

building the trapdoor with jDj ¼ 1000 and jWj ¼ 4000 by

varying the query keyword. The number of query keywords

wq is varied from 5 to 25 keywords. The trapdoor compu-

tation time for VSED is significantly less when compared

with MRSE. Similar to index construction, MRSE incurs a

splitting vector and two matrix multiplications. The time

cost for trapdoor is O(1) for VSED and OðjWj2Þ for MRSE.

6.3 Search efficiency

The search operation is performed by the CS. The com-

putation is a multiplication of the index ID that is with the

CSP with the trapdoor Twq
. The computation carried by the

CSP is the product of the index ID and the trapdoor Tw. For
top-k retrieval, at the SCP, the time cost for search includes

the time to decrypt EF q
, the file identifiers returned from the

CSP, and ranking the retrieved document identifiers from

the binary vector. The time complexity of search operation

in VSED is constant time, i.e. O(1) without top-k and

OðF qkð1þ logF qkÞÞ with top-k. The complexity of MRSE

is OðjDjjWjÞ, as similarity scores for all the documents are

computed. It can be inferred that for all practical cases,

F qk � jDj and F qk � jWj. The time cost for search by

varying the document and varying the query for top-k
search is shown, respectively, in figures 8 and 9. In

Figure 7. Trapdoor time vs # query keywords.

Figure 4. BuildIndex time vs #documents.

Figure 5. BuildIndex time vs #keywords.

Figure 6. Trapdoor time vs #keywords.

Figure 8. Search time vs #documents.
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figure 8, it can be seen that the number of documents have

less influence on search as the operation EF q
¼ IDTwq

is a

simple multiplication operation. However, the time for

search also includes the time for scoring and sorting the

documents identifiers returned by the CSP at the SCP.

Figure 9 shows the time cost by keeping the documents

constant jDj ¼ 1000; dictionary jWj ¼ 4000 constant and

varying the query keywords. The number of query key-

words has less influence on VSED and has no influence in

MRSE. In MRSE, the search algorithm consists of finding

the similarity scores ranking for all the documents. Thus the

query time is dependent on the number of documents and

the number of keywords has less influence. In VSED, if the

user wishes for top-k, the k value along with the file iden-

tifier is sent to the SCP to compute the ranking. Therefore,

VSED cannot be compromised by timing-based side

channel attacks that try to differentiate queries based on

query time.

6.4 Update efficiency

In order to update the document, the DO modifies the

binary vector of the keyword that requires update. The

trapdoor for update is sent to the CS, which is similar to the

trapdoor function. The CS updates the index by removing

the old binary index vector and adds the new binary vector;

therefore, the time complexity is OðjDjjWjÞ. Figure 10

shows the time cost of update with fixed number of key-

words in the dictionary jWj ¼ 4000 for query jQj ¼ 10 and

varying the documents.

7. Conclusion

In this paper we have presented a secure and verifiable top-

k ranked search over encrypted cloud data with support for

dynamic addition and deletion of documents. The proposed

scheme uses an inverted index and a secret orthogonal

vector to achieve better search and update efficiency. The

security analysis demonstrates that VSED is semantically

secure with completeness and correctness guarantees. The

experimental evaluation indicates that the proposed the

construction is efficient in terms of time and storage com-

plexity. In the future, we will modify the proposed

scheme to work efficiently and securely even without the

presence of an SCP.
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