
An approach of refining RC4 with performance analysis on new
variants

SUMAN DAS*, RANJAN GHOSH and RAJAT KUMAR PAL

Department of Computer Science and Engineering, University of Calcutta, Kolkata, India

e-mail: aami.suman@gmail.com; rghosh47@yahoo.co.in; pal.rajatk@gmail.com

MS received 31 January 2018; revised 19 December 2018; accepted 16 August 2019; published online 22 October 2019

Abstract. Many years of research on the RC4 stream cipher proves it to be strong enough, but there are claims

that its swap function is responsible for essential biases in the output. There are suggestions to discard some

initial bytes from the key-stream, to get rid of this, before the actual encryption starts, though no optimum value

has been defined. In this paper, by analysing different variants of RC4, the authors have attempted to find out

whether this cipher becomes more secure by discarding initial bytes and, if so, what is its optimum limit. Also,

multiple S-boxes generated by different logics and a unique key-mixing procedure have been implemented,

which made k RC4 more robust.

Keywords. Refined RC4; modified KSA; multiple S-boxes; key-mixing; dynamic S-box.

1. Introduction

The RC4 stream cipher has a simple but robust structure,

which, after going through significant analysis by research-

ers, proves to be robust enough on different platforms. The

core of this cipher is only one internal state table of size

N (generally 256), which eventually acts as an S-box to

perform the main jumbling of bytes. There are two compo-

nents in RC4: the KSA, i.e. the Key-Scheduling Algorithm,

and the PRGA, i.e. the Pseudo-Random Generation Algo-

rithm. The first one is usually employed for S-box initiali-

sation and the second one generates the actual key-stream. In

both components, the swap function plays an important role

in exchanging the positions of two bytes. Researchers argued

that the swap function introduces initialisation weakness in

the S-box, as well as strong biases in the key-stream.

In this paper, the authors have first attempted to find out the

optimal number of bytes that should be discarded to remove

the biases from RC4. To study whether the security of RC4

really increases if more and more initial bytes are discarded

from the key-stream, here N (256), 2N (512), 4N (1024) and

lastly 8N (2048) initial bytes are discarded and then the

outputs are analysed along with the original algorithm [1],

following the guidelines of NIST (National Institute of

Standards and Technology), USA, in their Statistical Test

Suite, coded by the authors. It has been found that there is a

certain optimal level of discarding the output bytes—it is not

that discarding as many bytes as possible helps continuously

in increasing the security.

Also, different logics have been introduced to modify the

PRGA to handle at least two S-boxes to generate a more

complicated key-stream, which has been analysed alongwith

themodel proposed byPaul and Preneel [2]. The authors have

also introduced a key-expansion logic,which gives a stronger

initialisation to the S-box and calculates the initial value of

j in the PRGA from the key values, not as 0, as given in the

original algorithm [1]—thus giving a more dynamic value to

j. RC4 is described as follows:

2. Existing articles and motivation

Maitra and Paul [1] revealed the non-uniformity in KSA

and presented a three-layer architecture in a scrambling

phase to remove the weaknesses of the KSA and the PRGA.*For correspondence

1

Sådhanå (2019) 44:223 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-019-1209-7Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-019-1209-7&domain=pdf
https://doi.org/10.1007/s12046-019-1209-7

Their modified algorithm, named as RC4?, resolves most

of the existing weaknesses of RC4. Paul and Preneel [2]

described a new statistical bias in the distribution of the first

two output bytes of RC4 and suggested some more random

variables in the PRGA to reduce correlation between states,

forming a new variant, RC4A. They proposed dropping

2N initial bytes. Rivest and Schuldt [3] used extensive

simulations to search biases in RC4 and suggested that

about 281 output bytes are required to distinguish a new

variant. They named the improved variant as ‘Spritz’.

Mironov [4] identified a weakness in RC4, stemming from

an imperfect shuffling algorithm used in the KSA and the

PRGA. He argued that discarding the initial 12N (or at least

3N) bytes from the output stream eliminates the possibility

of strong attacks. Klein [5] argued that even after many

steps of the PRGA, it is possible to exploit the weakness of

the KSA. They also analysed RC4A and found that it also

has weaknesses, similar to that of RC4—a new attack and a

correlation between the output and the internal state of RC4

have been presented.

Roos [6] mentioned some limitations in the KSA by

identifying several classes of weak keys for RC4 with some

important technical results. He has defined strong correla-

tions between the secret key bytes and the final key-stream

generated. Akgün et al [7] showed that the KSA leaks

information about the secret key if the initial state table is

known. A new bias in the KSA has been detected by them,

and they proposed the framework of a new algorithm to

retrieve the RC4 key in a faster way. Mantin and Shamir [8]

noted down the major non-uniformity in the output bytes at

the second round of RC4, whose probability is twice the

expected value. They pointed out that a cipher-text-only

attack can exploit the weakness in broadcast applications.

SenGupta et al [9] studied the RC4 designing problem of

throughput. An architecture to generate two key-stream

bytes per clock using the idea of loop unrolling and

pipelining has been implemented. Nawaz et al [10] intro-

duced a new 32-bit RC4-like faster key-stream generator

with a huge internal state and offered higher resistance

against state recovery attacks. Tomašević and Bojanić [11]

proposed a new technique to improve cryptanalytic attack

on RC4 based on a tree representation of RC4. The strategy

has been used to favour more promising values that should

be assigned to unknown entries in the RC4 table. Grosul

and Wallach [12] observed that by increasing key length,

the strength of the RC4 key did not grow linearly and

advised discarding the first 256 bytes of the key-stream.

They showed that for each 2048-bit key, a family of related

keys generates similar key-streams.

Al Fardan et al [13] recommended that RC4 should be

avoided in TLS (Transport Layer Security) and WPA (Wi-

Fi Protected Access). They have shown how plaintext

recovery for RC4 is possible from arbitrary positions in the

plaintext. Zoltak [14] reported that among 20 RC4-like

algorithms, only VMPC-R produces strong pseudo-random

output. They concentrated mainly on the PRGA, keeping

the KSA same for all. They found statistical weaknesses in

almost all of them. Fluhrer and McGrew [15] proved that

the joint distribution of two successive bytes differs sig-

nificantly from the uniform distribution. They computed the

joint probability of two consecutive output bytes, which

requires much less key-stream bytes. Sepehrdad et al [16]

presented a tool that may be used as an application of

automated discovery of weaknesses in ciphers—this may

suggest a new kind of tool for cryptanalysts. They pre-

sented several weaknesses in RC4 by this technique.

Church [17] gave a complete list of irreducible polyno-

mials for prime moduli (2, 3, 5, 7 and 11) of each degree.

The determination of the exponents provided very satis-

factory control of the irreducibility of the polynomials.

Daemen and Rijmen [18] defined a process of creating S-

boxes by a mathematical process in GF(28) (Galois Field).

The process of calculating the multiplicative inverse of a

byte with an irreducible polynomial as modulus has been

explained. The publication SP 800-90A of NIST [19]

contains specifications for cryptographically secured

PRNGs (Pseudo-Random Number Generators), providing

some methods based on hash functions, block cipher

algorithms or number theoretic problems.

Figure 1. Block diagram of the key-mixing procedure to

initialise the RC4 S-box (represents addition mod 256).

223 Page 2 of 17 Sådhanå (2019) 44:223

3. Proposed modifications to RC4

Roos [6] observed a strong correlation in RC4 between the

S-box and the key. He pointed out the swap function of

KSA as responsible for this while initialising the S-box.

The line j = j ? S[i] ? K[i], preceding the swap function,

calculates the indices i and j, where i is deterministic and

j is pseudo-random. He argued that by this way, a particular

element may change its position once or more, or may not

relocate at all,—which becomes a major weakness in the

cipher. According to his analysis, there is a high probability

of about 37% that an element is swapped not even once. To

get rid of this weakness, he proposed to discard at least

N number of initial bytes from the key-stream.

Mironov [4] also identified the same kind of weaknesses

in RC4 key-stream due to improper swap function, as he

mentioned, as the prime cause of bias. He observed that the

bias appears up to the first 2N or 3N bytes. Using an

abstract model, he calculated a maximum number of

12N initial bytes to be dumped, to get a safe key-stream.

In this paper, an attempt has been made to identify the

optimum number of bytes to be discarded from RC4 key-

stream before starting the actual encryption. Undoubtedly,

dumping more and more bytes from the output stream, as a

result, does not keep on increasing the security. Here, a

total of five key-streams have been analysed, generated by

discarding 0, N, 2N, 4N and 8N (N = 256) bytes, in sepa-

ration; the first one is the original cipher, and others are

identified as RC4_N, RC4_2N, RC4_4N and RC4_8N,

respectively.

Moreover, a new method of initialising the RC4 S-box

has been proposed through modular arithmetic. The 256

cells of the S-box have been filled up by the multiplicative

inverses of the 256 bytes (0–255), where an irreducible

polynomial [16, 17, 20] in GF(28) has been used as the

modulus [21, 22]. By this way, the S-box can be initialised

Table 1. Comparison of (a) POP status and (b) UD status generated by 15 NIST tests for discarded bytes.

Test

; RC4 RC4_N RC4_2N RC4_4N RC4_8N

(a) POP Status for NIST tests

1 0.988000 0.988000 0.996000 1 0.990000 0.992000

2 0.992000 1 0.984000 0.988000 0.988000 0.986000

3 0.992000 0.992000 0.996000 .33 0.996000 .33 0.996000 .33

4 0.982000 0.982000 0.982000 0.988000 .5 0.988000 .5

5 0.984000 0.980000 0.980000 0.982000 0.986000 1

6 0.980000 0.994000 0.996000 .5 0.982000 0.996000,5

7 0.990000 0.992000 0.990000 0.996000 1 0.995000

8 0.992000 .5 0.986000 0.990000 0.992000 .5 0.988000

9 0.982000 0.996000 1 0.992000 0.992000 0.990000

10 0.992000 0.982000 0.996000 1 0.988000 0.986000

11 0.982000 0.994000 1 0.990000 0.991000 0.990000

12 0.992000 .5 0.992000 .5 0.990000 0.990000 0.988000

13 0.995000 0.988000 0.980000 0.998000 1 0.995000

14 0.983500 0.986000 0.987500 .5 0.987500 .5 0.986000

15 0.985889 0.988000 1 0.987000 0.987667 0.986111

Total: 2 3.5 3.33 3.85 2.33
(b) Uniformity Distribution for NIST tests

1 4.154218–01 9.626880–011 9.540148–01 8.831714–01 7.981391–01

2 4.904834–011 4.446914–01 9.891987–02 1.087909–01 6.952004–011

3 8.920363–01 4.635119–01 8.891176–01 5.181061–01 3.537331–01

4 5.790211–01 6.454484–01 9.288566–011 2.343734–01 5.831447–01

5 2.492839–01 8.343083–01 8.708559–011 2.596162–01 4.788391–02

6 4.170881–02 1.372823–011 1.146836–03 1.509358–03 4.901567–05

7 8.272794–011 8.055687–01 4.635119–01 4.749856–01 4.446914–01

8 2.224804–01 6.662452–01 7.359083–01 9.673823–011 9.093595–02

9 3.856456–02 5.872742–01 4.446915–01 3.976884–01 8.343083–011

10 5.462832–01 3.907208–01 6.828233–01 7.034170–01 7.981391–011

11 1.699807–01 6.972574–02 5.558536–01 5.707923–011 1.916867–01

12 2.953907–01 4.226379–01 7.675818–01 7.981391–011 6.204653–01

13 8.201435–01 7.981391–01 1.494948–01 9.705978–011 5.030520–02

14 6.729885–02 8.314506–02 2.822770–01 6.204653–011 6.291943–02

15 8.386675–02 4.515471–01 7.002254–011 5.328562–01 1.503405–02

Total: 2 2 3 5 3

Sådhanå (2019) 44:223 Page 3 of 17 223

Table 2. POP status and UDs for (a) RC4, (b) RC4_N, (c) RC4_2N, (d) RC4_4N and (e) RC4_8N.

Test Expected Observed

Status

Uniformity

Status; POP POP Distribution

(a)

1 0.976651 0.988000 Successful 4.154218–01 Uniform

2 0.976651 0.992000 Successful 4.904834–01 Uniform

3 0.976651 0.992000 Successful 8.920363–01 Uniform

4 0.976651 0.982000 Successful 5.790211–01 Uniform

5 0.976651 0.984000 Successful 2.492839–01 Uniform

6 0.976651 0.980000 Successful 4.170881–02 Uniform

7 0.976651 0.990000 Successful 8.272794–01 Uniform

8 0.976651 0.992000 Successful 2.224804–01 Uniform

9 0.976651 0.982000 Successful 3.856456–02 Uniform

10 0.976651 0.992000 Successful 5.462832–01 Uniform

11 0.980561 0.982000 Successful 1.699807–01 Uniform

12 0.976651 0.992000 Successful 2.953907–01 Uniform

13 0.980561 0.995000 Successful 8.201435–01 Uniform

14 0.985280 0.983500 Unsuccessful 6.729885–02 Uniform

15 0.986854 0.985889 Unsuccessful 8.386675–02 Uniform

(b)

1 0.976651 0.988000 Successful 9.626880–01 Uniform

2 0.976651 0.984000 Successful 4.446914–01 Uniform

3 0.976651 0.992000 Successful 4.635119–01 Uniform

4 0.976651 0.982000 Successful 6.454484–01 Uniform

5 0.976651 0.980000 Successful 8.343083–01 Uniform

6 0.976651 0.994000 Successful 1.372823–01 Uniform

7 0.976651 0.992000 Successful 8.055687–01 Uniform

8 0.976651 0.986000 Successful 6.662452–01 Uniform

9 0.976651 0.996000 Successful 5.872742–01 Uniform

10 0.976651 0.982000 Successful 3.907208–01 Uniform

11 0.980561 0.994000 Successful 6.972574–02 Uniform

12 0.976651 0.992000 Successful 4.226379–01 Uniform

13 0.980561 0.988000 Successful 7.981391–01 Uniform

14 0.985280 0.986000 Successful 8.314506–02 Uniform

15 0.986854 0.988000 Successful 4.515471–01 Uniform

(c)

1 0.976651 0.996000 Successful 9.540148-01 Uniform

2 0.976651 0.988000 Successful 9.891987-02 Uniform

3 0.976651 0.996000 Successful 8.891176-01 Uniform

4 0.976651 0.982000 Successful 9.288566-01 Uniform

5 0.976651 0.980000 Successful 8.708559-01 Uniform

6 0.976651 0.996000 Successful 1.146836-03 Uniform

7 0.976651 0.990000 Successful 4.635119-01 Uniform

8 0.976651 0.990000 Successful 7.359083-01 Uniform

9 0.976651 0.992000 Successful 4.446915-01 Uniform

10 0.976651 0.996000 Successful 6.828233-01 Uniform

11 0.980561 0.990000 Successful 5.558536-01 Uniform

12 0.976651 0.990000 Successful 7.675818-01 Uniform

13 0.980561 0.980000 Unsuccessful 1.494948-01 Uniform

14 0.985280 0.987500 Successful 2.822770-01 Uniform

15 0.986854 0.987000 Successful 7.002254-01 Uniform

(d)

1 0.976651 0.990000 Successful 8.831714-01 Uniform

2 0.976651 0.988000 Successful 1.087909-01 Uniform

3 0.976651 0.996000 Successful 5.181061-01 Uniform

4 0.976651 0.988000 Successful 2.343734-01 Uniform

5 0.976651 0.982000 Successful 2.596162-01 Uniform

6 0.976651 0.982000 Successful 1.509358-03 Uniform

7 0.976651 0.996000 Successful 4.749856-01 Uniform

223 Page 4 of 17 Sådhanå (2019) 44:223

with 256 random-like values, which is the primary aim of

the KSA. This is how one can take care of the controversial

swap function. The list of these polynomials is given as

follows:

To ensure that the S-box is more unpredictable, these

initial values have then been merged with the key bytes, by

introducing a key-mixing logic, described in the following

pseudocode. The logical block diagram of the same is

shown in figure 1.

By this way, each bit of the key is diffused into several

stages, and sufficient nonlinearity is introduced against

reconstructing the state array, to make it more resistant to

known cryptanalytic attacks. This key-mixing process is

simple to implement on any platform, removing biases and

weak keys inserted by the swap function of KSA.

In the original RC4, values of the S-box are only swap-

ped, not updated. Researchers argue on this point that many

a value for the S-box may not at all move in this process,

and thus serious bias occurs in the output of this cipher.

Keeping the increase in security and robustness in mind as

the main points, the authors tried to minimise the bias by

removing the conventional swap from the KSA portion of

RC4 and achieving the key-mixing logic.

While updating values with key-mixing, first the newly

generated value is stored in a binary tree. Then, a binary

search is performed on the tree from 0 to i – 1 to search for

a duplicate, with time complexity O(log i). If the newly

generated value is found to be a duplicate one, the same is

incremented by 1 (mod 256), and again a new search is

performed, from the very beginning. Once it is confirmed

that the newly generated value is unique from S[0] to

S[i] up to the Nth value (N = 256, here), then only the value

is taken as granted. After sufficient experimental and

implementational observations, it can be concluded that the

aforementioned algorithm is fast and efficient enough, and

there is no scope of generating duplicate values once it

completes its operation. Future work might be interesting

for the mathematicians and researchers in this regard.

Though the aforementioned procedure definitely increa-

ses the time complexity of the cipher, it can be mentioned

that the key-mixing is used only in place of the KSA, i.e.

the S-box initialisation only. As the PRGA remains

unchanged for the rest of the encryption process, which

generally uses data of very large size that may tend to

Table 2 continued

Test Expected Observed

Status

Uniformity

Status; POP POP Distribution

8 0.976651 0.992000 Successful 9.673823-01 Uniform

9 0.976651 0.992000 Successful 3.976884-01 Uniform

10 0.976651 0.988000 Successful 7.034170-01 Uniform

11 0.980561 0.991000 Successful 5.707923-01 Uniform

12 0.976651 0.990000 Successful 7.981391-01 Uniform

13 0.980561 0.998000 Successful 9.705978-01 Uniform

14 0.985280 0.987500 Successful 6.204653-01 Uniform

15 0.986854 0.987667 Successful 5.328562-01 Uniform

(e)

1 0.976651 0.992000 Successful 7.981391-01 Uniform

2 0.976651 0.986000 Successful 6.952004-01 Uniform

3 0.976651 0.996000 Successful 3.537331-01 Uniform

4 0.976651 0.988000 Successful 5.831447-01 Uniform

5 0.976651 0.986000 Successful 4.788391-02 Uniform

6 0.976651 0.996000 Successful 4.901567-05 Non-uniform

7 0.976651 0.995000 Successful 4.446914-01 Uniform

8 0.976651 0.988000 Successful 9.093595-02 Uniform

9 0.976651 0.990000 Successful 8.343083-01 Uniform

10 0.976651 0.986000 Successful 7.981391-01 Uniform

11 0.980561 0.990000 Successful 1.916867-01 Uniform

12 0.976651 0.988000 Successful 6.204653-01 Uniform

13 0.980561 0.995000 Successful 5.030520-02 Uniform

14 0.985280 0.986000 Successful 6.291943-02 Uniform

15 0.986854 0.986111 Unsuccessful 1.503405-02 Uniform

Sådhanå (2019) 44:223 Page 5 of 17 223

infinity, the increased time complexity of S-box initialisation

will not eventually affect the overall time complexity of the

cipher.

As a next phase, following the proposal of Paul and

Preneel [2], multiple S-boxes have been used to make the

output stream more randomised. Their algorithm of PRGA,

marked as RC4_2A here, has been reformed by the authors,

where two irreducible polynomials from GF(28) acted as

moduli to initialise two S-boxes; the key-mixing logic has

not been utilised in this part. Initial values of j1 and j2 have

been calculated from key values, not from 0 as in RC4 or its

other variants, thus, giving more dynamic values while

starting the PRGA. The modified PRGA, marked as

RC4_2B, is given as follows:

In another attempt, PRGA has been reformed again,

where two values of i: i1 and i2, for each S-box, have been

introduced, initialised as 0, forming a new variant. Initial

values of j1 and j2 have been calculated using the same

logic as before. The basic aim is to create the key-stream

more random to make it harder for the intruder to break.

This variant, marked as RC4_2C, is as follows:

Table 3. P-value distribution for (a) RC4, (b) RC4_N,

(c) RC4_2N, (d) RC4_4N and (e) RC4_8N.

Test ; 1 2 3 4 5 6 7 8 9 10

(a)

1 68 50 48 49 52 48 44 47 49 45

2 49 49 53 39 51 45 62 48 47 57

3 55 59 48 44 54 48 48 49 49 46

4 38 61 50 51 46 60 51 44 51 48

5 58 56 48 50 47 39 44 66 49 43

6 56 47 46 45 59 38 47 70 38 54

7 41 45 46 49 52 52 56 50 49 60

8 46 57 40 57 42 50 64 58 40 46

9 60 55 56 55 57 54 32 42 53 36

10 51 44 56 48 43 46 63 47 52 50

11 99 115 122 104 98 104 82 98 88 90

12 49 57 65 50 54 51 39 50 40 45

13 90 106 105 98 99 104 102 112 98 86

14 438 400 414 382 397 384 399 385 401 400

15 955 854 901 891 948 903 895 935 832 886

(b)

1 45 48 51 50 51 54 51 54 41 57

2 56 43 41 58 44 58 57 42 49 52

3 49 47 55 53 58 39 46 60 50 43

4 53 43 56 42 52 45 54 55 54 46

5 51 48 53 56 50 51 38 46 49 56

6 68 50 57 50 47 45 51 39 41 50

7 36 50 53 55 49 46 51 52 52 56

8 53 52 60 46 54 46 40 50 53 46

9 53 50 53 47 49 62 47 43 55 41

10 56 47 42 43 42 61 45 54 59 53

11 93 86 97 105 103 92 109 105 97 113

12 45 36 55 56 52 44 56 53 46 57

13 87 102 115 99 106 104 97 101 91 98

14 406 389 365 372 402 433 428 403 432 370

15 913 928 948 897 908 891 893 854 912 856

(c)

1 46 46 44 59 51 52 50 53 45 55

2 61 53 32 61 47 43 42 52 49 60

3 47 51 53 54 55 44 43 58 48 47

4 45 47 47 52 57 50 55 49 55 47

5 51 51 50 60 51 45 42 45 53 52

6 57 67 55 31 50 38 66 53 43 40

7 37 52 52 56 43 57 40 61 49 53

8 53 55 41 61 41 47 52 54 47 49

9 40 52 62 52 47 47 56 43 55 46

10 53 51 48 56 51 40 54 41 49 57

11 88 87 92 107 105 101 102 104 98 116

12 42 41 47 55 58 50 48 51 54 54

13 96 116 115 92 78 94 97 116 101 95

14 375 373 391 425 407 424 395 402 433 377

15 897 914 942 923 897 925 881 867 884 870

(d)

1 47 46 43 57 49 53 58 47 46 54

2 60 57 38 52 44 45 40 48 66 50

3 50 48 54 52 53 42 42 59 58 42

4 49 61 37 55 47 63 50 55 38 45

5 51 51 50 55 58 48 40 36 61 50

6 47 61 54 27 47 42 61 69 40 52

7 41 45 58 46 56 41 56 54 55 50

Table 3 continued

Test ; 1 2 3 4 5 6 7 8 9 10

8 50 52 58 51 47 44 47 49 52 52

9 42 60 57 39 50 53 52 41 53 55

10 52 48 47 50 57 40 50 44 54 59

11 87 85 96 106 105 96 99 113 103 112

12 40 43 48 54 56 47 50 57 53 54

13 114 85 90 117 92 110 85 83 101 127

14 390 417 423 415 414 394 389 392 403 365

15 901 909 972 895 879 881 906 872 831 956

(e)

1 44 53 44 59 46 55 52 54 39 54

2 58 50 44 48 53 45 52 42 49 59

3 46 47 57 58 46 48 47 64 49 38

4 52 41 41 58 43 58 50 57 45 55

5 51 51 46 61 59 47 36 46 51 52

6 42 50 49 41 65 36 46 82 36 53

7 43 53 46 50 45 63 38 56 58 48

8 60 39 38 47 55 61 60 48 40 52

9 53 50 54 45 46 62 49 47 48 46

10 55 47 46 45 55 48 53 47 59 47

11 90 84 90 114 103 89 116 100 100 114

12 44 41 45 50 56 54 61 48 48 53

13 89 74 111 84 110 113 103 106 98 112

14 421 373 424 377 444 403 414 386 396 362

15 871 932 971 890 878 877 939 909 855 880

223 Page 6 of 17 Sådhanå (2019) 44:223

Figure 2. P-value distributions of test 4 for (a) RC4, (b) RC4_N, (c) RC4_2N, (d) RC4_4N, (e) RC4_8N. P-value distributions of Test

8 for (f) RC4, (g) RC4_N, (h) RC4_2N, (i) RC4_4N, (j) RC4_8N.

Sådhanå (2019) 44:223 Page 7 of 17 223

Finally, another variant, with a single S-box, has been

formed by implementing the key-mixing logic, whose ini-

tialisation has been done by calculating the multiplicative

inverses using modular arithmetic, as described before.

This algorithm is much simpler, and its space complexity is

also reasonably less. Furthermore, in this way, the KSA has

been replaced by a new function. This one is also analysed

along with the aforementioned variants to check efficiency.

All these variants of RC4, along with the original one,

have been statistically analysed using the NIST Statistical

Test Suite, containing 15 different statistical tests to check

the robustness of a cipher-text. For each test, a P-value

(probability value) will be generated, from which two

parameters, POP (Proportion of Passing) and UD (Unifor-

mity Distribution), will be calculated to compare the

results. For all the algorithms, an example text file has been

encrypted 500 times using 500 same encryption keys,

generating 500 cipher-texts for each algorithm, each con-

taining 1,342,500 bits, as has been recommended by NIST

[23]. Results are then compared to find out how the security

varies following the steps of these algorithms.

4. Results and discussion

The analysis proves that though RC4 itself is sufficiently

secured, the new variants claim themselves even more

efficient than RC4. It has been found that the reformed

algorithms create a tweak in RC4 to increase security. First

of all, the optimum number of initial key-stream bytes to be

discarded is determined by analysing RC4, RC4_N,

RC4_2N, RC4_4N and RC4_8N. It has been observed that

discarding some initial bytes undoubtedly increases the

randomness in outputs, but discarding more and more bytes

eventually may not increase the security, and at some point,

‘the beginning of RC4 ends’ [4].

Tables 1(a) and (b) show the results of the analysis,

where the POP status and UD of NIST tests [23–25] for

these five variants, are compared. Percentages of the

probable best results in a particular test for each algorithm

have been calculated (shaded in rows), which are then

summed at the bottom of the table. The highest count (here,

for RC4_4N) gives the winner, showing that this one is

more robust than the remaining.

POPs and UDs for the five algorithms, compared to the

expected values, are shown in tables 2(a)–(e). The earlier

two tables (table 1(a) and (b)) have been generated from

these five tables. Distributions of P-values for the same data

sets are displayed in table 3(a)–(e). The interval between 0

Figure 2. continued

223 Page 8 of 17 Sådhanå (2019) 44:223

and 1 is divided into 10 sub-intervals, and P-values lying

within each sub-interval are counted; distribution of P-

values should be uniform in each sub-interval [23]. Fig-

ure 2 shows histograms on the distribution of P-values for

two tests 4 and 8.

Figure 3 displays scattered graphs on the POP status for

the 15 tests, which examine the proportion of sequences

that pass a test. A threshold value (expected POP) has been

calculated following the guidance given by NIST [23]. If

the proportion falls outside of (i.e., less than or below) this

expected value, then there is evidence that the data is not

random [23]. If most of the values are greater than (or

above) this expected value, then the data is considered to be

random. For any algorithm, the more the number of POPs

that tend to 1 for the 15 tests, the more the data set is

assumed to be random.

Figure 3. POP status of 15 NIST tests for (a) RC4, (b) RC4_N, (c) RC4_2N, (d) RC4_4N, (e) RC4_8N.

Sådhanå (2019) 44:223 Page 9 of 17 223

Table 4. Comparison of (a) POP status and (b) UD status generated by 15 NIST tests for RC4 variants including key-mixing.

Test ; RC4 RC4_2A RC4_2B RC4_2C Key-mixing

(a) POP status for NIST tests

1 0.988000 0.984000 0.990000 0.994000 .5 0.990000 .5

2 0.992000 1 0.994000 0.986000 0.994000 0.998000

3 0.992000 0.990000 0.990000 0.984000 0.990000

4 0.982000 0.982000 0.994000 .5 0.994000 .5 0.990000

5 0.984000 0.992000 .5 0.974000 0.988000 0.992000 .5

6 0.980000 0.986000 0.984000 0.978000 0.994000 1

7 0.990000 0.984000 0.992000 0.990000 0.994000 1

8 0.992000 0.984000 0.990000 0.994000 1 0.988000

9 0.982000 0.984000 0.980000 0.994000 1 0.980000

10 0.992000 0.994000 .5 0.984000 0.986000 0.994000 .5

11 0.982000 0.990000 0.995000 1 0.994000 0.986000

12 0.992000 0.986000 0.996000 0.996000 0.998000 1

13 0.995000 1 0.989000 0.988000 0.989000 0.982000

14 0.983500 0.985500 0.987250 0.989250 0.990000 1

15 0.985889 0.983444 0.985444 0.991556 1 0.991444

Total: 2 1 1.5 4 5.5

(b) Uniformity Distribution for NIST tests

1 4.154218–01 8.092489–01 1.223252–01 8.480268–01 8.708559–011

2 4.904834–01 1.237553–01 4.984243–01 2.133093–01 8.801447–011

3 8.920363–01 9.087602–01 9.114125–011 6.620908–01 8.343083–01

4 5.790211–011 3.282969–01 1.855552–01 1.357197–01 5.625911–01

5 2.492839–01 1.311222–01 5.261047–01 2.201592–01 7.636775–011

6 4.170881–02 3.345382–01 2.452120–02 5.101528–011 2.096883–01

7 8.272794–01 5.381822–01 1.835471–01 3.314077–01 9.908191–011

8 2.224804–01 5.996926–011 2.248206–01 7.665814–02 1.087909–01

9 3.856456–02 9.421983–01 2.291461–02 9.442743–01 9.502466–011

10 5.462832–01 9.947196–011 1.062459–01 2.417409–01 1.866758–02

11 1.699807–01 3.537331–01 8.816625–011 8.716150–02 2.368098–01

12 2.953907–01 4.559373–01 5.625912–01 1.756906–01 6.282074–011

13 8.201435–011 8.129051–01 1.068773–01 2.485492–02 1.357197–01

14 6.729885–01 3.175654–01 5.620795–01 4.007594–01 9.368231–011

15 8.386675–02 2.137403–03 5.594693–011 3.222618–06 3.996299–02

Total: 2 2 3 1 7

Table 5. POP status and UDs for (a) RC4, (b) RC4_2A, (c) RC4_2B, (d) RC4_2C and (e) key-mixing.

Test Expected Observed

Status

Uniformity

Status; POP POP Distribution

(a)

1 0.976651 0.988000 Successful 4.154218–01 Uniform

2 0.976651 0.992000 Successful 4.904834–01 Uniform

3 0.976651 0.992000 Successful 8.920363–01 Uniform

4 0.976651 0.982000 Successful 5.790211–01 Uniform

5 0.976651 0.984000 Successful 2.492839–01 Uniform

6 0.976651 0.980000 Successful 4.170881–02 Uniform

7 0.976651 0.990000 Successful 8.272794–01 Uniform

8 0.976651 0.992000 Successful 2.224804–01 Uniform

9 0.976651 0.982000 Successful 3.856456–02 Uniform

10 0.976651 0.992000 Successful 5.462832–01 Uniform

11 0.980561 0.982000 Successful 1.699807–01 Uniform

12 0.976651 0.992000 Successful 2.953907–01 Uniform

13 0.980561 0.995000 Successful 8.201435–01 Uniform

223 Page 10 of 17 Sådhanå (2019) 44:223

Table 5 continued

Test Expected Observed

Status

Uniformity

Status; POP POP Distribution

14 0.985280 0.983500 Unsuccessful 6.729885–02 Uniform

15 0.986854 0.985889 Unsuccessful 8.386675–02 Uniform

(b)

1 0.976651 0.984000 Successful 8.092489–01 Uniform

2 0.976651 0.994000 Successful 1.237553–01 Uniform

3 0.976651 0.990000 Successful 9.087602–01 Uniform

4 0.976651 0.982000 Successful 3.282969–01 Uniform

5 0.976651 0.992000 Successful 1.311222–01 Uniform

6 0.976651 0.986000 Successful 3.345382–01 Uniform

7 0.976651 0.984000 Successful 5.381822–01 Uniform

8 0.976651 0.984000 Successful 5.996926–01 Uniform

9 0.976651 0.984000 Successful 9.421983–01 Uniform

10 0.976651 0.994000 Successful 9.947196–01 Uniform

11 0.980561 0.990000 Successful 3.537331–01 Uniform

12 0.976651 0.986000 Successful 4.559373–01 Uniform

13 0.980561 0.989000 Successful 8.129051–01 Uniform

14 0.985280 0.985500 Successful 3.175654–01 Uniform

15 0.986854 0.983444 Unsuccessful 2.137403–03 Uniform

(c)

1 0.976651 0.990000 Successful 1.223252–01 Uniform

2 0.976651 0.986000 Successful 4.484243–01 Uniform

3 0.976651 0.990000 Successful 9.114125–01 Uniform

4 0.976651 0.994000 Successful 1.855552–01 Uniform

5 0.976651 0.974000 Unsuccessful 5.261047–01 Uniform

6 0.976651 0.984000 Successful 2.452120–02 Uniform

7 0.976651 0.992000 Successful 1.835471–01 Uniform

8 0.976651 0.990000 Successful 2.248206–01 Uniform

9 0.976651 0.980000 Successful 2.291461–02 Uniform

10 0.976651 0.984000 Successful 1.062459–01 Uniform

11 0.980561 0.995000 Successful 8.816625–01 Uniform

12 0.976651 0.996000 Successful 5.625912–01 Uniform

13 0.980561 0.988000 Successful 1.068773–01 Uniform

14 0.985280 0.987250 Successful 5.620795–01 Uniform

15 0.986854 0.985444 Unsuccessful 5.594693–04 Uniform

(d)

1 0.976651 0.994000 Successful 8.480268–01 Uniform

2 0.976651 0.994000 Successful 2.133093–01 Uniform

3 0.976651 0.984000 Successful 6.620908–01 Uniform

4 0.976651 0.994000 Successful 1.357197–01 Uniform

5 0.976651 0.988000 Successful 2.201592–01 Uniform

6 0.976651 0.978000 Successful 5.101528–01 Uniform

7 0.976651 0.990000 Successful 3.314077–01 Uniform

8 0.976651 0.994000 Successful 7.665814–02 Uniform

9 0.976651 0.994000 Successful 9.442743–01 Uniform

10 0.976651 0.986000 Successful 2.417409–01 Uniform

11 0.980561 0.994000 Successful 8.716150–02 Uniform

12 0.976651 0.996000 Successful 1.756906–01 Uniform

13 0.980561 0.989000 Successful 2.485492-02 Uniform

14 0.985280 0.989250 Successful 4.007594-01 Uniform

15 0.986854 0.991556 Successful 3.222618-06 Non-uniform

(e)

1 0.976651 0.990000 Successful 8.708559-01 Uniform

2 0.976651 0.998000 Successful 8.801447-01 Uniform

3 0.976651 0.990000 Successful 8.343083-01 Uniform

4 0.976651 0.990000 Successful 5.625911-01 Uniform

5 0.976651 0.992000 Successful 7.636775-01 Uniform

Sådhanå (2019) 44:223 Page 11 of 17 223

Table 5 continued

Test Expected Observed

Status

Uniformity

Status; POP POP Distribution

6 0.976651 0.994000 Successful 2.096883-01 Uniform

7 0.976651 0.994000 Successful 9.908191-01 Uniform

8 0.976651 0.988000 Successful 1.087909-01 Uniform

9 0.976651 0.980000 Successful 9.502466-01 Uniform

10 0.976651 0.994000 Successful 1.866758-02 Uniform

11 0.980561 0.986000 Successful 2.368098-01 Uniform

12 0.976651 0.998000 Successful 6.282074-01 Uniform

13 0.980561 0.982000 Successful 1.357197-01 Uniform

14 0.985280 0.990000 Successful 9.368231-01 Uniform

15 0.986854 0.991444 Successful 3.996299-02 Uniform

Table 6. P-value distribution for (a) RC4, (b) RC4_2A, (c) RC4_2B, (d) RC4_2C and (e) key-mixing.

Test ; 1 2 3 4 5 6 7 8 9 10

(a)

1 68 50 48 49 53 48 44 47 49 45

2 49 49 53 39 52 45 62 48 47 57

3 55 59 48 44 55 48 48 49 49 46

4 38 61 50 51 47 59 51 44 51 48

5 58 56 48 50 48 39 44 66 49 43

6 56 47 46 45 60 38 47 70 38 54

7 41 45 46 49 53 52 56 50 49 60

8 46 57 40 57 43 50 64 58 40 46

9 60 55 56 55 58 54 32 42 53 36

10 51 44 56 48 44 46 63 47 52 50

11 99 115 122 104 99 104 82 98 88 90

12 49 57 65 50 55 51 39 50 40 45

13 90 106 105 98 100 104 102 112 98 86

14 438 400 414 382 398 384 399 385 401 400

15 955 854 901 891 949 903 895 935 832 886

(b)

1 59 55 50 43 44 49 51 45 52 54

2 41 61 36 58 54 58 51 59 46 38

3 52 45 58 49 44 55 53 50 44 52

4 59 41 55 56 51 45 53 43 40 59

5 46 57 47 52 68 52 50 36 50 44

6 52 56 46 51 57 39 60 54 36 51

7 42 51 54 41 49 52 64 46 54 49

8 53 56 57 46 42 50 58 48 52 40

9 53 55 42 53 51 47 51 44 51 55

10 47 48 51 49 47 50 57 52 46 55

11 101 107 98 107 105 94 116 93 103 78

12 52 60 44 54 51 42 62 50 46 41

13 101 115 100 91 93 106 90 105 96 105

14 441 406 383 400 369 377 412 423 394 397

15 932 965 871 906 863 987 874 910 813 881

(c)

1 51 64 33 57 44 46 41 49 55 60

2 60 48 47 51 36 57 41 53 55 50

3 47 53 55 47 44 44 52 58 47 51

4 41 56 60 56 41 39 46 53 44 62

5 52 57 43 45 43 43 45 62 54 54

6 55 59 52 45 50 34 63 54 54 34

223 Page 12 of 17 Sådhanå (2019) 44:223

Thus, the observation is that discarding too many of the

initial key-stream bytes does not help for increasing the

security of RC4; it requires an optimum value in between to

be maintained, which in the current data set has been found

to be 4N, i.e. here 1024.

The next analysis is based on multiple S-boxes in RC4

(RC4_2A, RC4_2B and RC4_2C), along with the newly

proposed variant using modular arithmetic and key-mixing

logic to initiate the S-box. The results are shown in

tables 4(a) and (b).

Now it is clear from these two tables that obviously the

new variant with key-mixing logic is able to establish itself

as the best, even with a simpler logic and a single S-box

among the other variants. Hence, it can now be decided that

using only one S-box and an unchanged PRGA has a better

time and space management than the variants with multiple

S-boxes. POPs and UDs of this data set are depicted in

table 5(a)–(e), and distributions of P-values generated by

the same are included in tables 6(a)–(e) as per the rules

stated earlier.

Table 6 continued

Test ; 1 2 3 4 5 6 7 8 9 10

7 56 53 46 38 45 56 47 59 61 39

8 52 46 52 66 55 45 49 42 54 39

9 73 43 40 41 41 50 56 54 53 49

10 57 50 50 54 36 48 43 68 54 40

11 103 104 94 89 110 93 96 102 101 108

12 50 59 39 46 56 48 51 44 47 60

13 107 108 110 111 99 119 89 89 87 81

14 403 370 411 371 410 414 426 403 390 404

15 820 836 840 893 955 961 972 919 905 899

(d)

1 48 41 55 45 46 56 50 51 54 54

2 56 59 66 48 42 44 48 46 41 50

3 55 55 42 42 52 44 51 53 58 48

4 63 48 50 54 59 54 43 39 36 54

5 55 69 43 56 40 47 46 44 46 54

6 58 51 54 43 43 42 43 58 55 53

7 60 47 60 57 41 59 45 42 41 58

8 50 57 66 44 52 41 54 57 41 38

9 49 58 55 53 49 44 44 52 49 49

10 47 60 52 40 39 52 42 48 58 62

11 108 74 94 114 109 100 92 91 115 103

12 57 44 40 59 51 45 36 51 61 56

13 92 105 101 115 80 99 114 123 93 78

14 387 382 375 403 410 406 435 388 428 386

15 752 871 947 925 858 932 870 932 927 986

(e)

1 49 55 54 54 57 46 45 48 49 43

2 44 43 47 55 52 54 52 58 50 45

3 43 48 50 46 47 62 52 53 53 46

4 46 47 47 55 52 50 47 56 37 64

5 48 53 36 53 48 50 49 52 51 61

6 55 64 51 42 46 42 49 71 40 40

7 47 51 53 54 50 50 46 56 43 50

8 53 52 44 43 47 60 46 67 43 39

9 49 47 40 54 49 55 51 49 49 57

10 43 56 45 65 61 37 63 49 40 41

11 105 90 108 113 105 116 92 93 97 81

12 55 34 54 56 50 65 42 59 44 41

13 106 81 114 101 91 107 96 119 83 102

14 403 385 377 418 391 396 412 409 400 409

15 853 918 929 962 950 882 886 855 843 922

Sådhanå (2019) 44:223 Page 13 of 17 223

Figure 4 shows histograms of the distribution of P-values

for two tests 4 and 8 for four variants including original

RC4. Scattered graphs on the POPs for the tests 4 and 8 for

the same four variants are given in figure 5 to find the most

secured variant following the logic as stated earlier.

These figures indicate that for key-mixing logic, more

number of points tend to 1, compared with the remaining.

Hence, graphically too, it is now evident that this particular

variant gives more secured output among the other RC4

alternatives. It also points out that if an RC4 variant with

Figure 4. (a) and (b) P-value distributions of tests 4 and 8 for RC4. P-value distributions of tests (c) 4 and (d) 8 for RC4_N. (e) 4 and

(f) 8 for RC4_2N. (g) 4 and (h) 8 for RC4_4N. (i) 4 and (j) 8 for RC4_8N.

223 Page 14 of 17 Sådhanå (2019) 44:223

single S-box and a simple key-mixing logic give better

security than the ones with multiple S-boxes, it inevitably

possesses much less operational complexity and better

space management.

Figure 4. continued

Sådhanå (2019) 44:223 Page 15 of 17 223

5. Conclusion

Besides having enough robustness, one can envisage that the

internal state array of RC4 has some limitations and internal

biases due to which convenience may be available to the

intruders, as argued by a number of researchers. The security

of RC4will be undoubtedly enhanced if the state array can be

initialised using any intelligent technique, where it becomes

stronger for different applications. Here, by discarding an

optimumnumber of initial bytes and accompanyingmodified

intelligent PRGAswithmultiple S-boxes, the security ofRC4

has been grossly enhanced.

Using the key-mixing logic, it has been found that the

security of RC4 can be strongly established without using

Figure 5. POP status of 15 NIST tests for (a) RC4 and (b) RC4_2A, (c) RC4_2B, (d) RC4_2C, (e) key-mixing.

223 Page 16 of 17 Sådhanå (2019) 44:223

multiple S-boxes and keeping the original PRGA unchanged.

Other mathematical procedures, models, logic and modifica-

tions may also be employed to refine RC4 and studies on them

are required to find better opportunities to generate more

secured key-streams.

References

[1] Maitra S and Paul G 2008 Analysis of RC4 and proposal of

additional layers for better securitymargin. In:Proceedings of the

International Conference on Cryptology in India (INDO-

CRYPT), Lecture Notes in Computer Science (LNCS), Leuven-

Heverlee, Belgium: Springer. http://eprint.iacr.org/2008/396.pdf

[2] Paul S and Preneel N 2008 A new weakness in the RC4 key-

stream generation: an approach to improve the security of the

cipher. In: Proceedings of Fast Software Encryption (FSE),

LNCS. Heidelberg: Springer. https://www.esat.kuleuven.be/

cosic/publications/article-40.pdf

[3] Rivest R L and Schuldt J C N 2014 Spritz—a spongy RC4-

like stream cipher and hash function. In: Proceedings of

Advances in Cryptology (CRYPTO) Rump Session. https://

people.csail.mit.edu/rivest/pubs/RS14.pdf

[4] Mironov I 2002 (Not So) Random shuffles of RC4. In:

Proceedings of Advances in Cryptology (CRYPTO), Califor-

nia. LNCS. https://eprint.iacr.org/2002/067.pdf

[5] Klein A 2006 Attacks on the RC4 stream cipher. Department

of Pure Mathematics and Computer Algebra, Ghent Univer-

sity, Belgium. http://citeseerx.ist.psu.edu/viewdoc/down

load?doi=10.1.1.484.3279&rep=rep1&type=pdf

[6] RoosA1995Aclass ofweak keys in theRC4 streamcipher.Post

in sci.crypt. http://www.impic.org/papers/WeakKeys-report.pdf

[7] Akgün M, Kavak P and Demicri H 2008 New results on the

key scheduling algorithm of RC4. In: Proceedings of the

International Conference on Cryptology in India (INDO-

CRYPT), LNCS. http://link.springer.com/content/pdf/10.

1007/978-3-540-9754-5_4.pdf

[8] Mantin I and Shamir A 2002 A practical attack on broadcast

RC4. In: Proceedings of Fast Software Encryption (FSE),

LNCS2355,Berlin,Heidelberg: Springer-Verlag, pp. 152–164.

http://ai2-s2-pdfs.s3.amazonaws.com/74c2/63425da9c375ab3

85d1e2954eb27137f9e6b.pdf

[9] Sen Gupta S, Chattopadhyay A, Sinha K, Maitra S and Sinha

B P 2013 High-performance hardware implementation for

RC4. IEEE Transactions on Computers 82: 4

[10] Nawaz Y, Gupta K C and Gong G 2005 A 32-bit RC4-like

key-stream generator. International Association for Crypto-

logic Research (IACR), e-print archive. https://eprint.iacr.

org/2005/175.pdf

[11] Tomašević V and Bojanić S 2004 Reducing the state space

of RC4. In: Proceedings of the International Conference on

Computational Science (ICCS), LNCS 3036. Berlin–Heidel-

berg: Springer-Verlag, pp. 644–647. https://doi.org/10.1007/

978-3-540-24685-5_110

[12] Grosul A L and Wallach D S 2000 A related-key cryptanal-

ysis of RC4. In: Proceedings of Defense Advanced Research

Projects Agency (DARPA), Air Force Research Laboratory

(USAFRL), Department of Computer Science, Rice Univer-

sity, F30602-97-2-298. http://pubs.cs.rice.edu/sites/pubs.cs.

rice.edu/files/A%20Related-Key%20Cryptanalysis%20of%

20RC4%2C.pdf

[13] Al Fardan N J, Bernstein D J, Paterson K G, Poettering B and

Schuldt J C N 2013 On the security of RC4 in TLS and WPA.

Information Security Group, Royal Holloway, University of

London. http://www.isg.rhul.ac.uk/tls/RC4biases.pdf

[14] Zoltak B 2014 Statistical weaknesses in 20 RC4-like

algorithms. https://eprint.iacr.org/2014/315.pdf

[15] Fluhrer S C and McGrew D A 2000 Statistical analysis of

alleged RC4. In: Proceedings of the 7th International

Workshop on Fast Software Encryption, LNCS. Berlin

Springer. http://www.mindspring.com/*dmcgrew/rc4-03.

pdf

[16] Sepehrdad P, Vaudenay P and Vuagnoux M 2010 Discovery

and exploitation of new biases in RC4. In: Proceedings of the

17th International Workshop on Selected Areas in Cryptog-

raphy, Waterloo, Ontario, Canada, LNCS. Berlin, Heidel-

berg: Springer, vol. SAC10, pp. 74–91. https://doi.org/10.

1007/978-3-642-19574-7_5

[17] Church R 1935 Tables of irreducible polynomials for first

four prime moduli. The Annals of Mathematics (2nd Series)

36: 198–209. http://www.jstor.org/stable/1968675

[18] Daemen J and Rijmen V 1999 AES proposal: Rijndael,

Version 2. National Institute of Standard and Technology

(NIST), USA. http://csrc.nist.gov/encryption/aes

[19] National Institute of Standard and Technology (NIST), USA

2013 Recommendation for random number generation using

deterministic random bit generators. http://csrc.nist.gov/

publications/nistpubs/800-90A/SP800-0A.pdf

[20] Foruzan B 2007 Cryptography and network security. New

Delhi: Tata McGraw-Hill

[21] The Federal Information Processing Standard (FIPS) 2001

Announcing AES. http://csrc.nist.gov/publications/fips/fips

197/fips-197.pdf

[22] FIPS Publication 197 2010 The official AES standard. http://

csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[23] NIST, Technology Administration, U. S. Department of

Commerce 2010 A statistical test suite for RNGs and PRNGs

for cryptographic applications. http://csrc.nist.gov/publica

tions/nistpubs800/22rec1SP800-22red1.pdf

[24] Kim, S J, Umeno K and Hasegawa A 2004 Corrections of the

NIST statistical test suite for randomness. Communications

Research Laboratory, Incorporated Administrative Agency,

Tokyo, Japan. https://eprint.iacr.org/2004/018.pdf

[25] Gong G, Gupta K C, Hell M and Nawaz Y 2005 Towards a

general RC4-like key-stream generator. In: Proceedings of

the First Sklois Conference, Department of Electrical and

Computer Engineering, University of Waterloo. http://

avierfjard.com/PDFs/Cryptography/RC4%20Stream%20Ciph

er/Towards%20a%20General%20RC4like%20Key-stream%

20Generator.pdf

Sådhanå (2019) 44:223 Page 17 of 17 223

http://eprint.iacr.org/2008/396.pdf
https://www.esat.kuleuven.be/cosic/publications/article-40.pdf
https://www.esat.kuleuven.be/cosic/publications/article-40.pdf
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
https://eprint.iacr.org/2002/067.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.484.3279&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.484.3279&rep=rep1&type=pdf
http://www.impic.org/papers/WeakKeys-report.pdf
http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/978-3-540-9754-5_4.pdf
http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007/978-3-540-9754-5_4.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/74c2/63425da9c375ab385d1e2954eb27137f9e6b.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/74c2/63425da9c375ab385d1e2954eb27137f9e6b.pdf
https://eprint.iacr.org/2005/175.pdf
https://eprint.iacr.org/2005/175.pdf
https://doi.org/10.1007/978-3-540-24685-5_110
https://doi.org/10.1007/978-3-540-24685-5_110
http://pubs.cs.rice.edu/sites/pubs.cs.rice.edu/files/A%20Related-Key%20Cryptanalysis%20of%20RC4%252C.pdf
http://pubs.cs.rice.edu/sites/pubs.cs.rice.edu/files/A%20Related-Key%20Cryptanalysis%20of%20RC4%252C.pdf
http://pubs.cs.rice.edu/sites/pubs.cs.rice.edu/files/A%20Related-Key%20Cryptanalysis%20of%20RC4%252C.pdf
http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
https://eprint.iacr.org/2014/315.pdf
http://www.mindspring.com/%7edmcgrew/rc4-03.pdf
http://www.mindspring.com/%7edmcgrew/rc4-03.pdf
https://doi.org/10.1007/978-3-642-19574-7_5
https://doi.org/10.1007/978-3-642-19574-7_5
http://www.jstor.org/stable/1968675
http://csrc.nist.gov/encryption/aes
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-0A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-0A.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs800/22rec1SP800-22red1.pdf
http://csrc.nist.gov/publications/nistpubs800/22rec1SP800-22red1.pdf
https://eprint.iacr.org/2004/018.pdf
http://avierfjard.com/PDFs/Cryptography/RC4%20Stream%20Cipher/Towards%20a%20General%20RC4like%20Key-stream%20Generator.pdf
http://avierfjard.com/PDFs/Cryptography/RC4%20Stream%20Cipher/Towards%20a%20General%20RC4like%20Key-stream%20Generator.pdf
http://avierfjard.com/PDFs/Cryptography/RC4%20Stream%20Cipher/Towards%20a%20General%20RC4like%20Key-stream%20Generator.pdf
http://avierfjard.com/PDFs/Cryptography/RC4%20Stream%20Cipher/Towards%20a%20General%20RC4like%20Key-stream%20Generator.pdf

	An approach of refining RC4 with performance analysis on new variants
	Abstract
	Introduction
	Existing articles and motivation
	Proposed modifications to RC4
	Results and discussion
	Conclusion
	References

