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Abstract. The constant demand rate is the most common assumption of the basic economic production

quantity model, which is not very frequent in practice. In real world situations, demand usually varies with time.

With regard to the widespread necessity of power demand pattern, demand is supposed to follow a power law.

Another unrealistic assumption is perfect quality of all items. This paper presents a production system with

defective items to determine the optimal replenishment quantity, cycle length and backordered size with a power

demand rate dependent production rate. We assume that a manufacturer may be faced with three different cases

regarding to the date that defective items are drawn from inventory. The set-up, backordering, inspection, and

production costs, as well as holding cost of both perfect and imperfect items are accounted in the inventory

system. An algorithm is offered to optimize total inventory cost and then numerical analyses are presented to

demonstrate the applicability of the proposed models. Finally, some sensitivity analyses and managerial insights

are provided.

Keywords. Production modeling; inventory control; power demand pattern; defective items; imperfect

manufacturing; backordered.

1. Introduction

Harris [1] first presented the economic order quantity

(EOQ) to minimize the total inventory cost. Since the EOQ

model consists of some assumptions, by relaxing the

assumption that all orders are obtained together, the eco-

nomic manufacturing quantity (EMQ) model is introduced

by Taft [2]. The basic EOQ and EPQ models suppose that

the demand rate is constant; however, it is not realistic in

practice, and generally customer’s demand varies with

time. Therefore, many researchers are interested in studying

inventory systems when demand depends on time. For

example, Silver and Meal [3] proposed an approximation to

find an optimum lot size when demand varies with time.

Donaldson [4] presented an inventory system, whose

demand has a linear time-varying trend and then proposed

an approach to obtain the optimal solutions of it. Ritchie [5]

considered an inventory system in which demand increases

linearly. Bose et al [6] investigated an EOQ model with a

demand that changes with time positively and linearly,

considering shortages and deterioration. Teng [7] proposed

a method to obtain optimal inventory policies, considering

a linear trend in deterministic demand. There was little

published work on inventory systems with decreasing trend

in demand before the paper presented by Zhao et al [8].

They presented an analytic algorithm to solve such prob-

lems. Lo et al [9] introduced an optimum policy for the

problem of inventory management, where demand changes

linearly and used a model called the ‘‘two-equation model’’.

Yang et al [10] proposed a parametric eclectic model with

demand decreasing non-linearly. Omar and Yeo [11] consid-

ered a manufacturing system for a situation that new products

are manufactured using one kind of raw material, used prod-

ucts are repaired and demand is assumed to vary with time

continuously. Maihami and Kamalabadi [12] adopted a

demand function dependent on both time and price for an

inventorymodel with decaying items. Pando et al [13] studied

a model with the holding cost non-linearly dependent on both

quantity and time and the stock level dependent demand rate.

There are different ways to take out items during the

cycle length to supply demand. They are referred to as

demand patterns. Various types of these patterns are dis-

cussed by researchers. When the demand rate is constant

during the scheduling period, its pattern is known as
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uniform. However, it is not suitable for many practical

situations. In real world situations, there are some other

ways to take out products from the stock. Demand of

customers can be dependent on time, price, stock level, etc.

Since time is one of the most common inputs of demand

functions in practice, there are some patterns considering it

as an input like linear, quadratic, exponential, non-linear

and power. Demand used in this study is supposed to follow

a power law, because of the wide-ranging uses and being

more applicable than the others. This pattern can be used

for the situations that a high percentage of demand happens

at the beginning of the cycle, because of approaching to the

expiry date or demanding for the fresh products (e.g.,

prepared food, breads, fresh meat, fruits, yogurts and veg-

etables), or at the end of the scheduling period, because of

becoming scarce or daily use (e.g., sugar, tea, coffee and

oil). Also, it consists of the situation that demand occurs

uniformly. Several papers have been published in this

category.

Naddor [14] studied a power demand pattern in an order-

level system. Lee and Wu [15] analyzed an EOQ model

with backordering, power demand for decaying item. Then,

Dye [16] completed Lee and Wu’s model by proposing a

model, in which backordering rate changes pro rata with

time. Singh et al [17] proposed an inventory system con-

sidering partial backordering and power demand pattern for

perishable items. Abdul-Jalbar et al [18] investigated a one-

warehouse N-retailer problem, in which the demand pattern

is power and backorders are allowed. Rajeswari and Van-

jikkodi [19] developed a deterministic EOQ model con-

sidering constant deterioration, partially backlogged

shortages and power demand pattern. Sicilia et al [20]

analyzed inventory systems, in which deterministic demand

changes with time and follows a power pattern. They dis-

cussed several scenarios: the inventory systems with and

without shortages, the systems with full backlogging or

entirely lost sales. Sicilia et al [21, 22] extended a lot-sizing

system with a power demand pattern for deteriorating

items.

Sicilia et al [23] investigated an EOQ system, in which

deterioration occurs with a constant rate and deterministic

demand pattern is power. Sicilia et al [24] developed an

EPQ system, in which demand follows a time-dependent

power law and production rate changes pro rata with the

demand rate, allowing for backlogged shortage. San-José

et al [25] optimized an inventory system with power

demand pattern and partial backlogging. Keshavarzfard

et al [26] developed an inventory-pricing model for mul-

tiple products in which the production rate is proportional

to power demand rate.

One of the conventional assumptions in the EPQ model

is perfect quality of all produced items. Resulting from

process deterioration, defective raw materials or other

reasons, producing items with imperfect quality is

unavoidable. In the last years, several studies have been

done to deal with production of defective items. Shih [27]

discussed the impact of imperfect items on the replenish-

ment size and the objective function. Schwaller [28]

incorporated inspection costs in the EOQ system and

assumed that a known proportion of an incoming lot is

defective. Salameh and Jaber [29] considered that defective

products are sold as one batch after finishing 100%

inspection process. Hayek and Salameh [30] developed a

manufacturing system with a random defective production

rate, in which all defective items can be reworked. They

derived an optimal production policy, in which backordered

products are allowed. Goyal et al [31] presented an easy

procedure to find the production policy of a vendor and

buyer system with defective items. They assumed that a

specified portion of imperfect products are produced during

the replenishment process. Chiu [32] investigated an EPQ

system for a situation that imperfect products are produced

with a random rate and assumed that reworking of them

starts immediately after production time, however a frac-

tion of imperfect products are scrapped. Jamal et al [33]

adopted two policies to find the optimum lot quantity in a

production model considering rework. Ojha et al [34]

studied a manufacturing process that manufactures imper-

fect products with a constant rate. They assumed that

products can be delivered just after checking quality of

entire batch and imperfect products have to be reworked.

Also three scenarios were investigated by them. Cárdenas-

Barrón [35] presented an extension of [33] by adding

planned backorders. Taleizadeh et al [36] studied a pro-

duction system with limited capacity and allowing for

backorders, in which manufacturing imperfect items fol-

lows either a normal or a uniform probability distribution.

Taleizadeh et al [37] modeled an inventory system with

rework process, multiple products and single machine, to

find the optimal lot size. Ouyang et al [38] discussed a

situation that management invests capital to improve

quality. Also, they considered defective products and

inspection policy in their model. Furthermore, Taleizadeh

et al [39] analyzed a manufacturing system considering

defective items, rework process and multiple products.

Taleizadeh et al [40] presented a production system with

one machine, multiple products, and interruption in pro-

cess, scrap, rework and backordering.

Jaber et al [41] extended [29] to a situation that replacing

defective products is impossible due to the distance of the

supplier. They modeled two different cases to deal with this

condition. Taleizadeh et al [42] and Taleizadeh and Noori

[43] suggested an inventory system for a three-layer supply

chain considering defective items. They assumed three

scenarios. First, all imperfect products are disposed. Sec-

ond, imperfect products are reworked and sold as perfect

items. Third, scenario consists of selling imperfect products

as a batch with a lower price than price of perfect items.

Treviño-Garza et al [44] obtained the optimal value for the

replenishment quantity models using two solution proce-

dures. They considered a system of both vendor and buyer

and assumed that the imperfect items are produced as well.
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Taleizadeh and Wee [45] proposed a production system by

assuming one machine, multiple products, manufacturing

limitations, defective items, rework, and partial backlog-

ging. Tai [46] analyzed an inventory system, in which a

different screening process is considered for each single

quality characteristic. Each screening process has inde-

pendent screening rate and defective percentage. Taleiza-

deh et al [47] worked on an EPQ model with multiple

shipments and rework of imperfect products to find the

number of shipments, replenishment size and the price. Hsu

and Hsu [48] studied optimal replenishment size models

with defective products by assuming three scenarios

according to the time of selling imperfect products. Talei-

zadeh and Moshtagh [49] worked on imperfect production

processes, quality dependent return and lot sales in a closed

loop supply chain. Table 1 shows some terms and their

codes and explanations to categorize all reviewed papers.

Then in table 2, a categorization of those papers is

provided.

This work differs from the existing papers in some

directions. With regard to the literature review until now no

research is done on the jointly considering inventory sys-

tems with power demand rate dependent production rate,

backlogging and defective items. In the real world, pro-

ducing defective items is part of the production process. As

regards it is not included in models with a power demand

pattern. Also, such problems do not involve the costs (e.g.,

inspection and production) that are impartible parts of a

production process. Actually inspection is a process itself

and so that the cost associated with it should be considered

in the model. As well when the cost of a production process

for each item is not assumed, the results of modeling a

system may be unreal. In practice, holding of defective

items has cost; however, it is rarely applied in the existing

studies. Therefore, firstly we extend model presented in

[24] by allowing for defective items. Secondly, we consider

three different situations for the proposed model regarding

to the date that imperfect products are drawn from the

stock. Thirdly, our model consists of production and

inspection costs as well as holding cost of imperfect items.

The arrangement of the rest of this work is as follows.

Problem definition is available in section 2. Moreover,

three developed models and the related procedure to solve

them, are presented in sections 3 and 4, respectively. Then

in section 5, an example is investigated. Section 6 consists

of some sensitivity analyses and managerial insights.

Finally, conclusions are provided in section 7.

2. Problem definition

We consider a manufacturing factory with production and

inspection stages. The demand of the product has a power

pattern in each inventory cycle. It is supposed that the

production rate changes pro rata with the demand rate. Due

to many reasons a fraction of the produced lot is assumed to

be imperfect. Such products are discovered in the inspec-

tion stage. Management of the factory desires to determine

the minimum inventory costs of the system, and satisfy the

customer demand simultaneously. Behavior of the inven-

tory is studied for three cases, dependent on when defective

items are drawn from the inventory. In case I, we investi-

gate the situation that imperfect items are scrapped or sold

at the time that they are identified. So that in this case, the

holding cost of defective items is zero. In order to reduce

some costs (e.g., holding cost), it seems to be better to scrap

or sell imperfect products as soon as possible; however in

practice, selling or scrapping items day-to-day may be

infeasible. However, in some industries (e.g., pharmaceu-

tical companies) it is inescapable. In cases II and III,

imperfect products are held in the stock and sold when the

replenishment and scheduling periods are finished, respec-

tively. The cycle length and the reorder point are two

decision variables of the system. A minimizing approach is

applied to specify the optimum replenishment policies of

the inventory system. Figure 1 shows the system of pro-

cessing a lot size.

We apply the following notations in our model.

T: Cycle length or scheduling period (time).

s: Reorder point per lot (units).

Q: Production lot size (units).

t0: Production cycle length (time).

d: Total demand during the scheduling period (units).

Table 1. Codes and explanations to categorize papers.

Terms Code Explanations Codes

Model Type (MT) EOQ/EPQ/Both of them O/P/B

Consumption

Rate

(CR) Known/Random K/R

Demand Input (DI) Time, Inventory, Price,

Nothing

Ti, I, P,

No

Demand Form (DF) Constant, Exponential,

Power, Linear, Non-

Linear, None

C, E, Po,

Li, NL,

N

Production

Form

(PF) Constant, Power, Other C, Po, O

Products (P) Single/Multiple Si/Mu

Imperfect

Items

(II) Yes/No Y/No

Imperfect Type (IT) Reworked, Repaired Out,

Scrapped, Returned, Sold,

Neither

R, RO, S,

Re, So,

Ne

Holding Cost

of Imperfect

items

(HI) Yes/No Y/No

Deterioration (D) Yes/No Y/No

Shortage (Sh) Backlogged, Lost Sales,

Partial Backlogged,

Neither

B, L, PB,

Ne

Interruption (In) Yes/No Y/No
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r: Average demand (r = d/T) (units).

Ch: Carrying cost ($/unit/unit time).

Cb: Cost of backordering ($/unit/unit time).

Ci: Cost of inspecting ($/unit).

Cp: Cost of producing ($/unit).

Co: Setup cost per cycle ($/replenishment).

k: Defective rate.

CD(t): Demand up to time t (0� t� T).

D(t): Demand rate at time t (0� t� T).

P(t): Production rate at time t (0� t� T).

Table 2. Categorization of reviewed papers.

No. Paper referred MT CR DF DI PF P II IT HI D Sh In

1 Harris [1] O K C No – Si No – – No Ne –

2 Taft [2] P K C No C Si No – – No Ne No

3 Silver and Meal [3] O K – Ti – Si No – – No Ne –

4 Donaldson [4] O K Li Ti – Si No – – No Ne –

5 Ritchie [5] O K Li Ti – Si No – – No Ne –

6 Bose et al [6] O K Li Ti – Si No – – Y B –

7 Teng [7] O K Li Ti – Si No – – No B –

8 Zhao et al [8] O K Li Ti – Si No – – No Ne –

9 Lo et al [9] O K Li Ti – Si No – – No Ne –

10 Yang et al [10] O K NL Ti – Si No – – No Ne –

11 Omar and Yeo [11] P,O K N Ti C Si No – – No Ne No

12 Maihami and Kamalabadi [12] O K Li, E P, Ti – Si No – – Y PB –

13 Pando et al [13] O K N I, Ti – Si No – – No Ne –

14 Naddor [14] O K Po Ti – Si No – – No Ne –

15 Lee and Wu [15] O K /R Po Ti – Si No – – Y B –

16 Dye [16] O K /R Po Ti – Si No – – Y B

17 Singh et al [17] O K Po Ti – Si No – – Y PB –

18 Abdul-Jalbar et al [18] O K Po Ti – Si No – – No B

19 Rajeswari and Vanjikkodi [19] O K Po Ti – Si No – – Y PB –

20 Sicilia et al [20] O K Po Ti – Si No – – No B, LS, Ne –

21 Sicilia et al [21] O K Po Ti – Si No – – Y – –

22 Sicilia et al [22] P K Po Ti C Si No – – Y Ne No

23 Sicilia et al [23] O K Po Ti – Si No – – Y B –

24 Sicilia et al [24] P K Po Ti Po Si No – – No B No

25 San-José et al [25] O K Po Ti Po Si No – – No PB No

26 Keshavarzfard et al [26] P K Li, Po P, Ti Po Mu No – – No B No

27 Shih [27] O K C No – Si Y – No No Ne –

28 Schwaller [28] O K C No – Si Y – No No B –

29 Salameh and Jaber [29] O,P K C No – Si Y – No No Ne No

30 Hayek and Salameh [30] P K C No C Si Y R No No B No

31 Goyal et al [31] P K C No C Si Y So No No Ne No

32 Chiu [32] P K C No C Si Y R/S No No B No

33 Jamal et al [33] P K C No C Si Y R No No Ne No

34 Ojha et al [34] P K C No C Si Y R No No Ne No

35 Cárdenas-Barrón [35] P K C No C Si Y R No No B No

36 Taleizadeh et al [36] P K C No C Mu Y S No No B No

37 Taleizadeh et al [37] P K C No C Mu Y R No No Ne No

38 Ouyang et al [38] P K C No C Si Y – No No Ne No

39 Taleizadeh et al [39] P K C No C Mu Y R No No PB No

40 Taleizadeh et al [40] P K C No C Mu Y R/S No No B Y

41 Jaber et al [41] O K C No – Si Y RO/So No No Ne –

42 Taleizadeh et al [42] P K C No C Si Y S/R/So No No – No

43 Treviño-Garza et al [44] P K C No C Si Y – No No Ne No

44 Taleizadeh and Wee [45] P K C No C Mu Y R No No PB No

45 Tai [46] O K C No – Si Y Re No No B –

46 Taleizadeh et al [47] P K C No C Si Y R/S No No Ne No

47 Hsu and Hsu [48] P K C No C Si Y S/So Y No B No

48 Taleizadeh and Moshtagh [49] B K C No C Si Y R Y No LS No

49 This Paper P K Po Ti Po Si Y S/So Y No B No
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I(t): Net stock level at time t (0� t� T).

ID(t): Stock level of imperfect products at time t.

Ih s;Tð Þ: Average number of items holding in stock (units).

Ib s;Tð Þ: Average number of backordered items (units).

Id Tð Þ : Average amount of defective items carried in

inventory (units).

CH s; Tð Þ: Cost of carrying products ($/unit time).

CB s; Tð Þ: Backordering cost ($/unit time).

CO s; Tð Þ: Setup cost ($/unit time).

CI s; Tð Þ: Inspection cost ($/unit time).

CP s; Tð Þ: Production cost ($/unit time).

CD Tð Þ: Holding cost of defective items ($/unit time).

TCj s; Tð Þ: Total cost for case j (j = I, II, III) ($/unit time).

We keep the main assumptions given in [24].

(1) Infinite-horizon is assumed.

(2) The amount of demand throughout the inventory

cycle T is considered to be d, and average demand

rate is r = d/t units per cycle.

(3) The inventory system consists of a single item.

(4) The demand rate is less than the production rate.

(5) The production rate P(t) is proportional to demand

rate at any time t (0� t� t0) and is defined by

P(t) = aD(t) with a[ 1.

(6) We suppose that producing defective items is unavoid-

able and the fraction of defective items or defective

rate is denoted by k, which is a constant value.

(7) The produced items of perfect quality are added to

inventory with rate 1� kð ÞP tð Þ � D tð Þ, during the

production cycle.

(8) To warrant that the consumer demand is totally

covered by the products of perfect quality, it is

assumed that a 1� kð Þ � 1[ 0 or 1� 1
a [ k.

(9) Shortages are allowed and fully backordered.

(10) To warrant that there is enough replenishment

capacity to meet the demand, we assume that

inspection occurs immediately after producing an

item.

(11) However, the average demand per cycle d is deter-

ministic, the number of items withdrawn from stock

is dependent on the time at which they are removed.

Therefore, we suppose that the cumulative demand

CD tð Þ up to time t (0� t� T) follows a power pattern

and is given by CD tð Þ ¼ d t
T

� �1=n
, Where d is the

demand quantity during the inventory cycle and n is

the demand pattern index, with 0\n\1.

The demand rate at time t (0� t� T), follows a time-

power pattern too and is the derivative of the function

CD tð Þ, that is D tð Þ ¼ rt 1�nð Þ=n

nT 1�nð Þ=n, with 0� t\T . The nature

of this demand pattern is completely defined by n. If the

demand pattern index is n ¼ 1, then demand is uniform

(has a constant rate) and the inventory decreases linearly.

When a great portion of demand happens mainly at the

beginning of the cycle, then demand follows a pattern

law with index n[ 1. But if a larger percentage of

demand occurs at the end of the scheduling period, then

the demand of the inventory system is defined by a

power pattern index n\1. Also by using this kind of

demand function, it is supposed that the demand is

dependent on both time and the length of the scheduling

period. The length of the inventory cycle or scheduling

period is a fraction of the unit time. For example, assume

that the unit time is a year. If T ¼ 1
2
; 1
3
; . . . then a year

consists of 2, 3, … inventory cycles, respectively.

The decision variables are cycle length T and reorder

point s.

3. Mathematical models

This section extends the model proposed by [24] in some

directions. Let I tð Þ be the net stock level at time

t 0� t� Tð Þ. Inventory cycle starts with s units net stock at

time 0. Also production period starts at time t = 0 and

continues until t ¼ t0. We suppose that the demand rate is

less than the production rate in interval 0� t� t0. With

regard to that in real world situations the production

process is usually imperfect, a certain fraction k of

defective items is supposed to be produced in each pro-

duction period. Thus, the production rate of non-defective

Case II
Case I

Cases II, III

Stock  
Non-def

Def

Sell (rate D(t))

Sale (end of 
production cycle) 

Sale (end of 
inventory cycle)

Case III

Raw material Process Inspection  

Sale/Scrap  

Non-defective

Defective

Figure 1. Processing a lot size.
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items can be obtained by 1� kð ÞP tð Þ. Therefore, inventory
is accumulated during the production period 0; t0½ �, at a

rate 1� kð ÞP tð Þ � D tð Þ.
Under these conditions, the following differential equa-

tions govern the system:

dI tð Þ
dt

¼ 1� kð ÞP tð Þ � D tð Þ ¼ 1� kð Þa� 1ð ÞD tð Þ

¼ 1� kð Þa� 1ð Þ rt 1�nð Þ=n

nT 1�nð Þ=n ;

0� t� t0

ð1Þ

dI tð Þ
dt

¼ �D tð Þ ¼ � rt 1�nð Þ=n

nT 1�nð Þ=n ; t0 � t� T ð2Þ

With regard to boundary conditions I 0ð Þ ¼ I Tð Þ ¼ s, the

above differential equations are solved and the solutions are

as follows:

I tð Þ ¼ sþ 1� kð Þa� 1ð ÞrT t

T

� �1=n

; 0� t� t0 ð3Þ

I tð Þ ¼ sþ rT � rT
t

T

� �1=n

; t0 � t� T ð4Þ

The net inventory level at t0, I t0ð Þ, specified by both

Eqs. (3) and (4) must be equal. So that t0 will be found:

t0 ¼ T

1� kð Þnan ð5Þ

When k ¼ 0, Eq. (5) reduces to t0 ¼ T
an (given in [24]), that

is less than t0 ¼ T
1�kð Þnan. It is correct because when defective

items are produced, system needs more production time to

meet the demand. Therefore, function I(t) is increasing on

0; t0½ Þ and decreasing on (t0; T�. Also I(t) is a continuous and

T-periodic function on interval 0;1½ Þ. The total demand on

interval 0; T½ Þ is computed by:

ZT

0

D tð Þdt ¼
ZT

0

r

n

t

T

� �1
n
�1

dt ¼ rT ð6Þ

A production size Q must be added to stock at the end of

each cycle as follows:

Q ¼
Zt0

0

P tð Þdt ¼ a
Zt0

0

r

n

t

T

� �1
n
�1

dt ¼ rT

1� k
ð7Þ

When the system does not consist of defective items

ðk ¼ 0Þ, the replenishment size is less than the situation

with defective items and it needs to produce more items to

meet the demand.

Since total demand is rT by producing rT
1�k units in pro-

duction time, fraction k of this lot size, given by krT
1�k, are

defective items and fraction 1� k, given by rT, are non-

defective items. Therefore, rT units of the lot size are of

good quality and it can totally fill the demand of the cycle.

When the production quantity is entirely added to stock,

the maximum stock level is obtained and calculated by:

I t0ð Þ ¼ sþ 1� kð Þa� 1ð ÞrT t0

T

� �1=n

¼ sþ 1� kð Þa� 1

1� kð Þa rT

ð8Þ

3.1 The average inventory level and the average

shortage

With regard to the reorder point s and the maximum

inventory level given in Eq. (8), three different behaviors of

system may occur.

(1) If s� 0, there are no shortages and the system only

includes inventories.

(2) If (Iðt0Þ � 0 and s� 0) or
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, the

system includes some inventories and some shortages

too.

(3) If I t0ð Þ � 0 or s� � 1�kð Þa�1ð Þ
1�kð Þa rT , only shortages occur.

If s� 0, then only inventories are contained. The average

quantity of inventory is as follows:

Ih s; Tð Þ ¼ 1

T

Zt0

0

sþ 1� kð Þa� 1ð Þ rT

T1=n
t1=n

� 	
dt

þ 1

T

ZT

t0

sþ rT � rT

T1=n
t1=n

� 	
dt

¼ sþ 1� kð Þnan � 1ð ÞrT
nþ 1ð Þ 1� kð Þnan ð9Þ

Also, there are no shortages here, Iw s; Tð Þ ¼ 0.

If s� � 1�kð Þa�1ð Þ
1�kð Þa rT , only shortages exist. The average

quantity of shortage:

Ib s; Tð Þ ¼ �1

T

Zt0

0

sþ 1� kð Þa� 1ð Þ rT

T1=n
t1=n

� 	
dt

� 1

T

ZT

t0

sþ rT � rT

T1=n
t1=n

� 	
dt

¼ 1� 1� kð Þnanð ÞrT
nþ 1ð Þ 1� kð Þnan � s ð10Þ

And there are no inventories carried, Ih s; Tð Þ ¼ 0.

Eventually, if
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, both backorders and

inventories occur. Suppose that at times t1 and t2 within the

production period and the period without production,

respectively, the stock level reaches zero. Since

I t1ð Þ ¼ I t2ð Þ ¼ 0, from Eqs. (3) and (4) we obtain t1 and t2
according to decision variables s and T:
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t1 ¼
�sð ÞnT

1� kð Þa� 1ð ÞnrnTn
ð11Þ

t2 ¼
sþ rTð ÞnT
rnTn

ð12Þ

In this situation, the average inventory level is as follows:

Ih s; Tð Þ ¼ 1

T

Zt0

t1

sþ 1� kð Þa� 1ð Þ rT

T1=n
t1=n

� 	
dt

þ 1

T

Zt2

t0

sþ rT � rT

T1=n
t1=n

� 	
dt

¼ sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ 1� kð Þnan

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn

ð13Þ

And the average shortage is:

Ib s; Tð Þ ¼ 1

T

Zt1

0

sþ 1� kð Þa� 1ð Þ rT

T1=n
t1=n

� 	
dt

þ 1

T

ZT

t2

sþ rT � rT

T1=n
t1=n

� 	
dt

¼ sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn
� s

ð14Þ

Also, the average number of production runs is 1
T
:

3.2 Costs and optimal inventory policies

We consider three different cases of inventory systems and

find the optimal inventory policy for them.

Case I In this situation, at the time when a defective item is

recognized, it may be sold with a discount or may be scrap-

ped. These defective items are not assumed to be in inventory

(see figure 2). Now, we model the elements of cost function

in the proposed model. Notice that the unit of time can be for

example ‘‘year’’. The production cost is as follows:

CP Tð Þ ¼ Cp

Q

T
¼ Cp

r

1� k
ð15Þ

The inspection cost is:

CI Tð Þ ¼ Ci

Q

T
¼ Ci

r

1� k
ð16Þ

The set-up cost is:

CO Tð Þ ¼ Co

1

T

� �
¼ Co

T
ð17Þ

The holding cost is given by CH s; Tð Þ ¼ ChIh s; Tð Þ.
With regard to three situations mentioned before, three

holding costs may occur. First ifs� 0, from Eq. (9) the

holding cost is as follows:

CH s; Tð Þ ¼ Ch sþ 1� kð Þnan � 1ð ÞrT
nþ 1ð Þ 1� kð Þnan

� 	
ð18Þ

If
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, from Eq. (13) we have:

CH s; Tð Þ ¼ Ch

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ 1� kð Þnan

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn

# ð19Þ

And if s� � 1�kð Þa�1ð Þ
1�kð Þa rT , we have CH s; Tð Þ ¼ 0, because

there are no inventories in the system. Finally, the shortage cost

is calculated byCB s; Tð Þ ¼ CbIb s; Tð Þ. If s� 0,CB s; Tð Þ ¼ 0,

because there are no shortages. For
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, from

Eq. (14) the shortage cost is as follows:

CB s; Tð Þ ¼ Cb

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn
� s

# ð20Þ

Finally, if s� � 1�kð Þa�1ð Þ
1�kð Þa rT , from Eq. (10), the shortage

cost is given by

CB s; Tð Þ ¼ Cb

1� 1� kð Þnanð ÞrT
nþ 1ð Þ 1� kð Þnan � s

� 	
ð21Þ

The total cost is the sum of all five costs. That is:

TCI s; Tð Þ ¼ CP Tð Þ þ CI Tð Þ þ CO Tð Þ þ CH s; Tð Þ
þ CB s; Tð Þ ð22Þ

7

I(t′)

Tt2 t′t1 0

s

Time

Production period

Scheduling period

I(t)

(1- )P(t)-D(t)

-D(t)

Figure 2. Net inventory level for the EPQ model with a power

demand rate dependent production rate and defective items (case I).
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Therefore, the total cost in three possible situations can be

found. First if s� 0, the total cost per unit time is given by:

TCI s; Tð Þ ¼ Cp

r

1� k
þ Ci

r

1� k
þ Co

T

þ Ch sþ 1� kð Þnan � 1ð ÞrT
nþ 1ð Þ 1� kð Þnan

� 	
ð23Þ

If
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, the total cost is calculated by:

TCI s; Tð Þ ¼ Cp

r

1� k
þ Ci

r

1� k
þ Co

T

þ Ch

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ 1� kð Þnan

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn

#

þ Cb

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn
� s

#

ð24Þ

And for s� � 1�kð Þa�1ð Þ
1�kð Þa rT , the total cost is as follows:

TCI s; Tð Þ ¼ Cp

r

1� k
þ Ci

r

1� k
þ Co

T

þ Cb

1� 1� kð Þnanð ÞrT
nþ 1ð Þ 1� kð Þnan � s

� 	
ð25Þ

To find the minimum of the function TCI s; Tð Þ, we con-

sider three different regions of s. As the cost TCI 0; Tð Þ is

always less than the cost TCI s; Tð Þ, the minimum cost cannot

be in the region s� 0. Also, sinceTCI s; Tð Þ is always greater
thanTCI

� 1�kð Þa�1ð Þ
1�kð Þa rT ; T

� �
, then minimum cost cannot be at

s� � 1�kð Þa�1ð Þ
1�kð Þa rT . So that, the optimal cost can be found at

� 1�kð Þa�1ð Þ
1�kð Þa rT � s� 0. From partial derivatives of objective

function (22) with respect to decision variables, we have:

oTCI s; Tð Þ
os

¼ Ch þ Cbð Þ sþ rTð Þn

rnTn
� �sð Þn

1� kð Þa� 1ð ÞnrnTn

� 	

� Cb

ð26Þ

oTCI s; Tð Þ
oT

¼ Ch þ Cbð Þ sþ rTð Þn rT � nsð Þ
nþ 1ð ÞrnTnþ1

�

� n �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTnþ1

#

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2

ð27Þ

Equaling these derivatives to zero the optimal solution

ðs�; T�Þ can be calculated. Thus, we have:

Ch þ Cbð Þ sþ rTð Þn

rnTn
� �sð Þn

1� kð Þa� 1ð ÞnrnTn

� 	
� Cb ¼ 0

ð28Þ

Ch þ Cbð Þ sþ rTð Þn rT � nsð Þ
nþ 1ð ÞrnTnþ1

�

� n �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTnþ1

#

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2
¼ 0

ð29Þ

Let x be a new variable defined by x ¼ �s
rT
. Then the region

� 1�kð Þa�1ð Þ
1�kð Þa rT � s� 0 is equivalent to 0� x� 1�kð Þa�1ð Þ

1�kð Þa .

Also, Eqs. (28) and (29) are respectively equivalent to:

1� xð Þn� xn

1� kð Þa� 1ð Þn �
Cb

Ch þ Cb

¼ 0 ð30Þ

Ch þ Cbð Þ 1� xð Þn 1þ nxð Þr
nþ 1ð Þ � n Ch þ Cbð Þrxnþ1

nþ 1ð Þ 1� kð Þa� 1ð Þn

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2

¼ 0

ð31Þ

Proposition 1 Equal 1� xð Þn� xn

1�kð Þa�1ð Þn �
Cb

CbþCh
¼ 0

has a unique solution x�on the interval 0; 1�kð Þa�1ð Þ
1�kð Þa

� �
.

Proof Please see ‘‘Appendix A’’.

Use one of the numerical methods (e.g., Newton–Raphson)

to find the solution x� (see, i.e., [50]). From Eq. (30), we have:

xn

1� kð Þa� 1ð Þn ¼ 1� xð Þn� Cb

Ch þ Cb

ð32Þ

Now, by replacement of Eq. (32) in Eq. (31), we have:

Ch þ Cbð Þ 1� xð Þnr
nþ 1ð Þ þ nCbrx

nþ 1ð Þ �
Chr

nþ 1ð Þ 1� kð Þnan

� Cbr

nþ 1ð Þ �
Co

T2

¼ 0 ð33Þ

Finally, we can obtain the best inventory cycle length T�,
by replacement the optimal solution of Eq. (30) in Eq. (33).

That cycle length is calculated by:

T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Co

r
ChþCbð Þ 1�x�ð Þn

nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ

h i

vuut

ð34Þ

206 Page 8 of 19 Sådhanå (2019) 44:206



The optimal shortage level is s� ¼ �x�rT�. Also as Q ¼
rT
1�k then the economic production quantity Q� is as follows:

Q� ¼ 1

1� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cor

ChþCbð Þ 1�x�ð Þn
nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ

h i

vuut

ð35Þ

Proposition 2 The total cost function TCI s; Tð Þ is strictly
convex.

Proof See ‘‘Appendix A’’.

Case II In this case, the items with imperfect quality are

preserved in inventory and sold in each cycle, when the

replenishment period is finished (see figure 3).

The difference between Case I and Case II is that in sit-

uation II all of the imperfect products are held in inventory

until finishing the replenishment cycle. In addition to five

different costs explained in the previous situation, Case II

consists of the holding cost of defective items. In this sit-

uation during the period 0; t0½ �, inventory of defective items

would have risen at a rate kP tð Þ. So that, the differential

equation is given by:

dID tð Þ
dt

¼ kP tð Þ ¼ kaD tð Þ ¼ kart 1�nð Þ=n

nT 1�nð Þ=n ; 0� t� t0 ð36Þ

When ID tð Þ is the inventory level of defective items and

ID 0ð Þ ¼ 0. The solution of the above differential equation is:

ID tð Þ ¼ karT
t

T

� �1=n

; 0� t� t0 ð37Þ

Suppose that Id Tð Þ be the average amount of defective

items carried in inventory. It can be calculated by:

Id Tð Þ ¼ 1

T

Zt0

0

karT

T1=n
t1=n

� 	
dt ¼ knrT

nþ 1ð Þ 1� kð Þnþ1an
ð38Þ

And, the cost of carrying defective items is:

CD Tð Þ ¼ ChId Tð Þ ¼ ChknrT

nþ 1ð Þ 1� kð Þnþ1an
ð39Þ

By adding CD Tð Þ to the total cost of the previous case, the

total cost of this situation will be found by:

TCII s; Tð Þ ¼ TCI s; Tð Þ þ CD Tð Þ ð40Þ

Similar to Case I, the minimum inventory cost, can be

found in the region
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0. So, we have:

TCII s; Tð Þ ¼ Cp

r

1� k
þ Ci

r

1� k
þ Co

T

þ Ch

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ 1� kð Þnan

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn

#

þ Cb

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn
� s

#

þ ChknrT

nþ 1ð Þ 1� kð Þnþ1an

ð41Þ

Equaling partial derivatives of the total cost function (41) to

zero, we have:

oTCII s; Tð Þ
os

¼ Ch þ Cbð Þ sþ rTð Þn

rnTn
� �sð Þn

1� kð Þa� 1ð ÞnrnTn

� 	

� Cb

¼ 0

ð42Þ

oTCII s; Tð Þ
oT

¼ Ch þ Cbð Þ sþ rTð Þn rT � nsð Þ
nþ 1ð ÞrnTnþ1

�

� n �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTnþ1

#

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ

�Co

T2
þ Chknr

nþ 1ð Þ 1� kð Þnþ1an
¼ 0

ð43Þ

Defining x ¼ �s
rT
, the region

� 1�kð Þa�1ð Þ
1�kð Þa rT � s� 0 is

equivalent to 0� x� 1�kð Þa�1ð Þ
1�kð Þa . Also, Eqs. (42) and (43) are

respectively equivalent to:

1� xð Þn� xn

1� kð Þa� 1ð Þn �
Cb

Cb þ Ch

¼ 0 ð44Þ

I(t′)

Tt2t′t1 0

s

Time

Production period

Scheduling period

I(t)

(1- )P(t)-D(t)

-D(t)P(t)

Figure 3. Net inventory level for the EPQ with a power demand

rate dependent production rate and defective items (Case II).
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Ch þ Cbð Þ 1� xð Þn 1þ nxð Þ
nþ 1ð Þ � n Ch þ Cbð Þrxnþ1

nþ 1ð Þ 1� kð Þa� 1ð Þn

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2

þ Chknr

nþ 1ð Þ 1� kð Þnþ1an

¼ 0

ð45Þ

Equation (44) is exactly same as Eq. (30). So solution x�

within 0; 1�kð Þa�1ð Þ
1�kð Þa

� �
is unique. Now, by replacement of

Eq. (32) in Eq. (45), we have:

Ch þ Cbð Þr 1� xð Þn

nþ 1ð Þ þ nCbrx

nþ 1ð Þ �
Chr

nþ 1ð Þ 1� kð Þnan

� Cbr

nþ 1ð Þ �
Co

T2
þ Chknr

nþ 1ð Þ 1� kð Þnþ1an

¼ 0 ð46Þ

Finally, we can obtain the optimal inventory policy

ðs�; T�Þ, by replacement the optimal solution of Eq. (44) in

Eq. (46). The optimal scheduling period is calculated by:

T�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Co

r
ChþCbð Þ 1�x�ð Þn

nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ þ
Chkn

nþ1ð Þ 1�kð Þnþ1an

h i

vuut

ð47Þ

The optimal shortage level is s� ¼ �x�rT�. Also, Q� is as

follows:

Q�

¼ 1

1� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cor

ChþCbð Þ 1�x�ð Þn
nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ þ
Chkn

nþ1ð Þ 1�kð Þnþ1an

h i

vuut

ð48Þ

Using the second order derivatives of TCII s; Tð Þ respect
to s and T, we have the same formula and Hessian as in case

I. Thus, TCII s; Tð Þ is strictly convex (see proposition 2).

Case III The behavior of this inventory system is similar

to Case II, the only difference is that the imperfect products

are sold when each inventory cycle is finished (see fig-

ure 4). In this situation, producing defective items starts

just after t ¼ 0 and continues up to t ¼ t0, when the

inventory level of defective items attains a maximum level

ID t0ð Þ. With respect to that the fraction k of all Q ¼ rT
1�k

produced items are defective, the total number of defective

items is as follows:

ID t0ð Þ ¼ krT
1� k

ð49Þ

And after reaching that, this value doesn’t change until T.

So, Id Tð Þ is given by:

Id Tð Þ ¼ 1

T

Zt0

0

karT

T1=n
t1=n

� 	
dt þ krT

1� k
T � t0ð Þ

0

@

1

A

¼ knrT

nþ 1ð Þ 1� kð Þnþ1an
þ krT
1� k

T � T

1� kð Þnan

� �

¼ krT

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �

ð50Þ

And, the cost of inventory of defective items is:

CD Tð Þ ¼ ChId Tð Þ ¼ ChkrT

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �

ð51Þ

By adding CD Tð Þ to the total cost of the previous case, the

total cost of this situation will be found by:

TCIII s; Tð Þ ¼ TCI s; Tð Þ þ CD Tð Þ ð52Þ

So that, we have:

TCIII s; Tð Þ

¼ Cp

r

1� k
þ Ci

r

1� k
þ Co

T
þ Ch

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ 1� kð Þnan

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn

#

þ Cb

sþ rTð Þnþ1

nþ 1ð ÞrnTn
� rT

nþ 1ð Þ

"

þ �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTn
� s

#

þ ChkrT

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �

ð53Þ

Equaling partial derivatives of the total cost function (52) to

zero, we have:

oTCIII s; Tð Þ
os

¼ Ch þ Cbð Þ sþ rTð Þn

rnTn
� �sð Þn

1� kð Þa� 1ð ÞnrnTn

� 	

� Cb

¼ 0

ð54Þ

Production period

Scheduling period

P(t)

I(t′)

Tt2t′t10

s

Time

I(t)

(1- )P(t)-D(t) -D(t)

Figure 4. Net inventory level for the EPQ with a power demand

rate dependent production rate and defective items (Case III).
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oTCIII s; Tð Þ
oT

¼ Ch þ Cbð Þ

sþ rTð Þn rT � nsð Þ
nþ 1ð ÞrnTnþ1

� n �sð Þnþ1

nþ 1ð Þ 1� kð Þa� 1ð ÞnrnTnþ1

" #

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2

þ Chkr

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �
¼ 0

ð55Þ
Again defining x ¼ �s

rT
, the region

� 1�kð Þa�1ð Þ
1�kð Þa rT � s� 0 is

equivalent to 0� x� 1�kð Þa�1ð Þ
1�kð Þa . Also, Eqs. (54) and (55) are

respectively equivalent to:

1� xð Þn� xn

1� kð Þa� 1ð Þn �
Cb

Cb þ Ch

¼ 0 ð56Þ

Ch þ Cbð Þ 1� xð Þn 1þ nxð Þ
nþ 1ð Þ � n Ch þ Cbð Þrxnþ1

nþ 1ð Þ 1� kð Þa� 1ð Þn

� Chr

nþ 1ð Þ 1� kð Þnan �
Cbr

nþ 1ð Þ �
Co

T2

þ Chkr

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �

¼ 0

ð57Þ

Now, by replacement of Eq. (32) in Eq. (57), we have:

Ch þ Cbð Þr 1� xð Þn

nþ 1ð Þ þ nCbrx

nþ 1ð Þ �
Chr

nþ 1ð Þ 1� kð Þnan

� Cbr

nþ 1ð Þ �
Co

T2
þ Chkr

1� kð Þnþ1an
1� kð Þnan � 1

nþ 1

� �

¼ 0

ð58Þ

Finally, like the previous cases, we have:

The optimal shortage level is s� ¼ �x�rT�. Also, Q� is as

follows:

By taking the second order derivatives of TCIII s; Tð Þ with
respect to s and T, we have the same formula and Hessian

as in case I. Thus, the function TCIII s; Tð Þ is strictly convex

(see proposition 2).

4. Procedure for determining the optimal values

A brief procedure is explained to obtain the optimum val-

ues for all the three proposed cases. Notice that optimal

value of variable x is obtained by Eq. (30), or (44) or (56),

that are the same for all three cases.

Step 1 Enter the values of parameters.

Step 2 Obtain x� of equation 1� xð Þn� xn

1�kð Þa�1ð Þn �
Cb

CbþCh
¼ 0, using a numerical method.

Step 3 Specify T�, using Eq. (34) for Case I, Eq. (47) for

Case II or Eq. (59) for case III. Use s� ¼ �x�rT� to

calculate optimal reorder point.

Step 4 Determine optimal lot size Q� given by formula

(35) for Case I, (48) for Case II or (60) for Case III.

Step 5 Calculate the minimum cost TC�
I for Case I using

Eq. (24), TC�
II for Case II using Eq. (41) and TC�

III for Case

III using Eq. (53).

5. Numerical example

In order to provide input data, we consider an inventory

system, in which the parametric values are defined as

Ch = $4 per unit and year, Cb = $5 per unit, Co = $100 per

replenishment, Ci = $2 per unit, Cp = $6 per unit,

r = 1200 units per year, a = 1.4, k = 0.2 and n = 2. Using

Eq. (30), the following equation must be solved.

1� xð Þ2� x2

0:122
¼ 5

9
ð61Þ

T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Co

r
ChþCbð Þ 1�x�ð Þn

nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ þ
Chk

1�kð Þnþ1an
1� kð Þnan � 1

nþ1

� �h i

vuut ð59Þ

Q� ¼ 1

1� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cor

ChþCbð Þ 1�x�ð Þn
nþ1ð Þ þ nCbx�

nþ1ð Þ �
Ch

nþ1ð Þ 1�kð Þnan �
Cb

nþ1ð Þ þ
Chk

1�kð Þnþ1an
1� kð Þnan � 1

nþ1

� �h i

vuut ð60Þ
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There is a unique solution for this equation inside the interval

0; 1�kð Þa�1ð Þ
1�kð Þa ¼ 0:107143

� �
, that is x� ¼ 0:067286. Now for

three different cases, we have following optimal values:

Case I Using Eq. (34), the optimal cycle length is

T� ¼ 0:8927 year ¼ 325:8355 days. From Eq. (35) the

economic lot size is Q� ¼ 1339:1 units. Using formula

s� ¼ �x�rT�, the optimal reorder point is s� ¼ �72:0826
units. From Eq. (24), the optimal cost is TC�

I ¼ $12224 per

year.

Case II Using Eq. (47), the optimal cycle length is

T� ¼ 0:3620 year ¼ 132:13 days. From Eq. (48) the eco-

nomic lot size is Q� ¼ 542:9552 units. Using formula

s� ¼ �x�rT�, the optimal reorder point is s� ¼ �29:2266
units. From Eq. (41), the optimal cost is TC�

II ¼ $12553 per

year.

Case III Using Eq. (59), the optimal cycle length is

T� ¼ 0:2466 year ¼ 90:009 days. From Eq. (60) the eco-

nomic lot size is Q� ¼ 369:9083 units. Using formula

s� ¼ �x�rT�, the optimal reorder point is s� ¼ �19:9117
units. From Eq. (53), the optimal cost is TC�

III ¼ $12654 per

year.

Figures 5, 6 and 7 show the total cost as a function of

two variables T and s for Cases I, II and III by using the

above example’s input parameters, respectively.

6. Numerical analyses and insights

Some numerical analyses are done to discover the effect of

changes in parameters on the results. Basically, the impacts

of the production rate a, the defective rate k and the power

demand index n on the variables and the total cost of the

system are analyzed in this section. Some extra examples

are reported in tables 3 and 4 using the input data taken

from [24]. According to the following values of parameters,

table 3 is provided: n = 3, Co = 100, r = 1200, Ch = 4,

Cb = 5, Ci = 0 and Cp = 0. Optimal policies of inventory

systems considering several combinations of parameters a
and k are shown in table 3.

Also, the following values are used in table 4: r = 1200,

Co = 100, Ch = 4, Cb = 5, Ci = 2, Cp = 6 and a ¼ 1:5.

The optimal solutions for various values of n and k are

calculated in table 4.

The graph of the minimum cost and lot size changes

versus the defective rate changes for Case I is shown in

figures 8 and 9, using table 4. In each figure, four different

values of n (0.5, 1, 1.5 and 2) are considered.

Figures 10 and 11 show the total cost and the cycle

length as functions of the defective rate for Case I, when

input parameters are used from table 3. In each figure dif-

ferent values of a are considered (a ¼ 1:1; 1:3; 1:5; 1:9).

Figures 12 and 13 show changes of the total cost respect

to the changes of the production rate for Cases I and II,

respectively, using table 3. In each figure, four different

values of k are assumed (k ¼ 0:02; 0:05; 0:2; 0:5).

Figure 5. Total cost for Case I.

Figure 6. Total cost for Case II.

Figure 7. Total cost for Case III.
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Table 3. Numerical analysis of production rate a and defective rate k.

r = 1200, Co = 100, Ch = 4, Cb = 5, Ci = 0, Cp = 0 and n = 3

Case Production rate Defective rate x� T� Q� s� TC�

I a = 1.1 k = 0.02 0.052006 1.1441 1400.9 -71.4004 174.8089

II 0.8605 1053.7 -53.7030 232.4160

III 0.6845 838.1156 -42.7153 252.0586

I k = 0.05 0.031776 1.5404 1945.8 -58.7381 129.8321

II 0.6931 875.4686 -26.4279 288.5662

III 0.4966 627.3088 -18.9367 320.2658

I a = 1.3 k = 0.02 0.129183 0.5934 726.6420 -91.9924 337.0263

II 0.5595 685.0479 -86.7266 357.4896

III 0.4965 607.9932 -76.9715 385.1548

I k = 0.05 0.118712 0.6386 806.6574 -90.9719 313.1822

II 0.5378 679.2764 -76.6064 371.9119

III 0.4207 531.4616 -59.9363 433.0302

I k = 0.1 0.096386 0.7525 1003.3 -87.0364 265.7812

II 0.4843 645.7389 -56.0162 412.9636

III 0.3378 450.3807 -39.0694 507.7303

I k = 0.2 0.028491 1.6407 2461.0 -56.0936 121.8980

II 0.3456 518.3996 -11.8158 578.7036

III 0.2377 356.4819 -8.1252 651.4104

I a = 1.5 k = 0.02 0.159193 0.4748 581.4351 -90.7092 421.1956

II 0.4629 566.8428 -88.4327 432.0385

III 0.4238 518.8829 -80.9505 462.1705

I k = 0.05 0.154768 0.4926 622.2047 -91.4825 406.0264

II 0.4576 577.9829 -84.9806 437.0917

III 0.3757 474.5803 -69.7774 507.7250

I k = 0.1 0.144553 0.5323 709.6845 -92.3283 375.7534

II 0.4404 587.2210 -76.3961 454.1160

III 0.3171 422.7598 -55.0001 579.2273

I k = 0.2 0.107512 0.6921 1038.1 -89.2874 288.9863

II 0.3702 555.3206 -47.7629 540.2281

III 0.2386 357.9549 -30.7876 713.8043

I a = 1.7 k = 0.02 0.169830 0.4266 522.3629 -86.9386 468.8269

II 0.4206 514.9709 -85.7084 475.5566

III 0.3898 477.3381 -79.4450 506.8553

I k = 0.05 0.167995 0.4360 550.6916 -87.8878 458.7528

II 0.4184 528.5607 -84.3558 477.9609

III 0.3516 444.1698 -70.8874 552.9552

I k = 0.1 0.163656 0.4560 608.0107 -89.5541 438.5886

II 0.4108 547.7270 -80.6749 486.8604

III 0.3031 404.0982 -59.5198 626.0575

I k = 0.2 0.146161 0.5260 789.0588 -92.2637 380.1991

II 0.3729 559.3404 -65.4030 536.3456

III 0.2357 353.5627 -41.3417 764.1718

I a = 1.9 k = 0.02 0.173899 0.4020 492.2310 -83.8865 497.5264

II 0.3983 487.7663 -83.1256 502.0804

III 0.3716 454.9593 -77.5346 534.0568

I k = 0.05 0.173057 0.4077 515.0259 -84.6724 490.5218

II 0.3972 501.7634 -82.4920 503.4872

III 0.3379 426.8690 -70.1790 580.9362

I k = 0.1 0.171085 0.4197 559.6163 -86.1678 476.5168

II 0.3929 523.9172 -80.6709 508.9862

III 0.2943 392.4395 -60.4265 655.9648

I k = 0.2 0.163007 0.4588 688.2448 -89.7510 435.8910

II 0.3698 554.6882 -72.3345 540.8441

III 0.2328 349.1342 -45.5291 799.6179
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Figures 14 and 15 show changes of total cost and reorder

point respect to the changes of the power demand index for

Case I, using table 3. In each figure, four different values of

k are assumed (k ¼ 0:02; 0:05; 0:2; 0:5).
Some sensitivity analyses can be expressed as follows.

• From table 3, we can observe that fixed the production

rate parameter a and considering Case I, the value x�,
the total amount of backorders �s� and the minimum

cost TC� decrease as the defective rate k increases.

However, the optimal cycle length T� and the

Table 4. Numerical analysis of the power demand index n and defective rate k.

r = 1200, Co = 100, Ch = 4, Cb = 5, Ci = 2, Cp = 6 and a ¼ 1:5

Case Index of demand Defective rate x� T� Q� s� TC�

I n = 0.5 k = 0.02 0.077131 0.4813 589.3351 -44.5469 10211

II 0.4669 571.7700 -43.2192 10224

III 0.4460 546.1191 -41.2803 10232

I k = 0.05 0.070871 0.4992 630.5918 -42.4561 10506

II 0.4604 581.5405 -39.1536 10540

III 0.4140 522.9936 -35.2118 10559

I k = 0.1 0.059985 0.5372 716.2218 -38.6663 11039

II 0.4474 596.5414 -32.2052 11114

III 0.3709 494.5434 -26.6987 11149

I k = 0.2 0.036315 0.6750 1012.5 -29.4137 12296

II 0.4136 620.3601 -18.0227 12484

III 0.3080 461.9538 -13.4207 12537

I n = 1 k = 0.02 0.142101 0.4843 593.0553 -82.5883 10209

II 0.4664 571.1548 -79.5384 10225

III 0.4367 534.7863 -74.4738 10239

I k = 0.05 0.132553 0.5015 633.4326 -79.7652 10504

II 0.4535 572.8004 -72.1301 10546

III 0.3921 495.3393 -62.3758 10581

I k = 0.1 0.115226 0.5379 717.1363 -74.3695 11039

II 0.4291 572.0771 -59.3263 11133

III 0.3373 449.7188 -46.6374 11193

I k = 0.2 0.074074 0.6708 1006.2 -59.6284 12298

II 0.3721 558.1562 -33.0759 12537

III 0.2652 397.7475 -23.5702 12622

I n = 1.5 k = 0.02 0.164830 0.4919 602.2971 -97.2911 10203

II 0.4734 579.6178 -93.6276 10218

III 0.4376 535.8040 -86.5502 10239

I k = 0.05 0.155271 0.5101 644.3930 -95.0528 10497

II 0.4596 580.5811 -85.6400 10540

III 0.3873 489.2493 -72.1679 10587

I k = 0.1 0.137308 0.5490 732.0051 -90.4591 11031

II 0.4320 576.0261 -71.1837 11130

III 0.3274 436.4867 -53.9398 11211

I k = 0.2 0.091643 0.6912 1036.8 -76.0152 12289

II 0.3635 545.1778 -39.9694 12550

III 0.2506 375.9564 -27.5630 12661

I n = 2 k = 0.02 0.170785 0.4891 598.8754 -100.2334 10205

II 0.4723 578.3360 -96.7957 10219

III 0.4339 531.3188 -88.9265 10244

I k = 0.05 0.162401 0.5081 641.8267 -99.0216 10499

II 0.4611 582.4845 -89.8663 10539

III 0.3831 483.8902 -74.6550 10596

I k = 0.1 0.145939 0.5490 732.0333 -96.1490 11031

II 0.4357 580.8940 -76.2976 11126

III 0.3223 429.7425 -56.4446 11224

I k = 0.2 0.100652 0.7014 1052.1 -84.7156 12258

II 0.3630 544.5268 -43.8462 12551

III 0.2439 365.8481 -29.4587 12685
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economic lot size Q� increase as the defective rate k
increases. In the same situation, but considering Case

II, the minimum cost TC� increases as the defective

rate k increases. The reason is that in Case I we did not

consider the holding cost of defective items; however,

in Case 2 we consider it and because of that the results

of Case II are more reasonable. Therefore, Case II can

Figure 8. Changes of the total cost value with respect to the

changes of the defective rate for Case I, using table 4.

Figure 9. Changes of the lot size value with respect to the

changes of the defective rate for Case I, using table 4.
Figure 12. Changes of the total cost value with respect to the

changes of the production rate for Case I, using table 3.

Figure 11. Changes of the cycle length value with respect to the

changes of the defective rate for Case I, using table 3.

Figure 10. Changes of the total cost value with respect to the

changes of the defective rate for Case I, using table 3.
Figure 13. Changes of the total cost value with respect to the

changes of the production rate for Case II, using table 3.
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show the real world situations much better (in both

cases, we do not have inspection and production costs

(Ci = Cp = 0)). Also, fixed the defective rate k and

considering Case I, if the production rate a increases

then the value x� and the minimum cost TC� increase.
However, the optimal cycle length T�and the economic

lot size Q� decrease as the production rate a increases.

• In the same table 3, fixed the production parameter a
and the defective rate k, we can observe that the

optimal cycle length T� and the economic lot size Q�

decrease from case I to case III. However, TC�

increases in this situation.

• In table 4, by fixing the power demand index n and

considering Case I, if the defective rate k increases

then the cycle length T�, the optimum lot size Q� and

the minimum cost TC� increase. However, the total

omount of backorders �s� and the value x� decrease as
the defective rate k increases. Also, fixed the defective

rate k and considering Case I, if n increases then the

value x� increases. However, for other inventory

policies, we can not find a standard pattern.

• In the same table 4, by fixing the power demand index

n and the defective rate k, we can observe that the

optimal cycle length T�and the optimum production

quantity Q� and the total amount of backorders �s�

decrease from Case I to case III. However, TC�

increases in this situation.

• Comparing tables 3 and 4, we can see that if produc-

tion and inspection costs are involved in the proposed

model (in table 4, Ci = 2 $/unit and Cp = 6 $/unit) then

fixed the other parameters the optimum cost TC�

increases as the defective rate k increases. However, if

production and inspection costs are not considered in

the proposed model (in table 3, Ci = 0 $/unit and

Cp = 0 $/unit), then fixed other parameters the optimal

cost TC� decreases as the defective rate k increases.

Additionally, it shows considering these costs can help

modeling the real world situations much better. When

production costs or holding cost of imperfect products

are not involved, the obtained results are not reliable

enough.

This research offers several managerial insights: all

previous related works have focused on the EPQ model in

which demand follows a power pattern without considering

imperfect items or imperfect items are involved but demand

is uniformly distributed. None of those models are appli-

cable enough to be used in the real world situations.

Another important feature of our models is considering the

time when those defective items are removed from the

inventory. One of the most valuable managerial insights of

our study is that when production cost and inspection cost

as well as holding cost of defective items are equal to zero

the results can not be same as the real world situations, as it

can be seen that in such cases when defective rate increases

the optimal cost decreases (instead of increasing). But when

one of production and inspection costs or holding cost of

imperfect items are involved the results can model the real

system accurately. Another managerial insight is that as the

defective rate increases optimum cycle length, best lot

quantity and total cost increase. Also case I can be suit-

able for very small factories that remove the imperfect

items when they are discovered or the firms that produce

medical items and have to remove defective products as

soon as possible. Many other firms can not do the same

thing and are forced to keep those items until the end of the

production cycle to be reworked or the end of the inventory

cycle to be scrapped or sold with a lower price.

7. Conclusions and future directions of research

In this research, we proposed EPQ models with a power

demand rate dependent production rate, allowing for

shortages completely backordered and defective items.

Three cases are considered for the inventory system

Figure 15. Changes of the reorder point value with respect to the

changes in the power demand index for Case I, using table 4.

Figure 14. Changes of the total cost value with respect to the

changes in the power demand index for Case I, using table 4.
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regarding to the date that defective items are drawn from

inventory. In the first case, we suppose that a defective item

is eliminated from inventory at the time when it is recog-

nized. In the second and third situations, it is assumed that

the items with imperfect quality are kept in stock and sold

in each cycle, after ending the replenishment and the

inventory cycles respectively. The optimum solutions

obtained by the mathematical models are unique and easily

calculated by the proposed algorithm. When imperfect

items, the holding cost of defective items, inspection and

production costs are not considered, the optimal inventory

policies consist of the formulate obtained by [24]. One

possible extension to the current paper can be considered

for rework process in the inventory system. Moreover, a

deterioration rate can be considered in the model. Another

research can study inventory systems with assuming that

shortages are lost sales or partially backorderd. Finally, one

can also consider the situation where demand depends on

the price of the products. Also we suggest to incorporate the

concept of this work as potentials extension to the problems

or models suggested by other researchers [51–53].

Appendix A

Proposition 1 Equal 1� xð Þn� xn

1�kð Þa�1ð Þn �
Cb

CbþCh
¼ 0 has

a unique solution x�on 0; 1�kð Þa�1ð Þ
1�kð Þa

� �
.

Proof Suppose that f(x) is a real function on [0,1] defined

by:

f xð Þ ¼ 1� xð Þn� xn

1� kð Þa� 1ð Þn �
Cb

Cb þ Ch

ðaÞ

f(x) is continuous, strictly decreasing differentiable on the

interval (0,1) because (notice that according to assumption

9, 1� kð Þa� 1[ 0):

f 0 xð Þ ¼ �n 1� xð Þn�1� nxn�1

1� kð Þa� 1ð Þn \0 ðbÞ

Also, we have f 0ð Þ ¼ Ch

CbþCh
[ 0 and f

1�kð Þa�1ð Þ
1�kð Þa

� �
¼

� Cb

CbþCh
\0. So, using the intermediate value theory, a

point x� exists in the interval 0; 1�kð Þa�1ð Þ
1�kð Þa

� �
, where

yðx�Þ ¼ 0. Finally, because of that the function is

decreasing on (0,1), the point x� is unique.

Proposition 2 The total cost function TCI s; Tð Þ is strictly

convex.

Proof Using the second order derivatives of TCI s; Tð Þ
respect to decision variables, we have:

o2TCI s; Tð Þ
os2

¼ Ch þ Cbð Þ n sþ rTð Þn�1

rnTn
þ n �sð Þn�1

1� kð Þa� 1ð ÞnrnTn

" #

ðcÞ

o2TCI s; Tð Þ
oT2

¼ Ch þ Cbð Þ ns2 sþ rTð Þn�1

rnTnþ2
þ n �sð Þnþ1

1� kð Þa� 1ð ÞnrnTnþ2

" #

þ 2Co

T3
ðdÞ

o2TCI s; Tð Þ
osoT

¼ Ch þ Cbð Þ

n �sð Þ sþ rTð Þn�1

rnTnþ1
þ n �sð Þn

1� kð Þa� 1ð ÞnrnTnþ1

" #

ðfÞ

And the Hessian of the function TCI s; Tð Þ is given by:

H s; Tð Þ ¼ o2TCI s; Tð Þ
os2

� 	
o2TCI s; Tð Þ

oT2

� 	
� o2TCI s; Tð Þ

osoT

� 	2

¼ Ch þ Cbð Þ n sþ rTð Þn�1

rnTn
þ n �sð Þn�1

1� kð Þa� 1ð ÞnrnTn

" #

2Co

T3

� 	
[ 0 ðgÞ

Eqs. (c) to (g) are positive, because in the region
� 1�kð Þa�1ð Þ

1�kð Þa rT � s� 0, we always have sþ rT [ 0. There-

fore, the function TCI s; Tð Þ is strictly convex.
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[23] Sicilia J, González-De-la-Rosa M, Febles-Acosta J and
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