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Abstract. This article deals with three-echelon supply chain (SC) network involving flow of raw materials

with imperfect quality, the manufacturer and multiple retailers under the effect of learning experiences in fuzzy

decision-making process. Existing literature explores the SC model under full backordering and disruption.

Thus, in this study we first develop a production-inventory control problem accompanied with partial back-

logging and random disruptions. Any batch received from the supplier is inspected by the manufacturer and if

any of them are found to be flawed then all the goods in the inspected batch are rejected. However, we present a

case study for problem definition and to comprehend the model into practical applicability. To minimize the

aggregate cost of the SC we have utilized the Triangular dense fuzzy lock set for controlling the cost vector of

the proposed objective function of the model. Utilizing new defuzzification method and applying the proper

keys, chosen by the decision maker, it is possible to minimize the average system cost exclusively. Finally,

graphical illustrations and sensitivity analysis are made to justify the model.

Keywords. Production inventory; partial backlogging; disruption; supply chain; triangular dense fuzzy lock

set; optimization.

1. Introduction

The traditional decision-making problem of a supply chain

was determined by a single decision maker (DM). At the

early stage, a classical economic order quantity (EOQ)

model was introduced by Harris [1]. Taft [2] extended his

work and studied the basic economic production quantity

(EPQ) model. Many researchers have been considered EPQ

models (Li et al. [3], Zhang [4], Chiu and Tink [5], Sana

[6]). Shortage is one of the wide spread assumptions in

several inventory problems. Customers’ behaviors in the

shortage situation have led to another assumption in for-

mulating different model. Montgomery [7] considered one

of those behaviors and extended the EOQ pattern through

partial backordering (EOQ-PBO). The EOQ-PBO problem

has been studied by several researchers (Hsieh and Dye [8],

Taleizadeh et al. [9], Pentico et al. [10], Zhang et al. [11],

Sicilia et al. [12], San-José et al. [13, 14], Karimi-Nasab

and Wee [15], San-José et al. [16]). Mak [17] developed an

EPQ-PBO model with time dependent-backorder cost and

constant unit lost sale cost. Pentico and Drake [18] spread

the Mak’s program greatly and proposed a new method to

optimize the objective function. San-José et al. [16] studied

an EPQ-PBO model with a combination between the dis-

patching policies LIFO and FIFO. By relaxing perfect

quality of the supply process, the inventory models with

disruption (EOQD), were studied (Parlar and Berkin [19],

Wee et al. [20], Chang and Ho [21], Salehi et al. [22]).

However, disruptions in supply chains can occur due to

natural reasons, labor strikes, machine break downs, sup-

plier stock outs or quality problems. Chiu et al. [23] con-

sidered disruptions due to machine breakdowns. They

developed an EPQ model with disruption (EPQD) when

some machine-breakdowns occurred according to a Poisson

process. They also proposed an EPQD problem through

unplanned machine failures and developed an optimal

replenishment policy. Paul et al. [24] modeled an imperfect

production inventory system and provided a genetic algo-

rithm based search technique to solve the mathematical

model. Some studies have been considered inventory in

supply chain decisions. Hu et al. [25] studied the ordering

decisions in a situation of the PBO in two-echelon supply

chain.

In addition, the article of Skouri et al. [26] was a part of

EOQ problem for single-echelon inventory. The demand

rate, all cost components are constant and the shortages are*For correspondence
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fully backordered. Furthermore, Konstantaras et al. [27]

studied over an EOQ model for independent endogenous

supply disruption. In this article they developed a news

vendor problem of fully backordered single-echelon supply

chain model where the demand rate is assumed to be

cumulative time dependent function. Ritha and Nishandhi

[28] developed a single vendor multi-buyer’s model for

rejection of supply batches for nonstandard items. Model

for exogenous disruption was studied by Heiman and

Waage [29], Snyder [30], Snyder et al. [31], Bark and

Arreola-Risa [32]. Atan and Synder [33] studied a detailed

review of supply disruption in inventory management

problems where the concepts of ‘dry’ and ‘wet’ period

backlogging demand are extensively discussed.

To study with nonrandom and uncertain environment we

must trust the fuzzy system. Numerous articles have been

found in fuzzy system. Some notable recent works in fuzzy

system are discussed as follows: Kumar and Goswami

[34, 35] proposed a fuzzy random EPQ model for imperfect

quality items with possibility and necessity constraints.

Mahata [36] investigated the learning effect of the unit

production time on optimal lot size for the imperfect pro-

duction process with partial backlogging of shortage

quantity in fuzzy random environments. He assumed that

the set-up cost, the average holding cost, the backorder

cost, the raw material cost and the labor cost are charac-

terized as fuzzy variables and the elapsed time until the

machine shifts from ‘‘in-control’’ state to ‘‘out-of-control’’

state is characterized as a fuzzy random variable. Articles

on learning effect have been discussed wisely by Shekarian

et al. [37]. Alternatively, De and Beg [38, 39] introduced

dense fuzzy approach to capture the measure of learning

experiences recent times. After that the idea of dense fuzzy

number was extended by De and Mahata [40]. To do this

they have developed a cloud type fuzzy number incorpo-

rating the inventory cycle time to the measure of fuzziness.

To resolve the difficulties and to defuzzify the cloud type

fuzzy number they invented a new defuzzification method

also. Recently, Karmakar et al. [41] first established a

pollution sensitive dense fuzzy economic production

quantity model with cycle time dependent production rate.

Concurrently, De and Sana [42] developed a backlogging

model implementing a phi coefficient test for pentagonal

fuzzy number. Beyond this, researchers like De and Sana

[43, 44], Karmakar et al. [45] have kept a remarkable

destination over the fuzzy backlogging models. Chakra-

borty et al. [46] investigated a supply chain model with

stock dependent demand under fuzzy random and bifuzzy

environments.

However, in the field of trade credit models researchers

like Mahata and Goswami [47, 48], Mahata and Mahata

[49] have applied fuzzy decision theory to optimize the

model. In addition, if we consider the cases of group

decision making under fuzzy as well as the intuitionistic

fuzzy environment of modern times then Xu and Zhou [50],

Wang and Xu [51], Ding et al. [52] will come under the

subject domain itself. Thus, in fuzzy domain we see none of

the researchers have studied with fuzzy lock environment

over supply chain production inventory model. Basically, in

fuzzy system the role of DM is quite inactive; in dense

fuzzy system the DM gains learning experiences to

implement it to the inventory process. In fact, the existing

models are studied with single judgement by single DM,

though some fuzzy extension (cases of soft hesitant fuzzy,

etc.) where the group DM has been incorporated wisely but

in learning fuzzy system the concept of closed formed

multiple DM has not yet been studied.

Based on these discussions, we may summarize that, the

supply chain disruption models have been studied by sev-

eral researcher in which most of the articles belong to

single-layer EOQ models with fixed cost components,

demand functions are deterministic or function of time

alone, shortages are fully backlogged, rejection of supply

batches covers ‘all or none’ policy. However, in fuzzy

domain articles of disruption SC model is not found yet.

The main contribution of this article in the light of man-

agerial insights is thus stated as follows:

(i) First of all, we have analyzed a three-echelon SC

model. The quality of raw materials of the supplier

is imperfect, and the ‘‘all or none’’ inspection

policy is used by the manufacturer. The production

rate of the manufacturer is stable and retailer’s

surplus demand is partially backordered. An EPQ

problem through random disruption and partial

backordering (EPQD-PBO) is extended. The cost

function of the mathematical model includes hold-

ing, backlogging and missing sales (or goodwill

loss) costs. Applying these cost components, we

developed a three-layer SC model to optimize its

expected total average objective function.

(ii) Considering a case study, incorporating flexibility of

several cost parameters as triangular lock fuzzy we

have analyzed the fuzzy objective function for

further investigation.

(iii) We have introduced the concept of group decision

making by means of application of multiple keys in

fuzzy lock for a DM in the three-layer SC model.

(iv) Finally, numerical study, sensitivity analysis, graph-

ical illustrations are performed for model validation.

The major findings in the related literature are summa-

rized in table 1 which indicates that this paper was different

from previous study.

2. Preliminaries

2.1 Triangular dense fuzzy set (TDFS) (De

and Beg [38, 39])

Definition 1 Let ~A be the fuzzy number whose compo-

nents are the elements of R� N, R being the set of real
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numbers and N being the set of natural numbers with the

membership grade satisfying the functional relation

l : R� N ! 0; 1½ �. Now as n ! 1 if l x; nð Þ ! 1 for

some x 2 R and n 2 N then we call the set ~A as dense fuzzy

set. If ~A is triangular then it is called TDFS. Now, if for

some n in N, l x; nð Þ attains the highest membership degree

1 then the set itself is called ‘‘Normalized Triangular Dense

Fuzzy Set’’ or NTDFS.

Example 1 As per definition let us assume the NTDFS

as

~A ¼ a2 1� q
1þ n

� �
; a2; a2 1þ r

1þ n

� �� �
;

for 0\q; r\1; n� 0

ð1Þ

and the corresponding memberships function is defined by

(2) with thephical iustration (shown in figure 1) stated

below:

l x;nð Þ ¼

0 if x\a2 1� q
1þ n

� �
and x[a2 1þ r

1þ n

� �

x� a2 1� q
1þ n

� �

qa2
1þ n

8>><
>>:

9>>=
>>;

if a2 1� q
1þ n

� �
� x�a2

a2 1þ r
1þ n

� �
� x

ra2
1þ n

8>><
>>:

9>>=
>>;

if a2� x�a2 1þ r
1þ n

� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ

2.2 Triangular Dense Fuzzy Lock Sets(TDFLS) (De

[53])

Definition 2 Let ~A ¼ a1; a2; a3 be the TDFS whose

components are the elements of R� N, then if its mem-

bership function l : R� N ! 0; 1½ � satisfies as n ! 1 if

l x; nð Þ91 for some x 2 R and n 2 N and in this case the

index value Ið~AÞ9a2 then the TDFS ~A is called Triangular

dense fuzzy lock set. It is also normal by its initial

assumptions over NTDFS.

Definition 3 Let the TDFS ~A ¼ a 1� qfnf g; a;h
a 1þ rgnf gi for 0\q; r 2 R and fn; gn are two Cauchy

sequences of functions having converging points 1
k1
and 1

k2
,

0 6¼ k1; k2 2 R respectively then the fuzzy set ~A is called

Table 1. Gap analysis for major related literature.

Author

Inventory control

system

Shortages
Disruptions in

supply Cost parameters

Demand

pattern

Structure of the

modelFBO PBO

Ritha and Nishandhi

[28]

EPQ H H Fixed Constant DMST

Heiman and Waage

[29]

EOQ H Fixed Constant DMST

Synder [30] EOQ H Fixed Constant DMST

Atan and Synder

[31]

EOQ H H Fixed Constant DMST

Pentico et al. [10] EPQ H Fixed Constant DMST

Zhang et al. [11] EOQ H Fixed Constant DMST

Sicilia et al. [12] EOQ H Fixed Constant DMST

Hsieh and Dye [8] EPQ H Fixed Constant DMST

Taleizadeh et al. [9] EOQ H Fixed Constant DMST

Skouri et al. [26] EOQ H H Fixed Constant STCST

Konstantaras et al.

[27]

EOQ H H Fixed Time

dependent

STCST

Salehi et al. [23] EOQ H H Fixed Constant STCST

Current study EPQ H H Triangular lock

fuzzy

Constant Fuzzy STCST

DMST: Deterministic, STCST: Stochastic, FBO: Fully backorder, PBO: Partial Backorder.

Figure 1. Membership function of NTDFS.
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Triangular dense fuzzy lock set with double keys k1; k2. The
membership function along with its graphical representa-

tion is given by (3) and figure 2, respectively and they are

stated below:

l x; nð Þ ¼
0 if x\a 1� qfnf g and x[ a 1þ rgnf g
x� a 1� qfnf g

aqfn

� �
if a 1� qfnf g� x� a

a 1þ rgnf g � x

argn

� �
if a� x� a 1þ rgnf g

8>>>>><
>>>>>:

ð3Þ

Example 2 Let us assume that the component functions of

a TDFLS be fn ¼ 1
k1
� 1

nþ1
and gn ¼ 1

k2
� 1

nþ1
then the TDFS

can be put as ~A ¼ a 1� q 1
k1
� 1

nþ1

� 	n o
; a;

D

a 1þ r 1
k2
� 1

nþ1

� 	n oE
for 0\q; r 2 R. Thus, constructing

its membership function as per usual way and taking help of

De and Beg [38], the index value of the fuzzy objective

function reduces to

I ~A

 �

¼ 1

2N

XN
n¼0

Z1

0

L�1 a; nð Þ þ R�1 a; nð Þ
� 


da

¼a 1þ 1

4

r
k2

� q
k1

� �
þ 1

4N

r
k2

� q
k1

� ��

1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þ Nð Þ

� ��
ð4Þ

Now, (8) shows that, the series

1

N
1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þ Nð Þ

� �
! 0 as N

! 1; so I ~A

 �

! a 1þ 1

4

r
k2

� q
k1

� �� �
ð5Þ

2.3 Implication of triangular dense fuzzy lock sets

(TDFLS)

The modern research on any kind of inventory management

problem (IMP) basically deals with behavioral study. The

behavior of an IMP is being modified with time through the

application of learning experiences and periodic monitoring

of the process itself. Also learning experiences is directly

related to how frequent the review works have been per-

formed within the entire cycle time of an inventory. Thus,

for practical use, it is impossible to perform review works for

infinite times because of several constraints like limitation on

time, staff problem and monetary problem, etc. Moreover, it

has been observed that, though the adequate number of

reviews has been performed in due time but due to some

other (existence of extraneous variables) reasons and hence

the decision makers (DM) are unable to minimize their

system cost as a whole. But it is natural that, the DM can do

everything by means of taking cost effective measure

(component-wise controlling system expenditures) of an

inventory even in a supply chain also. To capture the situ-

ation no such methodology has been developed yet. In fuzzy

environment, especially with the use of lock set the DM

could definitely be able to minimize the system costs alone.

3. Case study and problem statement

In the capital city of West Bengal, India, we visited a toy

producing company last month. After primary discussion

with the manager the exact facts of the production – supply

process has been noted. It is seen that raw materials are

arriving from different suppliers and they are inspected

batch-wise and if in any batch is found to be defective then

the whole raw materials have been rejected instantly. Then

to run the production process items are backordered par-

tially until the good quality has been received. On the other

hand, if it is found to be good quality then it is accepted and

letting it ready to go for manufacturing system. Also, it is

observed that, the occurrence of getting two successive

positive inventories is a random variable. The goodwill loss

during backorder period is considered. Thus, the problems

of the manager of the company is defined in such a way that

the good will loss as well as the average system cost will be

controlled:

(a) What will be the actual cycle time (between two

defective or standard batch received) of the production

process?

(b) What will be the actual cycle time between two positive

inventories?

(c) What is the proportion when the inventory behaves

positively?

(d) What is the expected average inventory cost?

The information associated with the production process

is given in table 2.

Figure 2. Membership function of TDFLS.
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4. Model description

Consider the three stages supply chain where the first level

is the supplier of raw materials with random imperfect

quality. The second level is the manufacturer who produces

items with a constant production rate, and the third level

involves some retailers/customers in which the demand rate

is deterministic. The schematic structure of the supply

chain is shown in figure 3.

The essential primary suppositions have been used in this

paper listed as follows:

(1) The demand is constant.

(2) The replenishment is ordered with a fixed rate.

(3) Shortfalls are permitted and partially backordered.

(4) The backorders are satisfied before the arriving orders

(FIFO policy).

(5) There is a fixed time interval T in the middle of two

succeeding.

(6) Imperfect deliveries happening with a definite proba-

bility, and they are independent of each other.

(7) An ‘‘all or none’’ inspection plan is considered.

(8) All cost components of the supply chain are assumed to

be dense fuzzy lock set.

4.1 Mathematical model

Here we develop the exact EPQ model where the several

possibilities on inventory situations may occur. Generally, two

situations may occur within the inspection department: (a)

either the batches of raw material have always the required

quality (in the case for perfect supply quality, k ¼ 0), or (b)

some batches with imperfect quality level (k[ 0). In both

cases, we consider that the fraction of backordered demand is

b (in 0; 1½ �). Therefore, the two extreme cases correspond to

X ¼ 0, in which the whole demand through the stock out

period is fallen (full lost sales), and X ¼ 1, in which all

demands are willing to wait for the next production run

(complete backorders) is possible in both situations.

For perfect quality situation (k ¼ 0), all production-in-

ventory cycles have the same length T 0 ¼ T and we get the

deterministic EPQ with partial backordering. However, in

the second situation the length of the production-inventory

cycles is a random variable, whose probability distribution

depends on the proportion (k) that a supply batch is

rejected.

In the case of imperfect supply quality items, the

defective raw material batches have been rejected and the

quantity of the next ordering (which would be received

after T) should be enough to cover all the remaining

demand. So all backordered demand from time T until time

X þ 1ð ÞT , should be supplied by producing during bDXT
P�bD

units of time (as shown in figure 4). In this way we can

define, the duration of any inventory cycle T 0 relates to the

random variable X as: T 0 ¼ X þ 1ð ÞT þ bDXT
P�bD. Additionally,

X is a geometric random variable with parameter k (see

Salehi et al. [22]) and probability mass function

Pr X ¼ xð Þ ¼ kx 1� kð Þ; x� 0.

A typical cycle (T 0 ¼ 2T þ bDT
P�bDÞ is illustrated in fig-

ure 4 (where a faulty raw material delivery at time T has

been refused). As shown in figure 4, a regular production

and inventory interval (the first-time interval of length T

in the inventory cycle) can be split into four time-inter-

vals. The lengths of these intervals are (Pentico et al.

[10]):

t1 ¼ dT
D

P

� �
; t2 ¼ dT 1� D

P

� �
; t3

¼ 1� dð ÞT 1� bD
P

� �
and t4 ¼ 1� dð ÞT bD

P

� �
:

We formulate the model with respect to two decision

variables d;Tð Þ. So, the inventory-related costs of the

manufacturer CC d; T ;Xð Þ in a cycle of length T 0 can be

obtained as follows:

Table 2. Observed survey data for toy company.

Holding cost

(per unit/year)

Shortage cost

(per unit/year) Backorder ratio

Production rate

(units/year)

Demand rate

(units/year)

$ 2.00 $3.2 0.20 9200 1100

Lost sale cost

(per unit items)

Set-up cost

(per order)

Proportions

of stock outs

Probability of faulty

supply batch

Time fraction of positive

inventory

$4.00 $275.00 0.80 0.10 Vary

Figure 3. Schematic 3-layer supply chain structure.
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CC d; T ;Xð Þ ¼ X þ 1ð ÞCo þ
ChDT

2d2

2
1� D

P

� �

þ bCbDT
2 1� dð Þ2

2
1� bD

P

� �
þ bCbDT

2X2

2
1þ bD

P� bD

� �

þ ClDT 1� bð Þ X þ 1� dð Þ þ ClDT 1� bð Þ bDX
P� bD

� �

ð6Þ

The expected value and the second moment of X can be

obtained from: E Xð Þ ¼ k
1�k and E X2ð Þ ¼ Var Xð Þþ

E Xð Þð Þ2¼ k
1�kð Þ2 þ

k2

1�kð Þ2 ¼
k 1þkð Þ
1�kð Þ2. Therefore, the pre-

dictable value of CC d; T;Xð Þ in (6) is given by:

C d; Tð Þ ¼ Co

1� k
þ ChDT

2d2

2
1� D

P

� �

þ bCbDT
2 1� dð Þ2

2
1� bD

P

� �
þ
bCbDT

2 1þ bD
P�bD

� 	
2

k 1þ kð Þ
1� kð Þ2

þ ClDT 1� bð Þ 1

1� k
� dþ bDk

1� kð Þ P� bDð Þ

� �

ð7Þ

Again, T 0 ¼ X þ 1ð ÞT þ bDXT
P�bD, so we have

EðT 0 Þ ¼ T E Xð Þ þ 1þ bDE Xð Þ
P� bD

� �

¼ T
P� bDþ bDk
1� kð Þ P� bDð Þ

� �
ð8Þ

To simplify the notation, we define g ¼ P�bDþbDk
1�kð Þ P�bDð Þ

� 	
;

consequently the every expected inventory cycle can be

simplified as:

EðT 0 Þ ¼ gT ð9Þ

Hence, the total average expected inventory cost per unit

time is obtained as:

TC d; Tð Þ ¼C d; Tð Þ
EðT0 Þ

¼ Co

gT 1� kð Þ þ
ChDTd

2

2g
1� D

P

� �

þ bCbDT 1� dð Þ2

2g
1� bD

P

� �

þ bCbDTPk 1þ kð Þ
2g P� bDð Þ 1� kð Þ2

þ ClD 1� bð Þ g� dð Þ
g

ð10Þ

4.1a Particular case Recalling (7), Let

P ! 1 and b ! 1, then C d; Tð Þ ¼ Co

1�k þ
ChD

2T2d2

2D
þ

Figure 4. A typical cycle of length T 0 in EPQD-PBO.
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CbD
2T2 1�dð Þ2
2D

þ CbD
2T2

2D

k 1þkð Þ
1�kð Þ2 )

Co

1�k þ
Ch Q�Jð Þ2

2D
þ CbJ

2

2D
þ Cb

2D

Q�Jð Þ2k 1þkð Þ
1�kð Þ2 Where;Q ¼ dDT and J ¼ 1� dð ÞDT , which is

very close to the results obtained by Skouri et al. [26].

4.2 Model optimization

To solve the objective function of the manufacturer;

(Minimize TC d; Tð Þ, subject to T [ 0 and 0� d� 1) we can

simplify the notation and rewritten Eq. (10) as follows:

TC d; Tð Þ ¼ C
0
o

T
þ C

0

hDTd
2 þ bC

0

bDT 1� dð Þ2

þ bC
00

bDT þ C
0

lD g� dð Þ ð11Þ

where

C
0

o ¼
Co

g 1� kð Þ ;C
0

h ¼
Ch

2g
1� D

P

� �
;

C
0

b ¼
Cb

2g
1� bD

P

� �
;C

00

b ¼
Cb 1þ bD

P�bD

� 	
2g

k 1þ kð Þ
1� kð Þ2

;

C
0

l ¼
Cl 1� bð Þ

g
:

For a fixed value of T , Eq. (11) is a quadratic function in

d that attains its minimal at the point:

d� Tð Þ ¼
C

0
l þ 2bC

0
bT

2T C
0
h þ bC0

b


 � if T �C
0
l=2C

0
h

1 if T\C
0

l=2C
0

h

8<
: ð12Þ

With the objective value

TC d� Tð Þ; Tð Þ

¼
W1 Tð Þ ¼ C

0

o

T
þ ðC0

h þ bC
00

bÞDT þ C
0

lD g� 1ð Þ if T\C
0
l=2C

0
h

W2 Tð Þ ¼ ao

T
þ a1T þ a2 if T �C

0

l=2C
0

h

8><
>:

ð13Þ

where

ao ¼
4C0

o C0
h þ bC0

b


 �
� C02

l D

4 C
0
h þ bC0

b


 � ;

a1 ¼
bD C0

h C0
b þ C00

b


 �
þ bC0

bC
00
b

� �
C0
h þ bC0

b

� 0;

a2 ¼
C0
lD aC0

h þ g� 1ð ÞbC0
b


 �
C0
h þ bC0

b

� 0:

Next, we determine the optimal value T*such that

TC d� Tð Þ; Tð Þ is minimized. Notice that TC d� Tð Þ; Tð Þ is a

continuous function for all T [ 0.The first derivative of

TC(d *(T),T) is

d

dT
TC d� Tð Þ; Tð Þ

¼
W

0
1 Tð Þ ¼ �C

0
o

T2
þ ðC0

h þ bC
00

bÞD if T\C
0
l=2C

0
h

W
0

2 Tð Þ ¼ �ao

T2
þ a1 if T [C

0

l=2C
0

h

8><
>:

ð14Þ

Since W
0

1 C
0

l=2C
0

h


 �
¼ W

0

2 C
0

l=2C
0

h


 �
; the above derivative

is a continuous function for T [ 0.

We have the following cases:

1. If ao\ 0, after thatW2(T) is a strictly growing function

for T[C
0
l=2C

0
h; W1(T) is a strictly reducing function for

T[(0,To) in addition a strictly increasing function for

T To;C
0
l=2C

0
h


 �
, where

To ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
0
o

D C
0
h þ bC00

b


 �
s

ð15Þ

Therefore, TC(d *(T),T) attains its minimal at To.

2. If ao = 0, then two situations may occur:

(i) if b = 0 then W2(T) is a constant function and W1(T)

is strictly decreasing function for T 0;C
0

l=2C
0

h


 �
. In

consequence, TC(d� (T), T) attains minimal at any

point of the interval [C
0

l=2C
0

h;1Þ.
(ii) If b[ 0 then it is immediate that TC(d� (T),

T) attains minimal at To.

3. If ao[ 0, we consider the following situations:

(i) if b ¼ 0 then W1(T) is a strictly reducing function

for T 0;C
0
l=2C

0
h


 �
and W2(T) is also strictly reduc-

ing in its domain. In consequence, TC(d
*(T),T) attains its minimum at ?.

Table 3. Average inventory cost variation due to various b and k:

Parameters b T� T=� d� Z�

k ¼ 0:05 0.2 0.5409 1.1402 1.00 1195.696

0.4 0.5350 1.129 1.00 1163.815

0.6 0.5289 1.1178 1.00 1130.248

0.8 0.5631 1.1916 0.9166 1089.440

k ¼ 0:10 0.2 0.54800 1.2208 1.00 1360.922

0.4 0.5347 1.1942 1.00 1299.420

0.6 0.5216 1.1682 1.00 1234.452

0.8 0.5364 1.2048 0.9338 1162.573

0.2 0.5539 1.308 1.00 1528.310

k ¼ 0:15 0.4 0.5316 1.2602 1.00 1439.731

0.6 0.5108 1.2158 1.00 1345.597

0.8 0.5072 1.2124 0.9549 1244.240
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(ii) If b[ 0 then: (a) TC(d *(T),T) attains its minimal

at To when To �C
0
l=2C

0
h, (b) otherwise, TC(d

*(T),T) obtains its minimal at T1, where

T1 ¼
ffiffiffiffiffi
ao

a1

r
ð16Þ

4.3 Numerical experiments

Based on the data set obtained from Case study (table 2),

we obtain the following optimal solution along with their

partial backorder fractional and probabilistic variation (as

shown in table 3).

From the above table it is seen that, at k ¼ 0:10 (obtained
from case study), for partial backorder fraction b ¼ 0:80
the average inventory cost is minimum and for

1.2124 month cycle time with d� ¼ 0:9549. However, the
results showing d� ¼ 1:0 for any other cases except b ¼
0:80 and these cases are not supporting the case study

model (because of d�\1:0 in not satisfied). Thus the value

of the crisp model is taken as Z� ¼ 1162:573 with

T� ¼ 0:5364, T=� ¼ 1:2124: Now if we consider the cost

variation due to the variation of the production and demand

rate then we observe that the system cost is increasing with

them (table 4).

5. Fuzzy mathematical model

Let us consider the cost coefficients associated in the three-

layer supply chain production inventory model be flexible

in nature. We assume these flexible values in such a way

that the decision maker can perform a final decision

Table 4. Variation of inventory cost due to several demand and production rate.

Parameters % Change T� T=� d� Z� Z��Z�
Crisp

Z�
Crisp

100%

P ?50 0.5352 1.1974 0.9184 1178.307 ?1.35

?30 0.5356 1.1998 0.9230 1173.498 ?0.94

-30 0.5375 1.2134 0.9560 1141.867 -1.78

-50 0.5374 1.2224 0.9908 1113.284 -4.24

D ?50 0.4253 0.9610 1.0 1423.345 ?22.43

?30 0.4526 1.02 1.0 1326.99 ?14.14

-30 0.6749 1.5106 0.8467 959.092 -17.50

-50 0.8215 1.8348 0.7900 794.837 -31.63

Supplier

Fixed costs 
involvedRetailer/Customer

Inspec�on

Decision 
Making

Manufacture Stochas�c 
Environment

Fuzzy 
Lock

Learning 
Experiences Fuzzy 

Stochas�c 
Environment

Exis�ng research

New research

Disrup�on

Figure 5. Schematic overview of three-layer fuzzy lock SC model.
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according to his/her needs. Such situation can be handled

through the proper use of Triangular dense fuzzy lock set

over learning experiences to the specific cost vectors of the

objective function alone. Therefore, we shall fuzzify the

inventory costs all at a time. A schematic overview of the

fuzzy model has been presented in figure 5.

Now, recalling the average expected supply chain

inventory cost (10) re-defined as:

Z ¼ Co

gT 1� kð Þ þ
ChDTd

2

2g
1� D

P

� �

þ bCbDT

2g
1� dð Þ2 1� bD

P

� �
þ Pk 1þ kð Þ

P� bDð Þ 1� kð Þ2

( )

þ ClD 1� bð Þ g� dð Þ
g

) Z ¼
X3
i¼0

Cifi ð18Þ

where

C0 ¼ c0;C1 ¼ ch;C2 ¼ cb;C3 ¼ cl

f0 ¼
P� bD

T P� bDþ bDkð Þ

f1 ¼
DTd2 1� kð Þ P� bDð Þ
2 P� bDþ bDkð Þ 1� D

P

� �

f2 ¼ bDT
1� dð Þ2

2
1� bD

P

� �
þ Pk 1þ kð Þ

P� bDð Þ 1� kð Þ2

" #
1� kð Þ P� bDð Þ
P� bDþ bDkð Þ

f3 ¼ 1� bð ÞD P 1� dð Þ � bD 1� kð Þ 1� dð Þ þ kPd
P� bDþ bDk

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð19Þ

Now we assume the cost vector moves towards a trian-

gular dense fuzzy lock set and the corresponding average

inventory cost is turned as

~Z ¼
X3
i¼0

~Cifi ð20Þ

with ~Ci¼ ci 1�qi
1
k1i
� 1

nþ1

� 	n o
;ci;ci 1þri 1

k2i
� 1

nþ1

� 	n oD E
for i¼0;1;2and 3

Therefore, as per De [53], the index value of the fuzzy

objective is given by

I ~Z

 �

¼ W ¼ 1

2N

XN
n¼0

X3
i¼0

I ~Ci


 �
fi

¼
X3
i¼0

fici 1þ 1

4

ri
k2i

� qi
k1i

� �
þ 1

4N

ri
k2i

� qi
k1i

� ��

1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þ Nð Þ

� ��

Thus, the crisp equivalent problem of the fuzzy objective

(20) is

MinimizeW

Subject to the conditions 19ð Þwith

W ¼
P3
i¼0

fici 1þ 1

4

ri
k2i

� qi
k1i

� �
þ 1

4N

ri
k2i

� qi
k1i

� ��

1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þ Nð Þ

� ��

8>>>>>><
>>>>>>:

ð21Þ

5.1 Particular cases

(i) If we take ri
k2i

¼ qi
k1i
; fori ¼ 0; 1; 2 and 3 then W ¼P3

i¼0 fici gives the crisp problem.

(ii) If we take k2i ¼ k1i ¼ 1 andN ! 1 for i ¼
0; 1; 2 and 3 then W ¼

P3
i¼0 fici 1þ 1

4
ri � qið Þ

� �
gives the general fuzzy problem

(iii) If we take k2i ¼ k1i ¼ 1 andN91 for i ¼
0; 1; 2and3 then W ¼

P3
i¼0 fici

h
1þ 1

4
ri � qið Þ

1þ 1
2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þNð Þ

n oi
gives the prob-

lem of dense fuzzy model

(iv) If we take k2i ¼ k1i ¼ ki andN91 for i ¼
0; 1; 2 and 3 then W ¼

P3
i¼0 fici 1þ 1

4ki
ri � qið Þ

h

1þ 1
2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þNð Þ

n oi
gives the prob-

lem of dense fuzzy lock model for single key.

(v) If we take k2i 6¼ k1i andN91 for i ¼ 0; 1; 2 and 3

then W ¼
P3

i¼0 fici 1þ 1
4

ri
k2i
� qi

k1i

� 	
þ 1

4N
ri
k2i
� qi

k1i

� 	h

1þ 1
2
þ 1

3
þ 1

4
þ � � � þ 1

N
þ 1

1þNð Þ

n oi
gives the prob-

lem of dense fuzzy lock model for double keys.

5.2 Method of finding the keys of the fuzzy lock sets

Here we take the bounds of the fuzzy cost vectors for

finding their corresponding keys. As per De [53], the keys

can be found from the following: We already have, I ~Ci


 �
¼

ci 1þ 1
4

ri
k2i
� qi

k1i

� 	h i
for i ¼ 0; 1; 2 and 3 as N ! 1 which is

coming from the left and right a-cuts that splits into

1
2
ci 1� qi

2k1i

h i
and 1

2
ci 1þ ri

2k2i

h i
respectively. Let the lower

and upper bounds of each cost parameters are cLi and cUi

respectively. Thus, it is clear that cLi � 1
2
ci 1� qi

2k1i

h i
and

1
2
ci 1þ ri

2k2i

h i
� cUi giving k1i � qici

2ci�4cL
i

and k2i � rici
4cU

i
�2ci

for

dolkeys and that fong y we always have k2i ¼ k1i ¼ ki ¼
Maximum

qici
2ci�4cL

i

; rici
4cU

i
�2ci

n o
.

5.3 Numerical Example 2

For numerical illustration, we already have c0 ¼ 275; c1 ¼ 2;
c2 ¼ 3:2; c3 ¼ 4, b ¼ 0:8;D ¼ 1100;P ¼ 9200; k ¼ 0:1.
Here we shall keep the bounds of the different cost vectors
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stated as follows: cL0 ; c
U
0

� �
¼ 260; 290½ �; cL1 ; c

U
1

� �
¼ 1:2; 2:6½ �;

cL2 ; c
U
2

� �
¼ 2:5; 4:2½ �; cL3 ; c

U
3

� �
¼ 2:8; 5:6½ �; q0 ¼ q1 ¼ q2 ¼

q3 ¼ 0:3 and r0 ¼ r1 ¼ r2 ¼ r3 ¼ 0:4. Using the above

definition of finding the keys we write,

k10; k20f g
k11; k21f g
k12; k22f g
k13; k23f g

2
6664

3
7775�

q0c0
2c0 � 4cL0

;
r0c0

4cU0 � 2c0

� �

q1c1
2c1 � 4cL1

;
r1c1

4cU1 � 2c1

� �

q2c2
2c2 � 4cL2

;
r2c2

4cU2 � 2c2

� �

q3c3
2c3 � 4cL3

;
r3c3

4cU3 � 2c3

� �

2
6666666666664

3
7777777777775

¼

0:3� 275

2� 275� 4� 260
;

0:4� 275

4� 290� 2� 275

� �

0:3� 2

2� 2� 4� 1:2
;

0:4� 2

4� 2:6� 2� 2

� �

0:3� 3:2

2� 3:2� 4� 2:5
;

0:4� 3:2

4� 4:2� 2� 3:2

� �

0:3� 4

2� 4� 4� 2:8
;

0:4� 4

4� 5:6� 2� 4

� �

2
6666666666664

3
7777777777775

¼

82:5

�490
;
110

610

� �

0:6

�0:8
;
0:8

6:4

� �

9:6

�3:6
;
1:28

10:4

� �

1:2

�3:2
;
1:6

14:4

� �

2
66666666664

3
77777777775
¼

�0:168; 0:180f g
�0:75; 1:25f g

�2:667; 0:123f g
�0:375; 0:111f g

2
64

3
75

and that for single key,

k0

k1
k2

k3

2
6664

3
7775�

Max
q0c0

2c0 � 4cL0
;

r0c0
4cU0 � 2c0

� �

Max
q1c1

2c1 � 4cL1
;

r1c1
4cU1 � 2c1

� �

Max
q2c2

2c2 � 4cL2
;

r2c2
4cU2 � 2c2

� �

Max
q3c3

2c3 � 4cL3
;

r3c3
4cU3 � 2c3

� �

2
6666666666664

3
7777777777775

¼

Max �0:168; 0:180f g
Max �0:75; 1:25f g

Max �2:667; 0:123f g
Max �0:375; 0:111f g

2
6664

3
7775 ¼

0:180

1:250
0:123

0:111

2
6664

3
7775

. Now for practical purpose we assume for single key

k0
k1
k2
k3

2
64

3
75 ¼

2

3
4

5

2
64

3
75 and that for double keys

k10; k20f g
k11; k21f g
k12; k22f g
k13; k23f g

2
64

3
75 ¼

2; 3f g
2; 4f g
2; 5f g
2; 6f g

2
64

3
75 which must satisfy the above constraints.

Note that the smaller values of the keys will give the

objective values that correspond the cases of weak fuzzy

numbers. But in our study, we are only interested with

strong fuzzy numbers. Thus, we obtain the optimum aver-

age inventory cost sated in table 5.

From the above table we see that, for the case of crisp

environment, the expected average inventory cost is

$1162.57 with respect to the 93.38% perfect order items

over maximum cycle time 1.2027 months with

0.5365 month inventory exhaust time. However, the gen-

eral fuzzy and dense fuzzy environment keeps the same

time periods with inventory costs $1133.51 and $1118.98,

respectively. Also, if we think of the case of single key

Table 5. Optimum Solution for EPQ model under fuzzy locks.

Model Keys n� T� T=� d� Z�

Crisp …. … 1162.57

General Fuzzy …. … 1133.51

1 0.5365 1.2027 0.9338 1118.98

Dense Fuzzy …. 2 1135.93

3 1142.39

4 1145.98

Fuzzy locks Single key 2

3
4

5

2
64

3
75

1 0.5302 1.1885 0.9415 1134.78

2 0.5317 1.1919 0.9397 1141.30

3 0.5322 1.1931 0.9390 1143.75

4 0.5326 1.1938 0.9385 1145.13

Double keys 2; 3f g
2; 4f g
2; 5f g
2; 6f g

2
64

3
75

1 0.5474 1.2270 0.9200 1089.91

2 0.5447 1.2210 0.9234 1106.87

3 0.5437 1.2187 0.9247 1113.33

4 0.5431 1.2175 0.9254 1116.92
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under fuzzy lock then the maximum cycle time reduces to

1.1885 months for 94.15% perfect items costing $1134.78

alone. But the case of double keys assumes the expected

average inventory cost of $1089.91 with respect to the 92%

perfect items over 1.227 months cycle time with

0.5474 month inventory exhaust time.

6. Sensitivity analysis

Since, from table 5 we see the proposed model has been

minimized for fuzzy locks of double keys approach so we

shall take the sensitivity analysis of the double key

parameters for the cost vector associated in the supply

chain model itself. We made the changes from - 50% to

?50% for each of the keys (single and double) taking one

at a time and keeping others as constants and to get the

table 6.

6.1 Discussion on sensitivity analysis

Table 6 explores that all the key vectors have similar types

of sensitivity over average inventory cost whenever we

make a change any one of those parameters from - 50% to

?50%. It is also observed that the changes for the keys of

the fixed inventory cost and the holding cost assume almost

same values of the objective function. The more reduction

of the key parameters gives the more relative reduction of

the average inventory cost with respect to the crisp opti-

mum. Throughout the whole table we see, at - 50% change

of the holding cost parameter the relative change of the cost

becomes - 10.22% alone and at ?50% change for the keys

of the fixed cost as well as the holding cost, the relative

change of the objective function itself reduces to - 6.54%

of the crisp value. However, for the cases of perfect items,

at - 50% change of the unit holding cost parameter of

items gives minimum average inventory cost ($1043.75)

with respect to the 95.11% perfectness of the ordered items

in the process of supply chain alone.

7. Graphical illustrations

Figure 6 shows that the average inventory cost of the

supply chain is maximum (near $1160) for the crisp model

but it is minimum (near $1060) for the fuzzy lock model of

double keys. The general fuzzy model gives finer result

than crisp and fuzzy lock model of single key but only the

dense fuzzy model keeps quite better result than those

models. Figure 7 shows that if we make a sensitivity from

- 50% to ?50% of the double keys of the associated cost

vectors then the average inventory cost curves meet near

$1075 which comes at the change of keys of the cost

Table 6. Sensitivity analysis for EPQ model under several fuzzy environments.

Parameters Associated keys % Change n� T� T=� d� Z� Z��Z�
Crisp

Z�
Crisp

100%

c0 k10; k20f g ?50 1 0.5556 1.2455 0.9147 1086.49 -6.54

?30 0.5531 1.2399 0.9103 1083.34 -6.82

-30 0.5365 1.2028 0.9272 1062.76 -8.59

-50 0.5218 1.1696 0.9374 1044.39 -10.17

c1 k11; k21f g ?50 1 0.5455 1.2228 0.9101 1086.48 -6.54

?30 0.5461 1.2241 0.9131 1083.35 -6.82

-30 0.5499 1.2327 0.9331 1062.60 -8.60

-50 0.5535 1.2408 0.9511 1043.75 -10.22

c2 k12; k22f g ?50 1 0.5441 1.2197 0.9232 1079.31 -7.16

?30 0.5451 1.2219 0.9225 1078.36 -7.24

-30 0.5518 1.2369 0.9152 1072.17 -7.78

-50 0.5581 1.2510 0.9082 1066.70 -8.25

c3 k13; k23f g ?50 1 0.5402 1.2110 0.9371 1080.97 -7.02

?30 0.5425 1.2160 0.9318 1079.55 -7.14

-30 0.5561 1.2465 0.8990 1069.49 -8.01

-50 0.5669 1.2708 0.8724 1059.52 -8.86
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Fuzzy
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Figure 6. Average Inventory cost under fuzzy Environments.
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vectors near - 30% explicitly. The graph also reveals that,

the inventory holding cost and the set-up cost are highly

sensitive and they are becoming overlapped through the

changes of the keys parameters for the proposed model.

Although, the backlogging cost and the cost for goodwill

lost are moderately sensitive. Moreover, the trends of each

cost curve are to meet near $1075 so that it is the minimum

cost. Figure 8 indicates that the items under proper

inspection assume more than 90% perfect whenever the

inventory runs with backlog and the set-up cost and the

holding cost get flexible values through fuzzy locks.

However, for the variation of the goodwill loss cost, the

standard items under inspection with maximum cycle time

is reduced to nearly 90%; but for the variation of back-

logging cost, few cases may arise where the good items

reach to 95%. Also, it is seen that, the good items lie near

85% all the time whenever we look into the model

backlog free. Figure 9 focuses the average inventory cost

under several optimum cycle times. We notice that

starting from a minimum value, the average inventory

cost function gradually increases within the range of cycle

time 1.21–1.22 months exclusively. Beyond this interval

the objective function assumes zigzag values without

attaining the model minima. Figure 10 explores an

umbrella type curve which corresponds the good items

under inspection that might affect the average inventory

cost. At 91% perfectness the objective function gives

maximum objective value but beyond that the average

inventory cost gradually decreases to meet a model min-

imum. Moreover, our study reveals that under the fuzzy

lock environment the bounds of good items lie within

95.11% as a whole.

8. Conclusions

The aim of this research is to extend the criteria of decision

making over the control of several cost components under

fuzzy lock environment. Traditionally, in general fuzzy

system, the role of decision maker was quite inactive and

hence the economy (cost effectiveness) of an inventory

process was not guaranteed there. However, the learning

experiences (the case of dense fuzzy) of DM over inventory
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management process could help to minimize the system cost

up to a certain extent. But, in fuzzy lock system, the DM’s

participation is vital and the judgements are made with the

consultation of other’s view (usually we assume an indus-

trialist and his/her manager, the case of double keys) which

might expedite the decision towards specific goal. Although,

two related articles (Skouri et al. [26]) and Konstantaras

et al. [27]) fall into this study but the major difference is that

they consider the EOQ model with disruption for single -

layer supply chain with fully backlogged demand in the

shortage period. Moreover, the concept of goodwill loss cost,

partial backordering, average inventory cost and the exten-

sion of supply chain (three-layer production inventory) was

not considered by them which are the basic novelties of this

model. So, with the numerical study our model is not com-

parable with their result but relaxing few parameters from

our model it is possible to reach near Skouri’s model ana-

lytically. We have incorporated a production inventory

problem in three stages chain with random disruption in

delivery raw material batches at the supply side of the net-

work under an ‘‘all or none’’ inspection policy, defective raw

materials (due to quality problems) are rejected and excess

demand of retailer is partially backordered by the manu-

facturer. Numerical experiments show that under industri-

alist-manager consultation the objective function of the

three-layer supply chain model can be optimized.

The major findings of our proposed modes are:

(i) More imperfectness of items (it may be raw

materials or finished goods) does not mean to have

a lower objective value.

(ii) Higher cycle time duration does not mean more

inventory cost but it attains a minimum value for a

finite range of time.

(iii) We always have minimum objective value for

stochastic fuzzy lock model instead of deterministic

model.

(iv) Single view (Single key) of the decision maker is

not able to optimize the fuzzy lock model fairly but

with the consultation of others it is possible to

optimize the system cost exclusively.

(v) For single review policy (cases of dense fuzzy and

lock fuzzy model) we always have model minima

rather than crisp model.

(vi) Fuzzy lock model is the latest extension of the dense

fuzzy model which facilitates the decision maker to

challenge any drastic situation of an inventory

process in recent times.

The essential notation and the primary suppositions have

been used in this paper listed are as follows:

9. Parameters

D Demand rate of retailers (unit/time)

P Production rate (unit/time), P[D

Co Fixed Set-up cost per cycle

Ch Storage cost (unit/time)

Cb Backlog cost (unit/time)

Cl Cost for good will loss per unit item.

b The fraction of stock outs that will be backlogged

(0� b� 1)

k Probability of supply batch faultiness (0� k\1)

10. Variables

X Number of successive defective supply raw materials

batches deliveries (random variable)

T Time interval between two succeeding supply transfers

of the same type (that is, the two batches are both

standards or both defective which are decision variables)

T 0 Time interval between two succeeding production

intervals with positive inventory, that is, length of the

inventory cycle (random variable)

d A fraction of inventory cycle with positive inventory

level (decision variable)
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