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Abstract. The flow over NACA 0008 airfoil is studied computationally in the ultra-low Reynolds number

regime Re [ [1000, 10000] for various angles of attack a [ [0�, 8�]. The laminar flow separation occurs even at

low angles of attack in this Reynolds number regime. The lift curve slope is far reduced from the inviscid thin

airfoil theory value of Cl,a = 2p. Significant increase in the values of drag coefficient is seen with a decrease in

Re. Lift-to-drag ratios are consequently very low. An adjoint-based aerodynamic shape optimization method-

ology is employed to obtain improved aerodynamic characteristics in the ultra-low Re regime. Three different

objective functions are considered, namely, (i) minimization of drag coefficient, Cd, (ii) maximization of lift

coefficient, Cl, and (iii) maximization of lift-to-drag ratio, (Cl/Cd). Significant improvement in each of the

objective functions is obtained.

Keywords. Ultra-low Reynolds number flow; NACA 0008 airfoil; aerodynamic shape optimization; adjoint

method.

1. Introduction

The recent interest in micro- [1], nano- [2] and pico-air

vehicles [3] has motivated research in the study of aero-

dynamics at low Reynolds numbers. Particularly, DARPA

specifications for nano-air vehicles with extremely small

wing span of less than 7.5 cm and capable of efficient flight

at Reynolds numbers (Re) less than 15,000, and pico-air

vehicles operating at Re\ 3000 are worth mentioning. The

flight regime of many insects and small birds is also in this

Reynolds number range. Thus, the study of aerodynamics at

low Reynolds numbers becomes pertinent for both natural

and engineered flying objects. In fact, the distinction

between these flyers is diminishing with the advent of

biologically inspired flight vehicles.

Extensive reviews of aerodynamic phenomena at low

Reynolds numbers have appeared [4–7]; compendiums of

airfoil aerodynamic data in the Reynolds number range

20,000 to 5 9 105 are also available [8]. However, airfoil

data below this range are rather sparse [9–12]. Of particular

interest here, is the range Re [ [1000, 10000]. This Re

regime is termed ultra-low. At such low Reynolds numbers

the flow is dominated by viscous effects. The laminar

boundary layers have a tendency to separate even with mild

adverse pressure gradients leading to laminar flow separa-

tion and, perhaps, reattachment. The separated flow

significantly alters the effective geometry of the airfoil and

thus its aerodynamics. With low values of lift coefficients,

and high drag coefficients, very low values of lift-to-drag

ratios are obtained. This fact provides a motivation for

designing airfoils for improved aerodynamic characteristics

at such low Re.

Optimization procedures offer an attractive proposition

for aerodynamic design. In the past several optimization

techniques have been applied in aerodynamic design with

gradient-based methods being the earliest [13]. However,

such methods have an intrinsic disadvantage. The deter-

mination of the sensitivity of the objective function, say, for

example, drag minimization, with respect to the design

variables calls for repetitive computations of the flow field

with concomitant huge computational costs. This disad-

vantage can be eliminated by formulating the optimization

problem in the framework of calculus of variations/optimal

control theory. In such methods the flow field equations are

adjoined to the objective function using a Lagrange mul-

tiplier. The gradient of the objective function can thus be

obtained by solving the resulting adjoint equation, thereby

greatly reducing the computational cost. Such methods

provide an appealing and economic framework for design

optimization when the number of design variables is par-

ticularly large. Pironneau’s [14] pioneering effort in this

field is worth mentioning. In aeronautical applications, the

work of Jameson [15] has been seminal. An excellent

introduction to the adjoint methods is Pierce and Giles [16],*For correspondence
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and a nice review on aerodynamic shape optimization in

general, is Mohammadi and Pironneau [17].

In the light of the above discussion, the main objec-

tives of this study are two-fold. Firstly, to evaluate the

aerodynamic characteristics of NACA 0008 airfoil in the

ultra-low range Re [ [1000, 10000]. Secondly, to obtain

optimal airfoil shapes resulting from aerodynamic shape

optimization for three different objective functions,

namely, (i) minimization of drag coefficient, Cd, (ii)

maximization of lift coefficient, Cl, and (iii) maximiza-

tion of lift-to-drag ratio, (Cl/Cd), in this Re range. The

present paper is arranged as follows. The computational

procedure is given in section 2. The aerodynamic char-

acteristics of NACA 0008 airfoil is presented in detail

subsequently in section 3. The aerodynamic shape opti-

mization procedure is presented briefly in section 4, and

then the results of the three different objective functions

are discussed in section 5. Finally, conclusions are given

in section 6.

2. Computational procedure and validation

In this section, the procedure for numerically computing the

flow field over NACA 0008 airfoil is presented. This airfoil

was chosen for the present computations since some com-

putational results were available [11, 12]. The laminar,

steady-state Navier–Stokes equations

r � u ¼ 0;

u � ru ¼ � 1

q
rpþ mr2u

ð1Þ

are solved numerically using the finite-volume method-

based computational code Fluent. Here u is the velocity

vector, q is the uniform fluid density, p is the pressure and

v is the fluid kinematic viscosity. For the computations a

structured grid of C-grid topology was generated around the

airfoil. The radius of the computational domain was

10c measured from the leading edge of the airfoil and the

domain extended 20c behind the leading edge of the airfoil;

c is the airfoil chord length. Care was taken in generating a

good quality grid keeping in mind the flow features that

were to be resolved. A close-up view of the grid sur-

rounding the airfoil is shown in figure 1.

At the inlet of the computational domain, velocity inlet

boundary condition was imposed. The velocity was calcu-

lated based on the desired Re. Pressure outlet boundary

condition was applied at the exit of the computational

domain. The no-slip boundary condition was applied on the

airfoil surface. The convective terms in the Navier–Stokes

equations (1) were discretized by a second-order upwind

scheme and the viscous terms by a second-order central

differencing scheme. All calculations were done in double-

precision arithmetic. The convergence of the residuals was

10-6. The convergence of the residuals for a typical case

Re = 2000 and angle of attack, a = 2� is shown in fig-

ure 2a, and the convergence of the aerodynamic force

coefficients in figure 2b.

The number of grid points for computations was chosen

after a careful grid independence study. This study was

done for Re = 2000 at an angle of attack, a = 4� with

12,744 (coarse grid, with 142 grid points on the airfoil

surface), 26,513 (medium, 288) and 46,584 (fine, 378)

cells. The pressure and skin friction distributions over the

airfoil were plotted (not shown here for the sake of brevity)

for the results from these three grids. The results were

found to be convincingly grid independent. Further, to

formally quantify the discretization error, the Grid Con-

vergence Index (GCI) [18] was calculated for Cl and Cd.

The numerical uncertainty in the evaluation of Cl was

0.718% and 0.578% for the coarse-medium and medium-

fine grids, respectively. Similarly, values for Cd were

0.115% and 0.025%. Since the medium grid had a com-

paratively low value of discretization error it was chosen

for all subsequent computations.

In the present study, the flow field was assumed to be

steady. At ultra-low Reynolds numbers and low angles of

attack the flow nominally remains steady and the precise

values of Re and a at which the flow starts exhibiting sig-

nificant unsteady behaviour is unknown. We performed

unsteady computations for an impulsively started NACA

0008 airfoil at Re = 2000 and a = 2� with a time step of

Dt = 1 9 10-3 s and numerically integrated the unsteady

Navier–Stokes equations for 1000 time steps which corre-

sponded to a total physical time of t = 1.0 s. The unsteady

numerical formulation was second-order implicit. The

convergence of the residuals was set to 10-5 for every time

step. The time history of the aerodynamic force coefficients

is shown in figure 3. In this figure T is the period of time-

integration. It can be seen that both Cl and Cd do indeed

reach their steady-state values of 0.142 and 0.077, respec-

tively, shown by thin horizontal lines in figure 3. It is

reassuring to see that a steady-state solution exists. It must

be mentioned here that the numerical time-integration to

achieve a steady-state solution takes more than 140 hours

computation time on a computing workstation. The
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Figure 1. A close-up view of the grid surrounding the airfoil.

Shown here is the medium grid with 288 grid points on the airfoil

surface.
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assumption of steady flow results in significant computa-

tional time advantage.

The computed pressure distribution over the NACA 0008

airfoil at Re = 2000 and a = 2� is compared with the

available computations [11, 12, 19] in figure 4. The

agreement is good, indicating a validation of the present

computational procedure.

3. Aerodynamic characteristics of NACA 0008
airfoil

In this section, we present detailed results of the aerody-

namic characteristics of NACA 0008 airfoil in the ultra-low

range Re [ [1000, 10000]. In an earlier study [19], we

presented elaborate results at Re = 2000 and 6000, and the

present data complements our previous work. The pressure

distribution on the airfoil at a = 0� and 4� are plotted in

figure 5. The inviscid pressure distribution, calculated

using a panel code with 100 panels, is also plotted for

comparison. The effect of Reynolds number on the pressure

distribution on the airfoil at zero incidence can be seen in

figure 5a. At zero incidence the flow remained attached at

all Re. The pressure distribution near the leading edge is

smooth due to viscous effects. The slope of the adverse

pressure gradient increases with an increase in Reynolds

number. A decrease in the negative pressure coefficient is

noted near the trailing edge at lower Re.

The pressure distribution at a = 4� is now considered.

The pressure distribution, in fact for all angles of attack,

exhibits a marked departure from their inviscid behaviour.

The flow accelerates rapidly around the leading edge

causing the pressure to decrease precipitously on the upper

surface to a minimum value within 5 percent of the airfoil

chord and moving closer to the leading edge as the angle of

attack increases. The steep favourable pressure gradient

near the leading edge of the airfoil seen in the inviscid

pressure distribution is not observed at low Re because of
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Figure 2. Convergence of (a) residuals and (b) aerodynamic force coefficients; Re = 2000 and a = 2�.
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Figure 3. Time history of (a) Cl and (b) Cd; Re = 2000 and a = 2�.
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viscous effects. The magnitude of minimum pressure is also

reduced in the viscous flow cases. The pressure recovery

from the minimum value to that at the trailing edge is

smooth in the viscous flow. In the region of pressure

recovery the slope of the adverse pressure gradient is lower

compared to the inviscid value. At the trailing edge the

pressure is lower than the freestream pressure for the vis-

cous flow and the pressure gradient is not as severe as in

their inviscid counterpart.

The viscous effects become predominant at very low

Reynolds numbers and thick boundary layers develop over

the airfoil, which can be a significant fraction of chord

length, with a tendency to separate even at a small angle of

attack. The flow separation and reattachment locations, xs/

c and xr/c, respectively, were determined from the shear

stress distribution on the airfoil upper surface. For all the

cases considered here flow remained attached on the lower

surface. While we tabulate xs/c and xr/c for Re = 2000 in

table 1, for other Re they are collectively plotted in fig-

ure 6. In table 1, ls is the length of the separated region.

The onset of flow separation is at a = 6� for Re = 1000, and

occurs at lower a for increasing Re. Once the flow sepa-

rates, as the angle of attack increases the separation point

moves closer to the leading edge. The development of the

separated region is retarded at lower Reynolds numbers.

The separated flow eventually reattaches at a location close

to the trailing edge. The separated region covers a signifi-

cant portion of the airfoil chord particularly at higher a.
We display in figure 7 some streamline plots to illustrate

how the flow field over the airfoil changes with an increase

in angle of attack for a few Re. At a = 0� the streamlines

are only perturbed slightly from the freestream pattern. As

the angle of attack increases the stagnation point moves

downstream of the airfoil leading edge on the lower

surface. At higher angles of attack a large recirculation

bubble, whose thickness is much higher than the maximum

thickness of the airfoil, appears near the trailing edge and

remains attached to the airfoil. A further interesting feature

is the appearance of two eddies at higher a and higher Re.

The occurrence of two, or even more eddies is not quite

uncommon in low Reynolds number flow fields.

The lift curves for the NACA 0008 airfoil are plotted in

figure 8. The present results agree well with the available

computations [11, 12] but not shown here for the sake of

brevity. Several interesting and important observations can

be made from figure 8. The lift curve slope is far reduced

from the inviscid thin airfoil theory value of Cl,a = 2p. The
magnitude of Cl is about half of those at very high Re;
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Figure 4. Pressure distribution over the NACA 0008 airfoil at

Re = 2000 and a = 2�.
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Figure 5. Pressure distribution over NACA 0008 airfoil at

(a) a = 0� and (b) a = 4� for various Re.
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aerodynamic data for this airfoil at Re = 1.5 9 106 to

6 9 106 can be found in McCullough [20]. We had seen

earlier in figure 6 that the onset of flow separation occurs at

a higher angles of attack for lower Reynolds number. The

range of the linear portion of Cl-a curve is thus extended to

higher a as Re is reduced. After flow separation Cl

increases, though not in a linear manner, till the airfoil

eventually stalls. This stalling behaviour is very mild.

Further, we observe higher values of Cl at lower Re. This

fact, at first sight, is rather surprising. Low Reynolds

number flows can spring quite a few surprises! We explain

this unusual lift characteristic as follows. Consider, for

example, a = 4� for Re = 2000 and 6000 for which the flow

separation region is shown in figure 9. The separated flow

alters the effective geometry of the airfoil, and conse-

quently its effective camber. The effective camber is also

shown in figure 9. Re = 6000 case exhibits a larger sepa-

rated region and a pronounced reflex camber starting at x/

c = 0.6. The net effect of this reflex camber is to produce a

lower Cl than that achieved at a lower Re.

The drag curves are plotted in figure 10. The Cd values

are much larger than at high Re. The Cd values at Re =

2000 are approximately 40% larger than at Re = 6000

even in the linear range of the lift curve, whereas such

drastic variation in Cd with Re is not observed at high

Reynolds numbers. For all the Reynolds numbers consid-

ered here the viscous component of drag is significant and it

continuously decreases with increasing angle of attack,

while the contribution due to pressure drag increases, as is

expected, due to flow separation effects. The zero-lift drag

coefficient decreases with an increase in Reynolds number,

and closely follows the 1/HRe relation.

To summarize, in the ultra-low Re regime, Cl values are

low, and with high values of Cd, values of (Cl/Cd) are low,

which are in fact an order-of-magnitude lower than that can

be obtained at high Reynolds numbers. This provides a

motivation for designing airfoils for improved aerodynamic

characteristics at low Re, and leads us to the next major

theme of this paper.

4. Aerodynamic optimization procedure

In this section, we present the adjoint-based aerodynamic

optimization methodology. Our exposition here is stan-

dard, and hence brief. Consider the flow over an airfoil,

for which the aerodynamic properties defining the

objective function, I, are the flow field variables, x, and
the physical location of the boundary, f. Then, I, can be

defined as

I ¼ I x; fð Þ: ð2Þ

A change in f results in a change in I as

dI ¼ oIT

ox

� �
dxþ oIT

of

� �
df: ð3Þ

Now, if the governing equation, R, which expresses the

dependence on x and f can be written as

R x; fð Þ ¼ 0 ð4Þ

then, dx can be determined from

dR ¼ oR

ox

� �
dxþ oR

of

� �
df ¼ 0: ð5Þ

At this stage the method of Lagrange multiplier, with w
as the multiplier, is introduced which converts a con-

strained optimization problem into an unconstrained one.

Table 1. Flow separation and reattachment locations on the

airfoil for Re = 2000.

xs/c xr/c ls/c

0� No separation

1�
2�
3�
4� 0.898 (0.900)a 0.987 0.089

5� 0.676 (0.680) 0.991 0.315

6� 0.483 (0.490) {0.5015}b 0.991 {0.9870} 0.508 {0.4855}

7� 0.333 0.990 0.657

8� 0.233 0.986 0.753

aValues in parentheses (-) are from Kunz and Kroo [11]. The reattachment

location is not specified there, but we infer from their streamline plots that

it is very close to the trailing edge.
bValues in braces {-} are from Mateescu and Abdo [12].

Figure 6. Flow separation and reattachment locations on the

airfoil. The filled symbols represent the separation location, and

the open symbols the reattachment location.
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Moreover, since the variation in dR is zero, it can be

multiplied by w and subtracted from the variation dI
without changing the result. So Eq. (3) can be written as

dI ¼ oIT

ox

� �
dxþ oIT

of

� �
df� wT oR

ox

� �
dxþ oR

of

� �
df

� �

¼ oIT

ox

� �
� wT oR

ox

� �� �
dxþ oIT

of

� �
� wT oR

of

� �� �
df:

ð6Þ
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Figure 7. Streamlines over the airfoil at a = 0�, 4� and 8� for (a) Re = 2000, (b) Re = 6000, and (c) Re = 10000.
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Figure 9. Flow separation region (contour line of axial velocity,

ux = 0) and effective camber for (a) Re = 2000, and

(b) Re = 6000; a = 4� in both the cases. In these figures the

vertical axis is stretched and displayed for clarity.
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Now w has to be chosen such that it satisfies the adjoint

equation.

oR

ox

� �T
w ¼ oI

ox
: ð7Þ

Substituting the adjoint equation in Eq. (6) leads to a

relation between I and f.

dI ¼ Gdf ð8Þ

where

G ¼ oIT

of

� �
� wT oR

of

� �
:

The optimal solution is said to have been achieved when

the gradient of the augmented objective function approa-

ches zero, i.e., dI = 0. Based on these equations the adjoint

solver computes the sensitivity of the specified objective

function to the geometric shape of the airfoil.

Some remarks are in place here. Firstly, the greatest

advantage with the adjoint method is evident by an exam-

ination of Eq. (8). This equation is independent of x and

thus the gradient of I can be determined with respect to an

arbitrarily large number of design variables by solving this

equation once. Secondly, in the present case the governing

equation R is the non-linear Navier–Stokes equations, but

the adjoint equation is linear. However, the dimension of

both the equations are the same. This indicates that the

computational cost of solving the adjoint equations is the

same as that of the flow equations. Thirdly, in the present

paper we employ the discrete formulation of the adjoint

system, where the non-linear governing equation is dis-

cretized and the adjoint equations derived for the

discretized form of the governing equations. In the con-

tinuous adjoint approach, on the other hand, starting from

the governing differential equations, the adjoint equations

are derived and then discretized. Either approach has its

own merits and demerits, but in principle, with sufficiently

smooth solutions and in the limit of infinitesimally small

grid spacing they should converge to the correct analytic

value for the gradient of I [16].

In the present paper the discrete adjoint solver imple-

mented in Fluent is used for aerodynamic optimization.

Three different objective functions are considered, namely,

(i) minimizing Cd at a = 0�, i.e., Cd0, (ii) maximizing Cl at

a = 2�, and (iii) maximizing (Cl/Cd) at a = 2�, for Re [
[1000, 10000]. The initial body shape for the optimization

process is the NACA 0008 airfoil. The design process

employed is illustrated by means of a flow chart in fig-

ure 11. The adjoint continuity equation was discretized by a

first-order upwind scheme, and the adjoint momentum

equations by a second-order upwind scheme. The conver-

gence of the residuals of the adjoint quantities was set to
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Figure 10. Variation of drag coefficient with angle of attack.

Figure 11. Optimal airfoil design cycle.
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10-8. Example convergence of the adjoint residuals is

shown in figure 12 for one iterative step in the design

process.

In the design process, as the airfoil geometry is changed

a new grid is generated by a mesh morphing scheme which

ensures smooth repositioning of the grid points [21]. Con-

vergence is said to have occurred when there is no further

improvement in the values of the objective function with

design iterations. Flow computations typically took about

15 minutes wall-clock time on a Lenovo Workstation with

8 GB RAM and Intel i5, 3.10 GHz speed processor. Each

adjoint solution approximately took about the same wall-

clock time. The time periods quoted here are for one iter-

ative step in the design process. The optimal designs were

attained within about 40 design iterations.

5. Optimal airfoil shapes

In this section the optimal airfoil shapes obtained for each

of the three objective functions is presented and discussed.

5.1 Minimizing Cd0

The first problem of interest is to determine the shape of a

minimum drag body for Re [ [1000, 10000]. Certain con-

straints were imposed during the design cycle. The airfoil

chord length was maintained at x/c = 1 throughout the

design process by fixing the leading and trailing edges. It

was also maintained that the upper and lower surfaces of

the airfoil do not intersect. A geometrical constraint on the

area of the airfoil was also imposed for this objective

function such that the area is lower-bounded by Aref.

Starting from the NACA 0008 airfoil the flow and adjoint

computations were carried out as in figure 11. The con-

vergence history of the objective function, for example, for

Re = 2000 is shown in figure 13. We see that Cd decreases

monotonically with design iterations. The evolution of the

airfoil shapes as the design process progresses is also

depicted in figure 13. The optimal airfoil shown in fig-

ure 14 at Re = 2000 had Cd = 0.0728 which is 4.7% (about

36 drag counts) less than the NACA 0008 airfoil. The

reduction in Cd is brought about by a reduction in pressure

contribution to Cd. A small reduction in viscous contribu-

tion to Cd was also obtained. The purpose of streamlining a

body is indeed to reduce the pressure contribution to the

total drag, and the present optimization procedure is able to

achieve this.

The optimal airfoil obtained by Kondoh et al [22] for

Re = 2000 is also shown in figure 14. The resemblance

between these shapes is striking. It may be mentioned here

that Kondoh et al [22] performed topology optimization

using the adjoint sensitivities and SQP optimization algo-

rithm to obtain their optimal shape which had Cd = 0.075.

The optimal airfoil shapes obtained at other Re in the

present study are shown in table 2. The characteristic traits

of the optimal airfoil shapes in the ultra-low Re regime are

a profile with rather sharp leading edge, t/c = 4.6% for

Re = 1000 and increasing to 6.4% for Re = 10000. The

maximum t/c occurs at about the quarter-chord position for

all Re. This information will be useful for designers.

Glowinski and Pironneau [23] had shown that the optimal

profile has a t/c about 10%. Since, however, we started

from an eight percent thick profile, the present optimal t/

c values are about 5 to 6%. A sharp leading edge is also not

entirely unanticipated in the low Re regime. Previous

studies [22–24] have indeed produced optimal airfoil

shapes with sharp leading edges.

5.2 Maximizing Cl at a = 2�

The next objective function considered is maximizing Cl at

a = 2�. For this objective function and maximizing (Cl/Cd)

objective function considered in the next section the fol-

lowing constraints were imposed. The leading and trailing

edges of the airfoil were fixed to maintain the desired a. The
upper and lower surfaces of the airfoil were maintained in

Iteration

C
d

0 2 4 6 8 10
0.072

0.073

0.074

0.075

0.076

0.077

0.078

Figure 13. Convergence history of Cd minimization and evolu-

tion of airfoil shapes with design iterations for Re = 2000.

Figure 14. Comparison of optimal airfoil shapes from (a) present
computations and (b) Kondoh et al [22]; Re = 2000.
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such a manner that they do not intersect each other. Further,

an upper bound for the upper surface of the airfoil was set to

not exceed (y/c) = 0.1. With these constraints, the opti-

mization was carried out starting from the NACA 0008

airfoil. The optimal Cl values and airfoil shapes obtained are

shown in figure 15. Significant increase in Cl values are

obtained at all Re considered. The optimal airfoils have

evolved into rather thin profiles with distinct droops near the

leading and trailing edges. The leading edge droop varies

from about 7.3% for Re = 1000 to about 1.9% for Re =

10000. This droop occurs at about x/c = 0.28. The droop

near the trailing edge varies from about 3.4% for Re = 1000

to about 2.4% for Re = 10000, occurring at x/c = 0.8. The

maximum thickness of the optimal airfoils was about 6% and

its chordwise location varied from x/c = 0.1 for Re = 1000

and moving aft till x/c = 0.23 for Re = 10000. A smooth

cavity in between the droops is clearly perceptible on the

upper surface of the airfoil near the mid-chord. We shall

explain how the flow structure in this cavity enhances the lift

of the airfoil. The upper surface cavity slowly diminishes

with increasing Re. It is also noted that maximum t/c grad-

ually increases with Re.

We shall consider the Re = 2000 case in a little more

detail as an illustrative example to discuss the Cl improve-

ment. The streamlines over the optimal airfoils are displayed

in figure 16a and the contours of vorticity magnitude in

figure 16b. A recirculation region is seen on the upper sur-

face of the optimal airfoil near the mid-chord. This recir-

culation enhances the suction on the airfoil upper surface and

consequently its Cl. The recirculation region slowly disap-

pears with increasing Re. The recirculation region on the

lower surface also vanishes with increasing Re. The pressure

distribution over the NACA 0008 and the optimal airfoils is

plotted in figure 17. The suction peak on the optimal airfoil

is much higher than that for the NACA 0008 airfoil. This

suction peak occurs at x/c = 0.218. The pressure on the

lower surface is also higher on the optimal airfoil compared

to NACA 0008 airfoil. These clearly lead to a higher Cl.

At this stage of our discussion two important questions

need to be addressed. (i) What is the optimum shape

obtained when the angle of attack is changed? (ii) What is

the optimum shape obtained when a different airfoil is

chosen as the starting profile? To answer these questions we

performed computations with changed angle of attack,

a = 4�, 6� and 8� at Re = 2000, and the resulting optimal

profiles are shown in figure 18a. The optimal profiles had

Cl values of 0.686 (0.264), 0.924 (0.341) and 1.049 (0.353),

respectively. The values in parentheses are Cl values of the

baseline airfoil at their respective a. The characteristic

Table 2. Summary of Cd of initial and optimal airfoils.

Re Cd of initial airfoil 

(NACA 0008) 

Cd of optimal 

airfoil  

Optimal airfoil 

1000 0.1103 0.1025 

2000 0.0764 0.0728 

4000 0.0533 0.0511 

6000 0.0433 0.0414 

8000 0.0374 0.0356 

10000 0.0335 0.0319 

Re

C
l

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

Initial
Optimal

Figure 15. Optimal airfoil shapes for maximizing Cl objective

function.
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(b) 
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Figure 16. (a) Streamlines, and (b) contours of vorticity magnitude over the optimal airfoil for maximizing Cl; Re = 2000.
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Figure 17. Pressure distribution over NACA 0008 and the

optimal airfoils; Re = 2000.

(a) 

(b) 

Figure 18. Optimal airfoil shapes obtained (a) at different angles
of attack, and (b) starting with NACA 0008 (continuous line) and

NACA 2408 (dashed line) airfoils; a = 2�; Re = 2000.
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attributes of the optimal shapes can be clearly discerned.

Computations were also performed starting from NACA

2408 airfoil for Re = 2000, a = 2� and the resulting optimal

shape is shown in figure 18b. The optimal airfoil had Cl-

= 0.542 and has similar characteristic features as the

optimal airfoil obtained when starting with NACA 0008

airfoil.

5.3 Maximizing (Cl/Cd) at a = 2�

The optimal airfoil shapes obtained for maximizing (Cl/Cd)

are shown in figure 19. Yet again, we see significant

increase in the objective function at all Re considered. The

optimal airfoils have similar geometric features as obtained

with the Cl maximization objective function. The maximum

thickness of the optimal airfoils was about 6% occurring at

about x/c = 0.10 for Re = 1000 and moves slightly rear-

ward to x/c = 0.14 for Re = 10000. The optimal airfoils

have droops near the leading and trailing edges. The lead-

ing edge droop varies from about 7.9% occurring at x/

c = 0.34 for Re = 1000 to about 3.8% at x/c = 0.30 for

Re = 10000. The droop near the trailing edge varies from

about 4.7% at x/c = 0.80 for Re = 1000 to 1.4% at x/

c = 0.75 for Re = 10000. A cavity is formed between the

droops.

As earlier, the Re = 2000 case is considered as an

illustrative example. The streamlines and contours of vor-

ticity magnitude over the optimal airfoil are plotted in

figure 20. The recirculation region on the airfoil upper

surface leads to Cl enhancement. A recirculation region is

also seen on the lower surface of the airfoil near the leading

edge. These recirculation regions persist till Re = 10000.

The pressure distribution over the NACA 0008 and the

optimal airfoils is plotted in figure 21.

Some comments regarding the optimal airfoil shapes

obtained in the literature in the very low Re range are in

place here. The optimization study of Kunz and Kroo [11]

utilized the camber line as the design element represented

by four control points, and using Nelder-Mead simplex

procedure at Re = 2000 and 6000 resulted in a 5% and 4%

increment in (Cl/Cd)max, respectively, compared to the

NACA 4702 airfoil. Of interest here is the appearance of

the two prominent droops, as also seen in the present study,

in their optimal airfoils. However, their geometric

parametrization of the camber line precludes the appear-

ance of cavity in between the droops. Our earlier study [25]

adopting the approach of Kunz and Kroo [11] resulted in

(Cl/Cd)max = 4.95 at Re = 2000. The optimization proce-

dure was extended using the fixed-direction set method (a

variant of Powell’s direction set method) leading to a small

further increment in (Cl/Cd)max. In a later study [26] using

the same method we parametrized a modified NACA 2408

airfoil using 12 control points; initializing the fixed-direc-

tion set optimization procedure from this airfoil we

obtained (Cl/Cd)max = 3.96 at Re = 1000. Further, opti-

mizing the airfoil upper surface alone, keeping a flat lower

surface, we obtained (Cl/Cd)max = 4.67. In these studies the

resulting optimal airfoils had a corrugation on the upper

surface. Srinath and Mittal [27] performed a comprehensive

study to obtain optimal airfoil shapes at Re [ [10, 500] with

and without area constraints on the airfoil for five different

objective functions. They achieved significant improve-

ments in the aerodynamic performance for all the objective

functions considered. Increasing the number of design

variables led to a richer design space and better aerody-

namic characteristics. The later study of Kumar et al [28]

maximizing time-averaged lift coefficient resulted in Cl as

high as 1.356 at Re = 1000, and Cl = 1.394 at Re = 10000;

a = 4� in both the cases. Such high values of Cl were

obtained by progressively increasing the number design

variables in the design cycle. Their optimal profiles had

striking corrugations on the upper surface of the airfoil. The

recent study of Lei and He [29] had achieved an optimal

(Cl/Cd) of 10.54 at Re = 10000, a = 4�.
The optimal airfoil shapes for maximizing Cl and max-

imizing (Cl/Cd) have characteristic droops and a corruga-

tion on the upper surface. It must be appreciated that the

corrugation evolves rather naturally during the shape evo-

lution. Though biologically inspired corrugated airfoils

have been specifically studied earlier [30–35], achieving

corrugated airfoils as optimal profiles via an optimization

procedure is indeed remarkable. Nature has an excellent

example of corrugated lifting surface in dragonflies. All

these point to the importance of corrugations in enhancing

the aerodynamic characteristics at ultra-low Reynolds

numbers and will have significance in engineering bio-

mimicking flight.

Before we conclude, we mention that in some MAV

applications flapping or rotating type of lifting surfaces are

employed. The adjoint-based aerodynamic shape

Re
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Figure 19. Optimal airfoil shapes for maximizing (Cl/Cd) objec-

tive function.
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optimization framework we have presented in this study

can be extended for such applications. For example, when

the aerodynamic coefficients change with time a time-av-

eraged objective function can be formulated as

J ¼ 1

T

ZT

0

I x; fð Þdt; ð9Þ

where I (x, f) is the now instantaneous value of the

objective function and T is period of time averaging.

6. Conclusions

The flow field over NACA 0008 airfoil was studied com-

putationally in the ultra-low Reynolds number regime Re [
[1000, 10000] for various angles of attack a [ [0�, 8�]. The
flow being laminar it was seen to separate at very small

angles of attack. The onset of flow separation is at a = 6�
for Re = 1000, and occurs at lower a with increasing Re.

Once the flow separates, as the angle of attack increases the

separation point moves closer to the leading edge. The

location of the reattachment point is insensitive to a change

in a and remains close to the trailing edge. The slope of the

Cl- a curve is lower than inviscid thin airfoil theory value of
Cl,a = 2p. Due to early flow separation the maximum Cl

obtainable is drastically reduced as compared to the high

Reynolds number values. The Cl curve is linear for small a.
After flow separation Cl increases non-linearly till the air-

foil stalls. It was further seen that higher values of Cl are

obtained at lower Re. The separated flow alters the effective

(a) 

(b)  
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Figure 20. (a) Streamlines, and (b) contours of vorticity magnitude over the optimal airfoil for maximizing (Cl/Cd); Re = 2000.
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Figure 21. Pressure distribution over NACA 0008 and the

optimal airfoils; Re = 2000.
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geometry of the airfoil, and consequently its effective

camber which is more pronounced at a higher Reynolds

number leading to a lower Cl than that achieved at a lower

Re. Significant increase in the values of drag coefficient is

seen with a decrease in Re. For all the Reynolds numbers

considered here the viscous component of drag is signifi-

cant and it continuously decreases with increasing angle of

attack, while the contribution due to pressure drag increases

due to flow separation effects. Cl values are low in the ultra-

low Re regime, and with high values of Cd, values of (Cl/

Cd) are low. This fact provided a motivation for designing

airfoils for improved aerodynamic characteristics at low Re.

An adjoint-based aerodynamic shape optimization

methodology was employed to obtain improved aerody-

namic characteristics in the ultra-low Re regime. Three

different objective functions, namely, (i) minimization of

drag coefficient, Cd, (ii) maximization of lift coefficient, Cl,

and (iii) maximization of lift-to-drag ratio, (Cl/Cd), were

considered. The NACA 0008 airfoil was the initial geom-

etry for the optimization procedure. The characteristic traits

of the optimal airfoil shapes obtained in the Cd minimiza-

tion study are profiles with rather sharp leading edge and

maximum t/c of about 5 to 6%. The maximum t/c occurs at

about the quarter-chord position for all Re. For the Cl

maximization study significant increase in Cl values were

obtained at all Re considered. The optimal airfoils were thin

profiles with distinct droops near the leading and trailing

edges. A smooth cavity was formed in between the droops.

The recirculation region in the droop enhances the suction

on the airfoil upper surface and consequently its Cl. The

(Cl/Cd) maximization study also resulted in significant

improvements in the objective function. The resulting

optimal airfoils had similar geometric features as those

obtained with the Cl maximization objective function.

Notations
Aref reference area (m2)

c airfoil chord length (m)

Cd coefficient of drag

Cl coefficient of lift

I objective function

ls/c length of the separated region

p pressure (Pa)

R governing equation

Re Reynolds number

t time (s)

t/c thickness-to-chord ratio

u velocity vector (m/s)

x, y Cartesian coordinates

xr/c reattachment location

xs/c separation location

Greek symbols
a angle of attack (deg.)

q density (kg/m3)

m kinematic viscosity (m2/s)

x flow field variables

f physical location of the boundary

w Lagrange multiplier
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