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Abstract. A spectral collocation method based on Legendre wavelet is applied to analyse the slip and

radiation effects in the flow of an elastico-viscous Walters-B fluid. The fluid is assumed to impinge obliquely on

a stretching surface with linear stretching velocity. The governing system of equations is converted into

dimensionless ordinary differential equations by invoking suitable similarity variables. The proposed iterative

spectral technique for solving governing system of initial value problems is applied for obtaining the solutions.

First, we extend Legendre wavelet and Legendre–Guass collocation points are computed for a large interval. The

differential equations are converted into a system of algebraic equations. The approximate solution is obtained

by solving these algebraic equations. The proposed algorithm is implemented to obtain numerical results for

different values of the pertinent parameters. The proposed algorithm controlled the overshooting and under-

shooting in velocity profiles. The presence of stretching and slip enhances the velocity and reduces the tem-

perature of the fluid within the boundary layer.

Keywords. Stretching sheet; viscoelastic fluid; oblique stagnation point flow; thermal radiation; Legendre

wavelet spectral collocation method; shooting method.

1. Introduction

Recent years saw a remarkable growth in the literature

regarding non-Newtonian fluids. These fluids obey nonlin-

ear constitutive relationship between the shear stress and

deformation rate and have practical applications in chemi-

cal, metallurgical, civil and mining engineering and

industries. There exist various constitutive relationships of

non-Newtonian fluids in the literature. Among these the

Walters-B [1] fluid is an important viscoelastic fluid. The

nonlinearity and higher-order derivatives restrict the

researchers to solve flow equations of Walters-B fluid by

conventional methods. Moreover, there exists a strong

singularity at the initial boundary. This complexity chal-

lenged mathematicians to develop methods that overcome

this difficulty. Beard and Walters [1] used the first-order

perturbation method to find the solution. The perturbation

solution predicted the velocity overshoot within the

boundary layer. Frater [2] was of the opinion that pertur-

bation solution is responsible for overshoot in the velocity

profile. Ariel [3] proposed a hybrid numerical technique to

explain the stagnation-point flows of Walters-B liquid and

reported the overshoot in the velocity. Dorrepaal et al [4]

discussed the flow of Walters-B fluid near point of

reattachment.

The flow over a stretching surface has frequent engi-

neering applications such as polymer extrusion, artificial

fibres and rolling and manufacturing of plastic films. In the

process of melt-spinning, the extrudate from the die is

usually drawn and at the same time stretched into a sheet,

which is converted into a solid by gradual cooling process.

The heat transfer at stretching surface influences the quality

of the final product. Crane [5] investigated the attached

flow with a stretching surface utilizing the boundary layer

equations of a viscous fluid. McLeod and Rajagopal [6]

studied the unique solution of a viscous fluid flow past a

stretchable boundary. Mahapatra et al [7] explored the flow

of Walters-B fluid near the stagnated region over a flat

stretching surface. Lok et al [8] studied the non-orthogonal

stagnated flow of a viscous fluid near a stretching sheet.

Hussain et al [9] deliberated the stagnated flow of Walters-

B liquid impinging obliquely over a stretching surface.

Hayat et al [10] explored the three-dimensional flow of an

elastico-viscous fluid over a stretching surface. Wang [11]

analytically solved the problem of slip flow of a viscous

fluid near the stagnation region. Labropulu et al [12]
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evaluated the slip effects in the stagnation-region of Wal-

ters-B liquid. Sajid et al [13] investigated the axisymmetric

flow near a stagnation-point over a lubricated disk with

power-law fluid as lubricant by introducing generalized slip

boundary condition. Mehmood et al [14–17] considered the

flow of an elastico-viscous fluid, micropolar, couple stress

and Jeffrey fluids, respectively, towards an oblique stag-

nation point caused by a lubricated flat surface. Kushwaha

and Sahu [18] discussed the heat transfer in the presence of

the slip in the region between two heated parallel plates

having the effects of viscous dissipation. Zhu et al [19]

evaluated the effects of the velocity slip of the second order

on the nanofluid flow in the presence of MHD.

In the last few years, attention has been paid to heat

transfer in non-Newtonian fluids in many engineering and

industrial activities, e.g. food processing, pharmaceutical

process, hybrid power engines, microelectronics, fuel cells,

hyperthermia, coolants in nuclear power plants, etc. Dan-

dapat and Gupta [20] analysed the heat transfer in second-

grade fluid over a stretchable surface. Sajid et al [21] dis-

cussed the micropolar fluid flow over a disk with combined

effects of uniform rotation and linear radial stretching.

Labropulu et al [22] calculated the heat transfer in oblique

flow of a viscoelastic fluid towards a stretchable surface.

The analysis was made by considering the non-Newtonian

fluid in the oblique stagnation zone. Reza et al [23] dis-

cussed the heat transfer in stagnation flow of a elastico-

viscous fluid impinging on a quiescent fluid. Hayat et al

[24] studied the radiative and convective heat transfer

phenomenon in Walters-B liquid flow. Hakeem et al [25]

analysed the effects of thermal radiation and elastic

deformation in Walters-B fluid. Ali et al [26] examined

heat transfer due to thermal radiation and heat source/sink

in a unsteady flow of a non-Newtonian fluid past an

oscillatory stretching sheet. Seedak and Abdelmeguid [27]

investigated the effects of thermal radiation with thermal

diffusivity over a stretching sheet having variable heat flux.

Babu and Sandeep [28], Raju and Sandeep [29] and Kumar

et al [30] focused on the effects of non-linear thermal

radiations by incorporating the Newtonian and non-New-

tonian fluids in the presence and absence of the slip effects.

Attia et al [31] and Prakashi et al [32] investigated the heat

transfer in fluid flow between two porous plates and the

porous channel.

The spectral methods are widely used to deal with the

nonlinearity of a system of equations. Yuan et al [34]

introduced the multidomain pseudo-spectral approximation

based on the Legendre–Galerkin method. They solved

nonlinear diffusion equations to check the stability and the

rate of convergence of the method.

Keeping in view this literature, the current investigation

is performed to predict the effects of the slip and thermal

radiation on the oblique two-dimensional flow of Walters-B

fluid near a stagnation point with uniform heat source/sink.

Governing equations are solved mathematically using a

numerical method named as Legendre wavelet spectral

collocation method (LWSCM) proposed by Sajid et al [35].

No overshoot in the velocity reported in the work of Arial

[3] and Hussain et al [9] is seen while applying the

LWSCM numerical technique.

2. Problem formulation

A steady, two-dimensional and incompressible oblique

stagnation-point flow of Walters-B fluid over a stretchable

sheet at y ¼ 0 is considered (figure 1). The flow and heat

transfer are studied by following [1, 9, 25].
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where u(x, y) and v(x, y), respectively, are components of

velocity in x and y directions; m, q , cp, k, qr and Q,

Figure 1. Flow geometry of physical problem.
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respectively, are kinematic viscosity, density, specific heat,

thermal conductivity, radiative heat flux and the heat

source/sink. The Rossland approximation qr ¼ �4r�
3k�

oT4

o�y

where r� and k�, respectively, are the Stefan–Boltzmann

constant and the mean absorption coefficient is used. Fur-

thermore, T, Tw and T1, respectively, are the temperature

of fluid inside boundary layer, at the wall and far away from

the wall. Defining stream function from (1) such that

�u ¼ o �w
o�y

; �v ¼ � o �w
o�x

: ð5Þ

Substituting (5) into (2)–(4) and eliminating the pressure

we have

oð �w; r2 �wÞ
oð�x; �yÞ þ k0

q
oð �w; r4 �wÞ
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The appropriate boundary conditions are [9]

�w ¼ 0;
o �w
o�y

¼ c�xþ b

l
s12j�y¼0; T ¼ Tw þ a�

oT

o�y

at �y ¼ 0; ð8Þ

�w ¼ a�x�yþ 1

2
b�y2; T ! T1 as �y ! 1; ð9Þ

where a, b and c are constants and a� is thermal slip

parameter. The heat transfer rate and skin friction coeffi-

cient at wall can be expressed as [26]
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Defining dimensionless variables

x ¼ �x

ffiffiffi
c

m

r
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c

m

r
; w ¼

�w
m
; ð13Þ

Eqs. (6)–(9) in dimensionless variables become
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2
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where We ¼ k0c
qm , c ¼ b

c
, b ¼ b

ffiffi
c
m

p
and a ¼ a�

ffiffi
c
m

p
, respec-

tively, are viscoelastic parameter Weissenberg number,

shear in freestream, velocity and thermal slip parameters.

Introduce the similarity transformations

wðx; yÞ ¼ xFðyÞ þ GðyÞ; hðyÞ ¼ T � T1
Tw � T1

; ð18Þ

where F(y) and G(y), respectively, denote the component of

the flow in normal and tangential directions. Applying

Eq. (18) into Eqs. (14)–(17) and after integration, the fol-

lowing system of ordinary differential equations is

obtained:

F000ðyÞ � ½F0ðyÞ�2 þ FðyÞF00ðyÞ þ a2

c2
þWe

h
FðyÞFivðyÞ

þ F000ðyÞ þ ½F00ðyÞ�2 � 2F0ðyÞ
i
¼ 0;

ð19Þ

G000ðyÞ þ G00ðyÞFðyÞ � G0ðyÞF0ðyÞ

þWe
h
GivðyÞFðyÞ � G000ðyÞF0ðyÞ

þ G00ðyÞF00ðyÞ � G0ðyÞF000ðyÞ
i
¼ Ac;

ð20Þ

h00ðyÞ þ Preff h
0ðyÞ FðyÞ þ k Preff hðyÞ ¼ 0; ð21Þ

Fð0Þ ¼ 0; F0ð0Þ ¼ 1þ bF00ð0Þ
3bWeF00ð0Þ þ 1

; F0ð1Þ ¼ a

c
;

ð22Þ

Gð0Þ ¼ 0; G0ð0Þ

¼ bG00ð0Þ
1þ bWeF00ð0Þ

�
1� 2We

�
1þ bF00ð0Þ

3bWeF00ð0Þ þ 1

��
;

G00ð1Þ ¼ c;

ð23Þ

hð0Þ ¼ 1þ a h0ð0Þ; hð1Þ ¼ 0; ð24Þ

where A ¼ AðWe; a=cÞ is the boundary layer displacement

and Preff ¼ Pr
Nrþ1

denotes the effective Prandtl number. It

was the opinion of the Magyari and Pantokratoras [33] that

energy equation (24) should not be solved by an approach

using two parameters, i.e., Prandtl number and radiation
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parameter. They disclosed that in fact the study of heat

transfer characteristics has similar consequences either with

or without thermal radiation. It was emphasized that the

flow problems involving thermal radiations admit the same

solution for infinite parametric values of (Nr, Pr), which

corresponds to the same effective Prandtl number. Equa-

tion (20) can be further simplified as

G0ðyÞ ¼ cHðyÞ; ð25Þ

H00ðyÞ þ H0ðyÞFðyÞ � HðyÞF0ðyÞ

þWe
h
H000ðyÞFðyÞ � H00ðyÞF0ðyÞ

þ H0ðyÞF00ðyÞ � HðyÞF000ðyÞ
i
¼ A;
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�
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�
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��
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H0ð1Þ ¼ 1: ð27Þ

Employing Eq. (18) in Eq. (10), we have

RexCf ¼xF00ð0Þð1� 3WeÞ þ cH0ð0Þð1� 2WeÞ; ð28Þ

Re�1=2
x Nu�x ¼� h0ð0Þ; ð29Þ

where Nu�x ¼ Nux
ð1þNrÞ is local effective Nusselt number.

3. LWSCM

Consider the interval [0, T). The Legendre wavelets are

defined as

wm;nðtÞ ¼�
ðmþ 1

2
Þ1=22k=2Lmð2kt � 2nþ 1Þ; n� 1

2k�1
� t\

n

2k�1
;

0; otherwise:

ð30Þ

LmðtÞ is mth-order Legendre polynomial having wðtÞ ¼ 1

orthogonal weight function. One can obtain the Legendre

polynomials using the relations

L0ðtÞ ¼1;

L1ðtÞ ¼t;

Lmþ1ðtÞ ¼
2mþ 1

mþ 1
tLmðtÞ �

m

mþ 1
Lm�1ðtÞ; m ¼ 1; 2; 3. . .:

ð31Þ

x0\x1\x2 � � � �\xm�1, known as Legendre–Gauss collo-

cation points, are roots of the LmðxÞ in ð�1; 1Þ and fwjgm�1
j¼0

are corresponding weights:

wj ¼
2

ð1� x2j ÞðL0MðxjÞÞ
2
; j ¼ 0; 1; . . .;M � 1: ð32Þ

Any function f 2 L2½0; y1Þ in terms of Legendre wave-

lets takes the form

f ðxÞ ¼
X1
n¼1

X1
m¼0

yn;mwn;mðxÞ; ð33Þ

where yn;m can be approximated to

yn;m ’
XM�1

j¼0

�wjf ðxnjÞwn;mðxnjÞ; ð34Þ

where

�wj ¼
wj

2k
; xnj ¼

xj

2k
þ 2n� 1

2k
; ð35Þ

n ¼1; 2; . . .; 2k�1T; j ¼ 0; 1; . . .M � 1: ð36Þ

Hence, Eq. (33) becomes

f ðxÞ ’
X1
n¼1

X1
m¼0

XM�1

j¼0

�wjf ðxnjÞwn;mðxnjÞwn;mðxÞ: ð37Þ

X1
n¼1

X1
m¼0

wn;mðxÞwn;mðtÞ ¼ dðx� tÞ ð38Þ

is an identity. Truncating this to M � 1 and 2k�1 T and

introducing

InjðxÞ ¼
XM�1

m¼0

�wjwn;mðxnjÞwn;mðxÞ; ð39Þ

we have

f ðxÞ ’
X2k�1T

n¼1

XM�1

j¼0

InjðxÞf ðxnjÞ: ð40Þ

3.1 Solution by LWSCM

Consider the boundary value problems (19)–(24). We

convert boundary value problems into initial value prob-

lems by assuming

F00ð0Þ ¼ s; G00ð0Þ ¼ r; h0ð0Þ ¼ t: ð41Þ

To obtain an approximate solution of these problems, we

divide the domain 0\y\T into subintervals for n ¼
1; . . .; 2k�1T by

h
n�1
2k�1 ;

n
2k�1

	
. The functions F(y) and

Z(y) can be approximated using Legendre wavelet inter-

polation on the nth subinterval as

FðyÞ ’
X2k�1T

n¼1

FnðyÞ ¼
X2k�1T

n¼1

XM�1

j¼0

InjðyÞ FðynjÞ; ð42Þ
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GðyÞ ’
X2k�1T

n¼1

GnðyÞ ¼
X2k�1T

n¼1

XM�1

j¼0

InjðyÞ GðynjÞ; ð43Þ

hðyÞ ’
X2k�1T

n¼1

hnðyÞ ¼
X2k�1T

n¼1

XM�1

j¼0

InjðyÞ hðynjÞ; ð44Þ

and the derivatives can be written as

FmðyÞ ’
X2k�1T

n¼1

Fm
n ðyÞ ¼

X2k�1T

n¼1

XM�1

j¼0

ImnjðyÞ FðynjÞ; ð45Þ

ZmðyÞ ’
X2k�1T

n¼1

Zm
n ðyÞ ¼

X2k�1T

n¼1

XM�1

j¼0

ImnjðyÞ ZðynjÞ; ð46Þ

hmðyÞ ’
X2k�1T

n¼1

hmn ðyÞ ¼
X2k�1T

n¼1

XM�1

j¼0

ImnjðyÞ hðynjÞ: ð47Þ

Applying the points fynj jn ¼ 1; :::; 2k�1T; j ¼
3; :::;M � 1g into Eqs. (19)–(24), we obtain

F000
n þ F00

nFn � F02
n þ a2

c2
þWe

h
FnF

iv
n � 2F000

n F
0
n þ F002

n

i
¼ 0;

ð48Þ

G000
n þ G00

nFn � G0
nF

0
n

þWe
h
Giv

n Fn � G000
n F

0
n þ G00

nF
00
n � G0

nF
000
n

i
¼ Ac;

ð49Þ

h00n þ Preff h
0
n Fn þ k Preff hn ¼ 0; ð50Þ

Fnð0Þ ¼ 0; F0
nð0Þ ¼

1þ bF00
n ð0Þ

3bWeF00
n ð0Þ þ 1

; F00
n ð0Þ ¼ s;

ð51Þ

Gnð0Þ ¼ 0; G0
nð0Þ ¼

bG00
nð0Þ

1þ bWeF00
n ð0Þ�

1� 2We

�
1þ bF00

n ð0Þ
3bWeF00

n ð0Þ þ 1

��
;

G00
nð0Þ ¼ r;

ð52Þ

hnð0Þ ¼ 1þ a h0nð0Þ; h0nð0Þ ¼ t: ð53Þ

An approximate value is chosen for s, r and t and the

system of Eqs. (48)–(53) is solved for the first subinter-

val, i.e. ½0; 1=2k�1Þ. The results of first subinterval are

used as initial guess for second subinterval and this

process is repeated for all subintervals. A root finding

algorithm that satisfies F0ð1Þ ¼ a=c, G00ð1Þ ¼ c and

hð1Þ ¼ 0 is applied to modify the values of s, r and t,

respectively.

4. Results and discussion

To find the solution of the problem, a numerical technique

known as LWSCM is applied. A comparison of numerical

data is made using available literature of Hussain et al [9]

for no-slip boundary condition as shown in table 1. A deep

analysis of this table demonstrates that the method has

excellent agreement for the viscous case, and as the vis-

coelastic parameter increases the difference with the

numerical data occurs. This is because of the undershoot

and overshoot in the velocity profiles within the boundary

layer observed in the work of Hussain et al [9]. However,

the method implemented in this article has the ability to

control the overshooting and undershooting phenomenon

while solving these equations, which gives more accurate

and stable solutions. Secondly, there is no limitation on the

viscoelastic parameter by employing LWSCM; it is not

possible to obtain the solutions beyond the critical value of

viscoelastic parameter, i.e. We ¼ 0:3257864 by imple-

menting the algorithm followed by [9]. Furthermore, this

table also shows that the horizontal component of skin

friction F00ð0Þ increases on increasing the viscoelastic

parameter Weissenberg number We for a=c[ 1 and an

opposite result is obtained for 0\a=c\1. It also indicates

that for a fixed value of Weissenberg number We, hori-

zontal skin friction component is an increasing function of

stretching ratio parameter a/c. The influences of the We, a/c

and slip parameter b on the horizontal and shear compo-

nents of skin friction are numerically presented in table 2. It

is observed that both F0ð0Þ and H0ð0Þ increase on increasing
We and a/c, while they decrease with increase in slip b.

Table 1. Comparison of the results for b ¼ 0.

We
a=c ¼ 0:1 a=c ¼ 0:5 a=c ¼ 1:1 a=c ¼ 1:2

– [9] LWSCM [9] LWSCM [9] LWSCM [9] LWSCM

0.0 –0.9693 –0.969478 –0.6672 –0.667284 0.1642 0.164293 0.3377 0.337744

0.05 –0.9971 –0.997033 –0.6967 –0.696570 0.17646 0.176353 0.3646 0.364366

0.1 –1.0271 –1.026342 –0.7299 –0.728904 0.19177 0.191053 0.3992 0.397446

0.2 –1.0955 –1.091446 –0.8101 –0.804906 0.2392 0.233221 0.5139 0.496825

0.3 –1.1777 –1.168468 –0.9141 –0.901446 0.35198 0.312576 0.8499 0.708356

0.35 – –1.213554 – –0.960658 – 0.390439 – 0.965354

0.4 – –1.265207 – –1.030213 – 0.559130 – 2.027239
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Table 3 shows the influences of the Weissenberg number

We, stretching ratio parameter a/c, slip parameter b,
effective Prandtl number Preff , heat source/sink parameter k
and thermal slip parameter a on the effective local Nusselt

number �h0ð0Þ. It is clearly seen that decrease in Nu�x

occurs due to increase in k and a. Other parameters (We,

a/c, b and Preff ) show increasing effects.

Figures 2 and 3 show the influence of the viscoelastic

parameter We on the dimensionless horizontal velocity

F0ðyÞ in the presence of slip effects for the stretching ratio

parameter a=c ¼ 1:2, which correspond to the results that

the stretching ratio parameter enhances the viscoelasticity

effects. On the other hand, a increment in the Weissenberg

number causes a decrease in the velocity profile for case

0\a=c\1. It is worth mentioning that no phenomenon of

overshoot (for a=c[ 1) and undershoot (for a=c\1) in the

velocity profile is observed. Figure 4 shows the effects of

stretching ratio parameter a/c on the velocity profile. It is

noted that the velocity increases for increasing a/c. Inverted

boundary layer phenomenon is observed for a=c\1. Fig-

ures 5 and 6 indicate the effects of slip parameter on the

velocity profile for both the cases. These figures show the

Table 2. Effects of We, a/c and b on F00ð0Þ and H0ð0Þ.

We a/c b F00ð0Þ H0ð0Þ

0.1 1.2 0.5 0.240333 0.663479

0.0 0.184739 0.615094

0.1 0.240333 0.663479

0.2 0.346492 0.745048

0.3 0.626779 1.029077

0.4 3.054070 1.953398

0.1 –0.646816 0.194723

0.5 –0.453255 0.558919

1.1 0.115922 0.656955

1.2 0.240333 0.663473

0.0 0.397435 1.064442

0.5 0.240333 0.663473

1 0.172978 0.483469

2 0.111109 0.313993

5 0.053710 0.153360

Table 3. Effects of We, a/c, b, Preff and k on �h0ð0Þ.

We a/c b Preff k a �h0ð0Þ

0.1 1.2 0.5 2 0.2 0.5 0.688739

0.0 0.688699

0.1 0.688739

0.2 0.713511

0.3 0.896275

0.4 1.457372

0.1 0.401427

0.5 0.531463

1.1 0.670046

1.2 0.688739

0.0 0.677599

1 0.693268

2 0.697307

5 0.701461

0.5 0.444785

1 0.547677

2 0.688739

5 0.903157

–1 0.951638

–0.5 0.868039

0.0 0.751048

0.5 0.567194

1 0.205316

0 1.050499

1 0.512314

2 0.338762

5 0.168013
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1.10
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1.20
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'
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Figure 2. Effects of We on F0ðyÞ when a=c[ 1.
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Figure 3. Effect of We on F0ðyÞ when a=c\1.
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Figure 4. Effect of a/c on F0ðyÞ.
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Figure 5. Effect of b on F0ðyÞ when a=c[ 1.
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Figure 6. Effect of b on F0ðyÞ when a=c\1.
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Figure 7. Effect of We on H0ðyÞ.

0 1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

H
'
y

We 0.2, a c 1.2,

0.3, 0.2, 0.1

Figure 8. Effect of b on H0ðyÞ.
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Figure 9. Effect of We on hðyÞ.
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result that as slip is increased the velocity is increased for

a=c[ 1 and decreased for a=c\1. The variation of shear

component of skin friction H0ð0Þ against We is plotted in

figure 7. In the presence of slip, H0ð0Þ is an increasing

function of We. Figure 8 presents the effects of slip

parameter on H0ð0Þ. An increase in slip parameter results in

a decrease of H0ð0Þ. Figure 9 analyses the viscoelastic

effects on the dimensionless temperature profile h. Tem-

perature and thermal boundary layer thickness decrease

with increasing We, resulting from the fact that the vis-

coelasticity enhances the heat transfer rate, which causes

reduction in fluid temperature inside the boundary layer.

Figure 10 presents the change in temperature profile for

various values of a/c. It is noticed that increase in the

stretching ratio parameter causes a decrease in the tem-

perature profile, which results in the enhancement of the

heat transfer rate. Figure 11 is plotted to check the effects

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

y

θ
y

We 0.2, 1, 0.5, 0.2, Preff 2

a c 0.1, 0.5, 1.2

Figure 10. Effect of a/c on hðyÞ.
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Figure 11. Effect of b on hðyÞ.
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Figure 12. Effect of a on hðyÞ.
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Figure 13. Effect of Preff on hðyÞ.
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Figure 14. Effect of k on hðyÞ.
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of slip parameter on the temperature profile. Increase in the

slip parameter enhances the temperature. The effects of

thermal slip a on hðyÞ is plotted in figure 12. It can be seen

that temperature inside the boundary layer decreases on

increasing the thermal slip parameter. Figure 13 depicts the

change in the temperature profile on changing the effective

Prandtl number Preff . An increase in Preff cause a decrease

in temperature, which is due to the fact that thermal dif-

fusivity reduces for large Preff . Figure 14 displays the heat

source/sink effects on the temperature. Addition of heat

source causes an increase in heat transfer rate, which results

in an increase of temperature. On the other hand, addition

of heat sink reduces the temperature.

5. Conclusion

• The undershoot and overshoot phenomenon in the

velocity profiles within the boundary layer associated

with the Walters-B fluid is controlled and a more

accurate and stable solution is predicted.

• It is observed that an increase in viscoelasticity

enhances the fluid velocity for a=c[ 1 and a reverse

behaviour arises for 0\a=c\1. The temperature and

thickness of thermal boundary layer increase with

rising viscoelasticity of the fluid.

• On increasing the stretching ratio parameter, the fluid

velocity increases while temperature and thickness of

thermal boundary layer decline. Inverted boundary

layer phenomenon is observed for a=c\1.

• The presence of velocity slip enhances the velocity and

temperature while an increment in thermal slip reduces

the temperature.

• Large value of effective Prandtl number reduces the

temperature within the boundary layer.

• Addition of heat source increases the temperature

while addition of heat sink reduces the temperature.

Nomenclature

�u velocity component of fluid

�v velocity component of fluid

�x rectangular coordinate

�y rectangular coordinate

�p fluid pressure

k0 material parameter

cp specific heat at constant pressure

qr radiative heat flux

Q heat source sink

T temperature of fluid

Tw,T1 surface and Ambient tempreatures

A boundary layer displacemnt

We Weissenberg number

Cf skin friction coeffient

qw heat flux at wall

Rex local Reynold number

Preff effective Prandtl number

Nu�x effective Nusselt number

l dynamic viscosity

m kinametic viscosity

q density

sw wall shear stress

a thermal slip parameter

b velocity slip parameter

k heat source sink parameter

c shear in freestream

w stream function
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