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Abstract. In this work, a systematic approach is proposed to estimate the disturbance trajectory using a new

generalized Lyapunov matrix valued function of the joint angle variables and the robot’s physical parameters

using the maximum likelihood estimate (MLE). It is also proved that the estimated disturbance error remains

bounded over the infinite time interval. Here, the manipulator is excited with a periodic torque and by the

position and velocity data collected at discrete time points construct an ML estimator of the parameters at time

t þ dt. This process is carried over hand in hand in a recursive manner, thus resulting in a novel unified

disturbance rejection and parameter estimation in a general frame work. These parameter estimates are then

analyzed for mean and covariance and compared with the Cramer Rao Lower Bound (CRLB) for the parametric

statistical model. Using the Lyapunov method, convergence of the ‘‘disturbance estimation error’’ to zero is

established. We assume that a Lyapunov matrix dependent on the link angle and form the energy corresponding

to this matrix as a quadratic function of the disturbance estimate error. Using the dynamics of the disturbance

observer, the rate of change of the Lyapunov energy is evaluated as a quadratic form in the disturbance error.

This quadratic form is negative definite for the angular velocity in a certain range and for a certain structured

form of the Lyapunov energy matrix. The most general form of the Lyapunov matrix is obtained that guarantees

negative rate of increase of the energy and a better bound on the disturbance estimation error convergence rate to

zero. This is possible only because we have used the most general form of the Lyapunov energy matrix.

Keywords. Nonlinear disturbance observer (NDO); parameter estimation; maximum likelihood estimation

(MLE); Cramer Rao lower bond (CRLB); Lyapunov energy function; stochastic process.

1. Introduction

Robot manipulators are subjected to different types of

disturbances such as joint frictions, unknown payloads, and

unmodeled dynamics. To estimate disturbance tracking,

nonlinear disturbance observer (NDO) is one of the tech-

niques to achieve the desired performance. In general, the

main objective of the use of NDO is to deduce external

unknown disturbance torque without the use of an addi-

tional sensor. A disturbance observer has been designed in

[1] based on measurements of only the angular variables q

of the robot and its angular velocity q: The design involves

the contraction of an auxiliary signal zt that satisfies first

order differential equation involving q tð Þ and q tð Þ: The

asymptotic convergence of the disturbance estimate to the

true disturbance is proved in [1], using a Lyapunov energy

function which is a quadratic form in the disturbance esti-

mate error, and which depends on the instantaneous value

of q tð Þ: The rate of change of this energy function with time

is shown to be not only negative, but upper bounded by a

negative definite quadratic form, provided that a certain

matrix in the Lyapunov energy is chosen approximately.We

have in our paper considered a Lyapunov energy function

for the same disturbance observer as in [1], but with an

additional degree of freedom in the choice of a certain

matrix F, in the construction of the Lyapunov function. This

This additional degree of freedom F satisfies a constraint

that the Lyapunov energy metric be symmetric and positive

definite. The advantage of using this additional degree of

freedom is that we can prove faster convergence rate of the

disturbance estimate error to zero. In an article [2], an NDO

for multi-DOF robotic manipulator was designed by

selecting the observer gain functions and global conver-

gence was guaranteed based on Lyapunov theory. This

work was extended in [3] for -link serial manipulator.

Although in both the articles, the proposed observer is

designed for very slow varying disturbances while in the

present work we bounded the rate of disturbance. Both used*For correspondence
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explicit formula for the inertia matrices of a particular class

of manipulators to solve the disturbance observer design. In

[4] the system has been linearized by removing the cen-

trifugal-Coriolis- gravitational components regarded as

disturbance and by using frequency selective properties of

LTI filters, this disturbance estimates has been achieved.

Our philosophy however has been to treat the nonlinear

centrifugal-Coriolis- gravitational torque components as

parts of the system and to estimate disturbance only present

in the control input. While in [5] to improve robust stability

without compromising the performance of NDO, nominal

plant model in the NDO was manipulated and the param-

eters of the discretized nominal model are optimized to

improve robust stability in the discrete time domain. This

method is applicable for linear model. In [6], the system is a

motor modeled using a second order linear equation. Inertia

and torque coefficient are uncertain and hence are expres-

sed as nominal values. The applied method is applicable to

LTI system and to apply this method to nonlinear system

like robot, this method needs to be modified. Stability of

this closed loop system is established by standard root locus

techniques. In [7] robust stability of a closed loop LTI

system has been dealt. Specifically a NDO is constructed

and this depends on a time constant parameter s. The author

proves that there exists a ns� [ 0 such that if s� s�, then

the closed loop system is stable. It would be interesting to

see whether such a result can be proved for nonlinear

robotic systems. In [8], the robustness and stability of a

disturbance observer and a reactio n torque observer

(RTOB)-based robust motion control systems was ana-

lyzed. The desired acceleration, external disturbance and

noise of velocity measurement are passed through filters.

All these are LTI system based techniques and need to be

modified for our application. In [9], a class of stabilizing

decentralized proportional integral derivative (PID) con-

trollers for an n-link robot manipulator system is proposed.

In [10], the relative position control can be performed by a

disturbance observer as well as a position controller. Here,

the disturbance does not exist in reality but it is assumed as

position error. In [11], a new method is introduced to

address the decoupling problem for system with large

uncertainty of internal dynamics and unknown external

disturbances. When the accurate plant model is unknown,

an external state observer is designed which estimate the

states using only knowledge of the system output. Con-

vergence of the state estimates to the true state is estab-

lished. It is a question whether this technique can be applied

even to nonlinear system with several states and few out-

puts. In robotics it is used to estimate the system parameters

rather than the states and we have followed this approach.

In [12], control with multiple plant disturbances has been

surveyed. First the author discuss standard disturbance

observer techniques then they survey problem in which

system nonlinearities are also regarded as disturbances so

that linear design methods can be used. Then they discussed

nonlinear methods. Finally the composite method is

surveyed involving two models, a disturbance observer and

a controller. Disturbances modeled as random processes

have also been surveyed. These involve methods like

Kalman filtering for state estimates followed by controller

design. Minimum variance issue is also surveyed for min-

imizing the output variance in the presence of Gaussian

noise. In [13], the control of a damped harmonic oscillator

with external disturbance in the input force and output

measurement noise has been proposed. The effect of the

overall controller is to produce the plant output i.e. position

as a linear combination of filtered version of desired posi-

tion, external disturbance and measurements noise. This

technique also after some modification can be applied by

means of nonlinear filters for nonlinear robotic system. In

[14], the nonlinear system is modeled using parameters that

describe the unmodeled dynamics and parameters that

describe the unknown parameter vector.

The authors then design an observer with the output y(t)

and input u(t) to estimate the system states. The observer is

designed using the output error as feedback. In our

approach, we directly estimate the unknown system

parameters from the available output data by assuming a

random disturbance and then using the unknown parameter

estimates, we estimate the disturbance using the distur-

bance observer. The algorithm in [14] is more appropriate

when we wish directly to estimate the state (angular posi-

tion and velocities) without having to estimate the system

parameters. In the case of stochastic disturbances when the

system parameters to be estimated, our MLE based algo-

rithm appears to be superior. In [15], a disturbance observer

for discrete time linear system has been proposed. The idea

is same as the standard construction of the disturbance

observer in the literature but is carried out in discrete time

using recursive difference equations expressing the distur-

bance estimate in terms of an auxiliary variable ‘z’ which

satisfies a difference equation driven by the state and the

input processes. The state is then replaced by the output

with a pseudo inverse operation and of the disturbance

observer is then proved. The method does not work if there

are unknown system parameters and then one has to use a

statistical approach to estimate these parameters from

input-output data. Our algorithm for ML estimation of

unknown system parameters can be combined with the

disturbance observer in [15] when the system is discrete

time linear with unknown parameters. In [16], the param-

eters of a motor are estimated for a first order linear dif-

ferential equation using least square technique. Using these

parameter estimates, a plant (motor) is constructed, an error

signal generated which when passed through a filter yields

the estimated disturbance. In [17], an algorithm based on

the least square method is used to estimate the two time

constants of a second order LTI system from discrete output

measurements.

This is essentially an ML method if we assume that the

output measurement noises are iid Gaussian. Then based on

the second order partial derivatives of the measurement
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error energy w.r.t. the parameters, an iterative scheme are

proposed to obtain a Newtonian iterative algorithm for

parameter estimation.

The method will however require modification if the

system is nonlinear as it is in robotics problems. One way to

use the technique in [17] for nonlinear systems is to expand

the nonlinear terms in the dynamical system as a power

series in the state variables and then apply perturbation

theory to obtain an approximate solution to the system in

terms of the parameters. After that the measurement in error

energy can be minimized by the Newton-iteration algo-

rithm. In [18], the extended Kalman filter (EKF) has been

used to estimate _q, variation in physical parameter, and the

environment force with noisy state measurements. But this

technique cannot be used for estimation of disturbance and

physical parameters.

As disturbance is neither can be modeled as a com-

ponent of the machine torque nor it is a random noise, it

is some where in between. Also EKF is suboptimal

technique as it does not give the minimum mean square

state estimate error (MMSE).Although Kushner filter is

the optimal MMSE but it is not implementable as it is

infinite dimensional filter. Least square method to linear

system is applied in [19]; we have applied LS to nonlinear

system followed by linearizion. Both methods give opti-

mal ML estimates provided that the disturbance is

assumed to be WGN. In [20], multi-variable systems

parameters estimation and control is discussed for moving

average noise. This is a linear system and both control

inputs and noise are present. The moving average dis-

turbance is transferred into an auto regressive disturbance

and then a least square algorithm is proposed to identify

the system parameters.

This technique can be adapted to nonlinear system after

some modification. Results of [21] are used for the com-

parison of the proposed method. In [22], synchronization

issues of two non-identical hyper chaotic master/slave

systems were investigated. In [23], the unknown system

output is modeled using a parametric function of time and

the errors between (a) the unknown system output and the

parametric model output (modeling error), (b) between the

measured observation and the parametric model output are

computed. These two errors are combined to compute the

modeling error plus error due to measurement noise. The

resultant error magnitude is then minimized by parameter

adjustment. To get an initial guess for the parameter model

in the robotic case, we can apply perturbation theory.

Moreover, in the presence of stochastic disturbance, we

can use perturbation theory to derive a parameter model

for the state perturbation due to noise and parametric error.

The parameter h may be determined by the least square

method to this linearized model. Essentially, the method-

ology of [24] needs to be modified slightly when the dis-

turbance is stochastic using the ergodic hypothesis. The

system model in [25] is described by a nonlinear differ-

ential equation expressed in state variable form. The

nonlinear system terms and the external disturbance are

then clubbed into a total disturbance term and a linear

generalized proportional integral (GPI) observer based on

output error feedback is designed to estimate the state. The

authors prove convergence of the output error estimates to

zero under sufficiently several conditions. This method of

linear GPI observer may not be approximate when the

nonlinear system terms are not treated as disturbances. Our

method will work in such cases. Most noticeably, the

proposed approach offers the following contribution com-

pared to the previous work: 1) More generalized Lyapunov

function and the Lyapunov energy is bounded. 2) Simul-

taneous parameter and disturbance estimation using dis-

turbance observer and MLE.

MLE of parameter at time t þ D is obtained based on

data collected up to time t and then disturbance estimate at

time t þ D is also derived. 3) Bounded disturbance instead

of slow-varying disturbance. 4) The model involves

assuming the difference between the disturbance process

and its estimate as a WGN stochastic process thus resulting

in an improved performance ML estimator. 5) It enables us

to use ‘‘estimation theory for stochastic process’’ with

improved results. 6) Performance analysis of the estimator

by CRLB evaluation using perturbation theory. The

remaining part of the article is organized as follows: In

section 2, dynamics of the manipulator with disturbance

and parameter estimation is formulated. In section 3,

Parameter Estimation by MLE is derived. In section 4,

Nonlinear Disturbance Observer with parameter estimation

is modeled. In section 5, the method for stability analysis is

proposed. In section 6, convergence rate of the NDO is

proposed. In section 7, performance analysis of the pro-

posed parameter estimation is proposed. Then the validity

of the proposed technique is verified by simulation results

in section 8. This article ends with the conclusion given in

the last section.

2. Dynamic model in the presence of disturbance
and parameter uncertainty

The Robot dynamics can be described as

€q ¼ F q; _q; t; h0ð Þ þG q; h0ð Þdi tð Þ ð1Þ

where h0ð Þ is the true parametric vector ðh0 ¼

m1;m2;L1;L2ÞT
� �

and

F q; _q; t; h0ð Þ ¼ �Mðq; h0Þ�1N q; _q; h0ð Þ þMðq; h0Þ�1s tð Þ
ð2Þ

G q; h0ð Þ ¼ Mðq; h0Þ�1 ð3Þ

where M q; h0ð Þ; is the inertia matrix. N q; _q; hð Þ is the

vector of Coriolis and centrifugal forces. h0 is the true
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parametric vector and represents physical parameters like

mass, length or inertia of the links. di tð Þ is the disturbance.

3. Parameter estimation by MLE

Here, di tð Þ is the disturbance corrupting the dynamics of

the robot. d̂t is its estimate based on the past data. It is

well known in signal processing that if Xt is a stochastic

process and X̂tjt�1 ¼ XtjXt�1;Xt�2; . . .ð Þ is its estimate

based on past data, then the estimation error Xt � X̂tjt�1 �
et is an uncorrelated process. This is the orthogonal pro-

jection theory. If h0 is unknown, and di tð Þ � d̂i tð Þ is

white-Gaussian noise (WGN), then the MLE of h0 based

on data q �ð Þ collected up to time t is least square and is

given by

ĥ tð Þ ¼ argmin
h

Z t

0

Gðq; hÞ�1 €q� F q; _q; t; hð Þð Þ
�� ��2

dt ð4Þ

This is a highly nonlinear optimization problem. A more

practical algorithm is to assume an initial given estimator

ĥ for h0 and define dh ¼ ĥ� h0: Linearising (1) about ĥ
gives

€q � F q; _q; t; ĥ
� �

� oF

oh
q; _q; t; ĥ
� �

dh

þG q; ĥ
� �

di tð Þ � d̂i tð Þ
� �

ð5Þ

where O dh � di tð Þð Þ terms have been neglected since both

are small quantities. Then, the MLE based on Least

Square Estimation of dh, based on data collected position

data is

dĥðtÞ ¼ argmin
dh

Z t

0

kG q; ĥ
� ��1

€q� F q; _q; t; ĥ
� ��

� oF

oh
q; _q; t; ĥ
� �

dhÞk2dt

ð6Þ

¼
Z t

0

oF

oh
q; _q; t; ĥ
� �� �T

M2 q; ĥ
� � oF

oh
q; _q; t; ĥ
� �

dt

2
4

3
5
�1

�
Z t

0

oF

oh
q; _q; t; ĥ
� �� �T

M2 q; ĥ
� �

€q� F q; _q; t; ĥ
� �� �

dt

2
4

3
5
�1

ð7Þ

Then the improved estimates of h0 is

ĥ0 tð Þ ¼ ĥ� dĥ tð Þ ¼ ĥ tþ Dð Þ ð8Þ

4. NDO with parameter estimation

The estimates ĥ tð Þ is used to obtained the disturbance

estimate d̂i tþ Dð Þ using the standard equation:

d̂i tþ Dð Þ ¼ Z tþ Dð Þ þ C _q tð Þ

Z tþ Dð Þ ¼ Z tð Þ þ D � L q tð Þ; _q tð Þ; ĥ tð Þ
� � ð9Þ

� N q tð Þ; _q tð Þ; ĥ tð Þ
� �

� s tð Þ � d̂i tð Þ
� �

� d̂i tð Þ
� �

ð10Þ

¼ Z tð Þ þ DCM�1 q tð Þ; ĥ0 tð Þ
� �

ðN q tð Þ; _q tð Þ; ĥ tð Þ � s tð Þ
� �

ð11Þ

The equations are based on the continuous time versions

d̂i tð Þ ¼ Z tð Þ þ C _q tð Þ ð12Þ

_Z tð Þ ¼ L q tð Þ; _q tð Þ; h0ð ÞðN q tð Þ; _q tð Þ; h0ð Þ
� s tð Þ � d̂i tð Þ
� �

� d̂i tð Þ
ð13Þ

Here,

L q; _q; hð Þ ¼ CM�1 q; hð Þ ð14Þ

Which guarantees that

_̂di ¼ L di � d̂i
� �

ð15Þ

on using the equation of motion.

These equations that constitute the disturbance observer

guarantee (1) the dynamics of the disturbance estimate

depends only on measurement of q tð Þ; q0 tð Þ and s tð Þ and

does not involve measurement of €q tð Þ: Indeed, if €q tð Þ is

also measured, then di tð Þ could be directly estimated using

Eq. (1). Having this obtained d̂i tþ Dð Þ; we can determine

dĥ tþ Dð Þ using q tþ Dð Þ; _q tþ Dð Þ; €q tþ Dð Þ as with these

quantities satisfying

€q tþ Dð Þ ¼ Fðq tþ Dð Þ; _q tþ Dð Þ; tþ D; h0 tð Þ
þG q tþ Dð Þ; h0ð Þ di tþ Dð Þ � d̂i tþ Dð Þ

� �

ð16Þ

Figure 1. Block diagram.
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This is the forward dynamics equation of the robot (ac-

tual plant) as shown in figure 1. Then

dĥ tþ Dð Þ ¼
ZtþD

0

oF

oh
q; _q; t; ĥ tþ Dð Þ
� �

M2 q; ĥ tþ Dð Þ
� �2

4

oF

oh
q; _q; t; ĥ tþ Dð Þ
� �

dt	�1

�
ZtþD

0

oF

oh
q; _q; t; ĥ tþ Dð Þ
� �2

4

€q� F q; _q; tþ D; ĥ tþ Dð Þ
� �� �

dt
i

ð17Þ

The improved parameter estimate at time t þ D is then

ĥ tþ Dð Þ ¼ ĥ tþ Dð Þ � dĥ tþ Dð Þ ð18Þ

By subtracting the disturbance estimates d̂i tþ Dð Þ at

time tþ D from the dynamics, the effect of the disturbance

on the robot reduces and with this reduced error, our

updated parameter estimate ĥ tþ Dð Þ gives better results

using MLE for less noise variance. The integrals are in

practice replaced by discrete summations.

5. Stability analysis of the NDO

The choice of C in the disturbance dynamics observer is

based on the Lyapunov energy method. The construction of

the new generalized Lyapunov matrix for proving bound-

edness of the disturbance estimation error is based on the

following principle. We assume that it is a positive definite

matrix J qð Þ and compute the rate of change of the distur-

bance error energy with respect to this matrix, i.e.,

dynamics of the disturbance observer in terms of the matrix

L that is used in the disturbance observer construction. The

condition for this rate of change to be negative is then

imposed on J and this yields a very general form for J in

terms of the mass moment of inertia matrix and a matrix F
that gives us additional degrees of freedom to establish

faster convergence of the disturbance error to zero or more

generally, a smaller bound on the error energy. We have in

the ideal case when h0 is exactly known,

_̂
di ¼ L q; _qð Þ di � d̂i

� �
ð19Þ

Or

_e ¼ L q; _qð Þeþ _di ð20Þ

where

e ¼ di � d̂i ð21Þ

L q; _qð Þ ¼ CM�1 qð Þ ð22Þ

For simplicity, here we are considering the case of two

degree of freedom robot. Procedure for n degree of freedom

robot is also discussed in Appendix A. Let

J q2ð Þ be a positive definite 2 � 2 Jacobin matrix of the robot

and V is the Lyapunov energy function.Then

V e; qð Þ ¼ 1

2
eTJ q2ð Þe ð23Þ

Then

_V ¼ � 1

2
eT JLþ LTJ� J0 q2ð Þ _q2

	 

eþ eTJ _d ð24Þ

For V to be bounded (stability), we require

JLþ LTJ� J0 q2ð Þ _q2 
C[ 08q2; _q2 ð25Þ

in a given range and

k _d tð Þ k � 1\ 18t ð26Þ

Writing L ¼ CM�1 q2ð Þ gives

JCM�1 þM�1CTJ� J0 q2ð Þ _q2 
C[ 0 ð27Þ

Here C is a constant 2 � 2 positive definite matrix.The

above equation guarantees that the rate of change of the

Lyapunov energy V e; qð Þ will be strictly negative and

hence the disturbance estimates error will reduce nearly to

zero after a sufficiently long duration.We now give a gen-

eral method of constructing the symmetric Lyapunov

matrix J q2ð Þ that guarantees that will hold for all q2 0; 2p½ 	
and all the angular velocities, _q2 bounded above by a finite

positive constant. Indeed this condition guarantee that the

first component of

_V
�1

2
eTJ q2ð Þe _V

� �

¼ � 1

2
eT JLþ LTJ � J0 q2ð Þ _q2

	 

eÞ

� 1

2
eTC e� 0

and the last component of _V is bounded by K; J and e: Later

we shall used this inequality to rigorously establish the

asymptotic boundedness of V tð Þ and hence of e tð Þ: If as in

the literature we take F ¼ I; then A ¼ C�T and J ¼
C�TMC�1: This shows that C affects the Lyapunov matrix

as well as its rate of decrease. In other words, C has control

over the eigenvalues of J and hence can be manipulated to

get approximate rate of error energy decreases. This implies

in turn that the disturbance estimate will converge to the

true disturbance at a faster rate.

To simplify matters, we shall assume that

JCM�1 ¼ A ð28Þ
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(A is a constant matrix) i.e.,

J ¼ AMC�1 ð29Þ

This condition that JCM�1 be a constant matrix, guar-

antees that the range of _q2 for asymptotically stability can

be derived easily as we presently investigate.

JT ¼ J is required, we have

C�1MAT ¼ AMC�1 ð30Þ

or

MATC ¼ CTAM ð31Þ

Let ATC ¼ F. Then the above reduces to

MF ¼ FTM ð32Þ

or

aþ bcosq2m cþ dcosq2

cþ dcosq2 f

� �
f11 f12

f21 f22

� �

¼
f11 f21

f12 f22

� �
aþ bcosq2 cþ dcosq2

cþ dcosq2 f

� � ð33Þ

Or

f12 aþ bcosq2ð Þ þ f22 cþ dcosq2ð Þ
¼ f11 cþ dcosq2ð Þ þ ff218q2

ð34Þ

or

f12a ¼ c f11 � f12ð Þ þ ff21 ð35Þ

f12b ¼ d f11 � f22ð Þ ð36Þ

Here more generalized Inertia matrix M is considered as

compared to [2] with more degree of freedom for better

results. Thus,

f12 ad� bcð Þ ¼ ff21d ð37Þ

or

f21 ¼ f12 ad� bcð Þ
fd

ð38Þ

and

f11 ¼ f12b

d
þ f22 ð39Þ

The most general form of F that guarantees
_J q2ð Þ be symmetric8 q2 is therefore

F ¼
f12b

d
þ f22 f12

f12 ad� bcð ÞÞ
fd

f22

0
B@

1
CA ð40Þ

or

F ¼ f12F1 þ f22F2 ð41Þ

where

F1 ¼
b

d
1

ad� bcð Þ
fd

0

0
B@

1
CA; F2 ¼ 1 0

0 1

� �
¼ I2 ð42Þ

We have

AT ¼ FC�1; A ¼ C�TFT ð43Þ

and thus,

J q2ð Þ ¼ AMC�1 ¼ C�TFTMC�1 ð44Þ

¼ f12C
�TFT

1MC�1 þ f22C
�TMC�1 ð45Þ

In the special case where f22 ¼ 0 and f22 ¼ 1, we get

J q2ð Þ ¼ C�TM q2ð ÞC�1 ð46Þ

Which is the standard Lyapunov matrix used in the lit-

erature. We now require

Aþ AT � AM0 q2ð ÞC�1 _q2 
C ð47Þ

or equivalently,

C�TFT þ FC�1 � C�TFTM0 q2ð ÞC�1 _q2 
C

8 q2 2 0; 2p½ Þ; _q2j j � n0 � ½ _q2	max

ð48Þ

6. Convergence rate of the NDO

In this section, we use standard matrix norm inequalities

and a well-known inequality in (Gronwall’s inequality) to

derive an improved convergence rate for the error in the

disturbance tracking. We are free to choose f12; f22 so that

(48) holds. Then

_V ¼ � 1

2
eT JLþ LTJ� J0 q2ð Þ _q2

� �
eþ eTJ _d ð49Þ

¼ � 1

2
eT C�TFT þ FC�1 � C�TFTM0 q2ð ÞC�1 _q2

� �

eþ eTJ _d
ð50Þ

� � 1

2
eTCeþ eTJ _d ð51Þ

� � 1

2
k e k2 kmin Cð Þ þ q1 k e kk J k ð52Þ

(where k _di tð Þ k � q1\1 is assumed for all t).

Now

k J k¼k C�TFTMC�1 k ð53Þ
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� k C�TFT kk C�1 kk M k ð54Þ

� k C�TFT kk C�1 k kmax Mð Þ ð55Þ

where

kmax Mð Þ ¼ max
0� q2\2p

kmax M q2ð Þð Þ ð56Þ

and hence

_V� � 1

2
k e k2 kmin Cð Þ þ a k e k ð57Þ

where

a ¼ q1 k C�TFT kk C�1 k kmax Mð Þ ð58Þ

¼ a f12; f22;Cð Þ
F ¼ F f12; f22ð Þ ¼ f12F1 þ f22F2ð Þ:

ð59Þ

Now

V ¼ 1

2
eTJe� 1

2
k e k2 b f12; f22;Cð Þ ð60Þ

where

b ¼k C�TFT kk C�1 k kmax Mð Þ[ k J q2ð Þ k ð61Þ

Thus,

_V� � V

b
kmin Cð Þ þ a ek k ð62Þ

Also,

V
 1

2
ek k2kmin Jð Þ ð63Þ


 1

2
ek k2~kmin Jð Þ ð64Þ

where

~kmin Jð Þ ¼ min
q22 0;2p½ 	

kmin J q2ð Þð Þ ð65Þ

¼ min
q22 0;2p½ 	

kmin C�TFTM q2ð ÞC�1
� �

ð66Þ

� k0 f12; f22;Cð Þ say ð67Þ

We get

_V� � kmin Cð Þ
b

Vþ a

ffiffiffiffiffi
2

k0

r ffiffiffiffi
V

p
ð68Þ

Write

a ¼ a f12; f22;Cð Þ ¼ � kmin Cð Þ
b f12; f22;Cð Þ ; ð69Þ

b ¼ b f12; f22;Cð Þ ¼ a f12; f22;Cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

k0 f12; f22;Cð Þ

s
ð70Þ

Then

_V� � aVþ b
ffiffiffiffi
V

p
ð71Þ

So setting

v ¼
ffiffiffiffi
V

p
;V ¼ v2; 2v _v� � av2 þ bv ð72Þ

or

_v� � a

2
vþ b

2
ð73Þ

It follows that

v tð Þ� e�
at
2v 0ð Þ þ b

a
1 � e�

at

2

� �
ð74Þ

lim
t!1

v tð Þ� b

a
ð75Þ

In particular 8d[ 09T[ 0 s.t.,

v tð Þ� b

a
þ d8 t
T ð76Þ

Then

lim
t!1

V tð Þ� b2

a2
ð77Þ

and so we get the least upper bound

lim
t!1

V tð Þ� min
f12;f22;C

bðf12; f22;CÞ2

aðf12; f22;CÞ2
ð78Þ

This equation guarantees that asymptotically, the dis-

turbance estimate error can not go out of bounds. Therefore

it is a partial stability result. Note that

FTM0 q2ð Þ is symmetric matrix ð79Þ

and the condition (48) for _V ¼ 0 can be guaranteed if

C�TFT þ FC�1 � C C�T

C�1 n�1
0 k FTM0 q2ð Þ k�1 I2

� �
[ 0

ð80Þ

Alternatively, (48) holds if

FTCþ CTF� FTM0 q2ð Þ _q2 
CTCC ð81Þ

and this is guaranteed if

FTCþ CTF� n0 k FTM0 q2ð Þ k�1 CT

C C�1

� �
[ 0 ð82Þ

These conditions are stronger than _V\0:
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They ensure that if the disturbance error estimate falls on

a sphere of radius R, then _V will be upper bounded by a

negative number which increases with R. The two extra

degree of freedom f11; f22 inF gives us more flexibility in

the choice of the Lyapunov matrix which in terms enable us

to derive smaller upper bounds on the asymptotic value of

the Lyapunov function V tð Þ. This in turn leads us to smaller

upper bounds on the disturbance error energy as compared

to the existing bounds in the literature. Remark. Let

A;B[ 0: Then a necessary sufficient condition for

A C
CT B

� 

is thus

min
v

uT ; vT
� � A C

CT B

� 

u
v

� 

[ 0 8u ð83Þ

i.e.

min
v uTAuþ2uTCvþvTBvð Þ[ 0

8u ð84Þ

Minimum is attained when

Bv ¼ �CTu ð85Þ

i.e.,

v ¼ �B�1CTu ð86Þ

Thus

A C
CT B

� 

[ 0 iff ð87Þ

uT A� CB�1CT
� �

u[ 0 8u 6¼ 0 ð88Þ

if

A� CB�1CT [ 0 ð89Þ

Remark Adaptive update of dĥ:

We can update dh adoptively using the algorithm (LMS)

dĥ tþ Dð Þ ¼ dĥ tð Þ� l o

odĥ tð Þ k G q; ĥ tð Þ
� �

ð€q tð Þ

�F q tð Þ; _q tð Þ; t; ĥ tð Þ
� �

� oF

oh
q tð Þ; _q tð Þ; t; ĥ tð Þ
� �

; dĥ tð ÞÞ2

ð90Þ

ĥ tþ Dð Þ ¼ ĥ tð Þ � dĥ tð Þ: ð91Þ

This equation ensures that at each time step, the

parameter estimate is changed so that the equation of

motion with h0 replaced by ĥ tð Þ, is satisfied to a better

degree of approximation.

7. Performance analysis of the proposed
parameter estimator

7.1 CRLB for parameter estimation oĥ tð Þ
� �

The CRLB sets a lower bound on the variance of any

unbiased estimator. We can find a minimum variance

unbiased estimator and it achieves the lower bound. The

bound states that the variance of any unbiased estimator is

at least as high as the inverse of the Fisher information. The

CRLB for the parametric uncertainty oh has been obtained

by linearizing the dynamic system about ĥwhen ĥ is the

given value of the parameter and h0 ¼ ĥ� oh is the true

parameter vector. The log-likelihood function of the given

measurements q tð Þ over a given time range, is thus

obtained as a linear quadratic form in oh assuming white

Gaussian noise present in the dynamical system.The Fisher

information matrix for, oh is easily computed from the log-

likelihood function with the exceptions evaluated using a

linearized theory in which the trajectory perturbations oq tð Þ
in the presence of noise follow a linear differential equation

with coefficients being functions of the noiseless trajectory.

oq tð Þ is therefore a Gaussian process and its mean and

covariance are easily determined from the linearized

dynamical equations. The fisher information matrix is thus

easily obtained. The approximate CRLB parameter here is

only for the sake of completeness. Assuming that the dis-

turbance observe is not incorporated we have

€q tð Þ ¼ F q tð Þ; _q tð Þ; t; ĥ tð Þ
� �

�
oF q tð Þ; _q tð Þ; t; ĥ
� �

oh
dh

þG q tð Þ; ĥ
� �

di tð Þ

ð92Þ

and hence assuming di tð Þf g to be zero mean. While

Gaussian with spectral density r2
dI2; we get the log-likeli-

hood function for dĥ based on q tð Þ : 0� t� Tf g as

� log pðq tð Þ : 0� t�TjdhÞ ¼ 1

2r2
d

ZT

0

Gðq tð Þ; ĥ tð ÞÞ�1

ð€q tð Þ � F q tð Þ; _q tð Þ; t; ĥ tð Þ
� �

� oF

oh
q tð Þ; _q tð Þ; t; ĥ tð Þ
� �

dhÞ2dtþ terms independents of dh

The Fisher information matrix for dĥ Tð Þ is thus

JF dhð Þ ¼ �E
o2

odhodhT
logp q tð Þ : 0� t�T dhj jð Þ

� �
ð93Þ
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¼ � 1

r2
d

ZT

0

E
oF

oh
q tð Þ; _q tð Þ; t; ĥ
� �� �� T

� G q tð Þ; ĥ
� �

GT q tð Þ; ĥ
� �� ��1

oF

oh
q tð Þ; _q tð Þ; t; ĥ
� �� ��

dt:

ð94Þ

To evaluate this expectation approximately, we assume

that q0 tð Þ; 0� t�T
n o

is the solution with

dh ¼ ĥ� h0 and di tð Þ � 0, i.e.

€q0 tð Þ ¼ F q0 tð Þ; _q0 tð Þ; t; ĥ
� �

� oF

oh
q0 tð Þ; _q0 tð Þ; t; ĥ
� �

dh
ð95Þ

� F q0 tð Þ; _q0 tð Þ; t; h0ð Þ ð96Þ

Let Dq tð Þ ¼ q tð Þ � q0 tð Þ be the change is q due to noise

di tð Þ. Then we have approximately that

D€q tð Þ ¼ oF

oq
q0 tð Þ; _q0 tð Þ; t; h0ð ÞDq tð Þ

þ oF

o _q
q0 tð Þ; _q0 tð Þ; t; h0ð ÞD _q tð Þ

þG q0 tð Þ; h0ð Þdi tð Þ

ð97Þ

or equivalently

d

dt

Dq tð Þ
D _q tð Þ

� 

¼ 02 I2

P tð Þ Q tð Þ

� 

Dq tð Þ
D _q tð Þ

� 


þ 02

G q0 tð Þ; h0ð Þ

� 

di tð Þ ð98Þ

where

P tð Þ ¼ oF

oq
q0 tð Þ; _q0 tð Þ; t; hð Þ ð99Þ

Q tð Þ ¼ oF

o _q
q0 tð Þ; _q0 tð Þ; t; hð Þ ð100Þ

Let / t; sð Þ denote the state transition matrix of (98).

Then

Dq tð Þ
D _q tð Þ

� 

¼
Z t

0

U t; sð Þ 02

G q0 tð Þ; h0ð Þ

� 

d sð Þds ð101Þ

Writing

W t; q; _q; ĥ
� �

� 1

r2
d

oF

oh
q; _q; t; ĥ
� �� 
T

ðGG0Þ�1 oF

oh
q; _q; t; ĥ
� �� 


ð102Þ

Then

JF dhð Þ ¼
ZT

0

E W; t;q tð Þ; _q tð Þ; ĥ
� �n o

dt ð103Þ

�
ZT

0

W t; q0 tð Þ; _q0 tð Þ; ĥ
� �

dt

þ 1

2

X
a;b

ZT

0

o2W t; q0 tð Þ; _q0 tð Þ; ĥ
� �

oqaoqb
EDqa tð Þ;Dqb tð Þgdt

þ
X
a;b

ZT

0

o2W t; q0 tð Þ; _q0 tð Þ; ĥ
� �

o _qao _qb
E D _qa tð Þ;D _qb tð Þ
	 


dt

þ 2
X
a;b

ZT

0

o2W t; q0 tð Þ; _q0 tð Þ; ĥ
� �

oqaoqb
E Dqa tð Þ;D _qb tð Þ
	 


dt

ð104Þ

The condition EDqa tð ÞDqb tð Þ; ED _qa tð ÞD _qb tð Þ and

EDqa tð Þ;D _qb tð Þ in the expression can easily be evaluated

by solving the linear differential equation (98) which in

term involves evaluating the time varying state transition

matrix corresponding to
02 I2

P tð Þ Q tð Þ

� 

using the Dyson

series, So

Dq tð Þ ¼
Z t

0

/12 t; sð ÞG0 q0 sð Þ; h0ð Þd sð Þds ð105Þ

D _q tð Þ ¼
Z t

0

U22 t; sð ÞG0 q0 sð Þ; h0ð Þd sð Þds ð106Þ

E Dqa tð ÞDqb tð Þ

� �� �� �
1� a;b� 2

¼ E Dq tð ÞD:qðtÞT
n o

ð107Þ

¼ r2
d

Z t

0

U12 t; sð ÞG0 q0 sð Þ; h0ð ÞG0ðq0 sð Þ; ĥÞTU12ðt; sÞTds

ð108Þ

E D _qa tð ÞD _qb tð Þ

� �
¼ E Dq tð Þ:DqðtÞT

n o
ð109Þ

¼ r2
d

Z t

0

U22 t; sð ÞG0 q0 sð Þ; h0ð ÞG0ðq0 sð Þ; h0ÞTU22ðt; sÞTds

ð110Þ

So

ð E Dqa tð ÞD _qb tð Þ
� �� �

¼ E Dq tð ÞD _q tð Þf g ð111Þ
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¼
Z t

0

U12 t; sð ÞG0ðq0 sð Þ; h0ÞTU22ðt; sÞTds ð112Þ

In order to evaluate the expectations approximately in the

CRLB, we require expressions for the statistical correlations in

the position deviations and velocity deviations from the non-

random components of the positions and angular velocities. In

what follows, we evaluate these correlations using a linearized

state variable model for the robot dynamics.

7.2 General comparison of MLE variance

with CRLB

Consider the dynamical system

€q tð Þ ¼ F q tð Þ; _q tð Þ; t; h0ð Þ þG q tð Þ; h0ð Þdi tð Þ ð113Þ

where h0 is an unknown parameter vector and di tð Þ �
d̂i tð Þ is WGN:Then MLE of h0 is:

ĥML Tð Þ ¼ argmin
h

ZT

0

Gðq tð Þ; hÞ�1ð€q tð Þ
��

� F q tð Þ; _q tð Þt; hð Þ 2
�� dt

ð114Þ

Our algorithm determines an adaptive scheme for com-

puting ĥML Tð Þ or detecting with T. Suppose we use ĥ as an

inherent sense and write h0 � ĥ� dh, thus from the

dynamics

€q � F q tð Þ; _q tð Þt; ĥ
� �

� oF

oh
q tð Þ; _q tð Þ; t; ĥ
� �

dh

þG q tð Þ; ĥ
� �

di tð Þ
ð115Þ

To estimate h0 better we need to estimate dh0 and this is

obtained from

dhML Tð Þ ¼ argmin
dh

ZT

0

Gðq tð Þ; ĥÞ�1ð€q tð Þ
��� k

� F q tð Þ; _q tð Þ; t; ĥ
� �

þ oF

oh
q tð Þ; _q tð Þ; t; ĥ
� �

dhÞ
����

2

dt

ð116Þ

This minimization leads to a linear equation for dh which

we have solved above. On the other hand, the CRLB for dh
is given by

r2
d

ZT

0

E
oF

oh
ðq tð Þ; _q tð Þ; ĥÞTðG q tð Þ; ĥ

� ��0
@

GTðq tð Þ; ĥÞ�1 oF

oq
ðq tð Þ; _q tð Þ; t; ĥ

�
dt

��1

ð117Þ

We need to compare this with the covariance of dĥML Tð Þ
which is given by

dĥML Tð Þ ¼
ZT

0

oF

oh

� �T

GGT
� ��1oF

oh
dt

2
4

3
5
�1

ZT

0

oF

oh

� �T

GGT
� ��1

€q� Fð Þdt

2
4

3
5

ð118Þ

Under the ergodic hypothesis, time average can be

replaced by ensemble averages and hence

ZT

0

of

oh

� �T

GGT
� ��1 oF

oh

� �
dt

�
ZT

0

E
oF

oh

� �T

GGT
� ��1oF

oh

 !
dt

ð119Þ

Also

€q� F � oF

oh
dhþGdi tð Þ ð120Þ

so

dĥML Tð Þ � T�1

ZT

0

E
oF

oh

� �T

GGT
� ��1oF

oh

( )
dt

2
4

3
5
�1

�
Z t

0

oF

oh

� �T

GGT
� ��1 oF

oh
dhþGdi tð Þ

� �
dt

2
4

3
5

ð121Þ

Again under the ergodic hypothesis this becomes

dĥML Tð Þ �
ZT

0

E
oF

oh

� �T

GGT oF

oh

( )
dt

2
4

3
5
�1

�
T�1

RT
0

E
oF

oh

� �T

GGT
� ��1oF

oh

( )
dtdh

þ
RT
0

oF

oh

� �T

GGT
� ��1

Gdi tð Þdt

2
66664

3
77775

¼ dhþ
ZT

0

E
oF

oh

� �T

GGT
� ��1oF

oh

( )
dt

2
4

3
5
�1

ð122Þ

ZT

0

oF

oh

� �T

GGT
� ��1

Gdi tð Þdt ð123Þ
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and hence

E dhML Tð Þf g � dh ð124Þ

And

Cov dĥML Tð Þ
� �

¼

Cov

ZT

0

E
oF

oh

� �T

GGT
� ��1oF

oh
dt

( )2
4

3
5
�1

8><
>:

�
ZT

0

oF

oh

� �T

ðGGTÞ�1Gdi tð Þdt

2
4

3
5
9=
;

¼
ZT

0

E
oF

oh

� �T

ðGGTÞ�1 oF

oh

( )
dt

2
4

3
5
�1

� r2

ZT

0

oF

oh

� �T

ðGGTÞ�1 GGT
� �

ðGGTÞ�1 oF

oh
dt

( )2
4

3
5

�
ZT

0

E
oF

oh

� �T

ðGGTÞ�1 oF

oh

( )
dt

2
4

3
5
�1

¼ r2
d

ZT

0

E
oF

oh

� �T

ðGGTÞ�1 oF

oh

( )
dt

2
4

3
5
�1

ð125Þ

Which is the CRLB. Thus under the ergodic hypothesis,

we have proved that our ML estimates (112) performs

effectively in accordance with the CRLB (125), i.e.,

ergodic hypothesis Cov dĥML Tð Þ
n o

� CRLB for all

estimates: In order to evaluate the exceptions approxi-

mately in the CRLB, we require expressions for the sta-

tistical correlations in the position deviations and velocity

deviations from the non-random components of the posi-

tion and velocity.

8. Simulation and results

For ease of simplicity, a two link revolute joint robot with

mass mð Þ and length að Þ is considered in this study. The

dynamics of this manipulator is as below: M ¼ m11m12;½
m21m22	;N ¼ N1;N2½ 	

Where m11 ¼ m1 þ m2ð Þ � a2
1 þ m2 � a2

2 þ 2 � m2 �
a1� a2 � cos q2ð Þ;

m12 ¼ m2 � a2
2 þ m2 � a1 � a2 � cos q2ð Þ;m21 ¼ m12;

m22 ¼ m2 � a2
2; N1 ¼ �m2 � a1 � a2 � 2 � _q1ð � _q2 þ

_q2
2Þ� sin q2ð Þ þ m1 þ m2ð Þ � g� a1 � cos q1ð Þ þ m2 � g�
a2 � cos q1 þ q2ð Þm2 � a1� a2 � _q2

1 � sin q2ð Þ þ m2 � g�
a2 � cos q1 þ q2ð Þ; Here h0 ¼ m:

Two types of disturbances are exerted on the robot,

namely Normal Sinusoidal tracking disturbance corrupted

by noise whose distribution is Gaussian (Normally dis-

tributed pseudorandom; randn function in Matlab�) as

shown in figures 2 and 3. This is more generalized form of

the disturbances as compared to[1–3]. di1 ¼ 0:03 �
sin p� tð Þ þ 0:003 � randn; di2 ¼ 0:03 � sin p� tð Þ þ
0:003 � randn; The reference trajectory provided for the

joints of robots are given by (126) and shown in figures 3

and 4 respectively.

qd ¼ Amp1 � sin p� tð Þ; ð126Þ

For joint tracking acceleration controller is applied and is

designed as

s tð Þ ¼ M̂ q̂; ĥ
� �

€qdð Þ þKd _qd � qð Þ þKp qd � qð Þ

þ N q; _q; ĥ
� �

þ di tð Þ
ð127Þ

It is evident by figures 4 and 5 that the actual trajectory

is following the desired trajectory by the proposed

method. As per figures 3 and 5 the joint tracking error

RMS values are in the range of 10�4 by the proposed

method. Initially, this error is very high due to error in

mass estimation but after some time it stabilized after

correct mass estimation.

Table 3 of [1] depicts the simulation results of SCARA

industrial robot while table 6 of [1] depicts the experi-

mental results of Phantom Robot. As per these tables, the

minimum tracking error is in the range of 10�3.

These errors as mentioned in [1] is also without white

Gaussian noise. So the results of the proposed method are

superior compared to the three methods as mentioned

Figure 2. Performance graph of reference trajectory vs. pro-

posed algorithm - Joint 1 Trajectory.
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above. It is evident by figures 6 and 7 that estimated dis-

turbance trajectory is successfully following the actual

disturbance trajectory with white Gaussian noise by the

proposed method.

As per figures 8 and 9 the disturbance trajectory error

RMS values are in the range of 10�3 by the proposed

method. As proposed method is also simultaneously esti-

mating the mass of the link, initially the error is high but

after some time it stabilized.

Table 4 of [1] depicts the simulation results of SCARA

industrial robot while table 7 of [1] depicts the experi-

mental results of Phantom Robot. As per these tables the

minimum error is in the range of 10�3.

Also this error is without mass estimation and random

noise. So results of the proposed method are superior

compare to the three methods as mentioned above.

The reason being that at each time step t, we estimate

diðt) as d̂iðt) using the disturbance observer. Then we sub-

tract it from the input control torque.

This is equivalent to giving a torque s + diðtÞ � d̂iðt) for

the next iteration and the robot moves to q(t + dt) based on

this disturbance torque.

Figures 10 and 11 depict the actual and estimated mass of

link 1 and link 2, respectively. From these figures it is clear

that the proposed MLE technique with disturbance observer

is correctly estimating the mass of the links. So the proposed

method successfully simultaneously tracking the position

trajectory and disturbance trajectory with mass estimation.

Figure 4. Performance-Joint 2 Trajectory.

Figure 3. Performance-Joint 1 Tracking error. Figure 5. Performance-Joint 2 Tracking error.

Figure 6. Performance-Joint 1 Disturbance trajectory.
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9. Conclusion

A new systematic disturbance observer design method for

manipulators has been proposed in this paper. The nonlin-

ear disturbance observers with convergence and unknown

parameter estimation unified in the proposed general

framework. The proposed design method guarantees con-

vergence of the observer tracking error to the origin with an

exponential rate in the case of bounded disturbances. The

parameter estimation was achieved using MLE with inter-

nal disturbance and white Gaussian noise and in addition,

the CRLB for this statistical model has been evaluated for

comparison with the proposed ML estimator. The MLE is

for the parameter error is equivalent to the least squares

estimator in view of the white Gaussianity of the noise.

Figure 10. Performance-Link 1 Mass Estimation.
Figure 7. Performance-Joint 1 Disturbance Tracking error.

Figure 9. Performance-Joint 2 Disturbance Tracking error.

Figure 8. Performance-Joint 2 Disturbance Trajectory.

Figure 11. Performance-Link 2 Mass Estimation.
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Simulation study on a manipulator demonstrated the

superior performance of the developed novel approach as

compare to other methods from literature. While the per-

formance of the proposed method has been verified through

simulation, the experimental verification will be the goal of

future work. To get more accurate tracking, we can intro-

duce a nonlinearity in the feedback loop in the form of

second order Volterra feedback. Then the error energy to be

optimized will be a function of the input forcing signal and

the first and second order feedback kernels.
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Appendix A

We have derived the general form of the Lyapunov matrix

for the 2 link case which it can analytically be generalized

to the n 
 2 link case as follows:

V qð Þ ¼ 1

2
ðeÞTJ qð Þe ð128Þ

e ¼ d� d̂ ð129Þ

_e ¼ �L q; _qð Þe ð130Þ

L ¼ p0 _qð ÞMðqÞ�1 ¼ CMðqÞ�1 ð131Þ

p _qð Þ ¼ C _qð Þ ð132Þ

Then

_V ¼ 1

2
eTJ _eþ 1

2
_eTJeþ 1

2

Xd
a¼1

et
oJ qð Þ
oqa

e _qa ð133Þ

¼ � 1

2
et JLþ LTJþ

Xd
a¼1

oJ

oqa
_qa

" #
e ð134Þ

Therefore, we require for stability

JLþ LTJþ
Xd
a¼1

oJ

oqa
_qa [ 0 ð135Þ

or

JCM�1 þM�1CTJþ
Xd
a¼1

oJ

oqa
_qa [ 0 ð136Þ

We chose J such that

J qð ÞCMðqÞ�1 ¼ A ð137Þ

a constant matrix of size n � n then

J qð Þ ¼ AM qð ÞC�1 ð138Þ

So, we require to solve A such that

1. JT ¼ J i.e

C�TM qð ÞAT ¼ AM qð ÞC�1 ð139Þ

2.

Aþ AT þ
Xq

a¼1

A
oM qð Þ
oqa

C�1 _qa [ 0 ð140Þ

for all _qaj j � _qmax; _qa 2 0; p½ 	: The general solution to this

for A will then give the general form of the Lyapunov

matrix J qð Þ:
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