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Abstract. Detection and reading of the text from natural images is a difficult computer vision task, which is

essential in a variety of emerging applications. Document character recognition is one such problem, which has

been widely studied and documented by many machine learning and computer vision researchers, which is

practically used for solving applications like recognizing handwritten digits. In this paper, a new approach for

efficiently extracting cognition out of a total of 56 different classes of Handwritten Manipuri Meetei-Mayek

(HMMM) (an Indian language) is described. Although character recognition algorithms have been researched

and developed for other Indian scripts, no research work has been reported so far for recognizing all the

characters of the Manipuri Meetei-Mayek (MMM). The work begins with a thorough analysis of the recognition

task using a single hidden layer type Multilayer Perceptron Feedforward Artificial Neural Network with His-

togram of Oriented Gradient (HOG) feature descriptors. After reviewing the level of accuracy and time it takes

to train the network, the limitations are experimentally removed using multiple-sized cell grids using HOG

descriptors. HOG, being a gradient-based descriptor, is very efficient in data discrimination and very stable with

illumination variation. For efficient classification of the HOG features of the MMM, a linear multiclass support

vector machine (SVM) classifier has been proposed for classifying the different offline characters because of its

simplicity and speed. The classification based on linear multiclass SVM yielded a very high overall accuracy of

96.928%

Keywords. Manipuri Meetei-Mayek (script); multilayer perceptron; feedforward artificial neural network;

histogram of oriented gradient (HOG); linear multiclass support vector machine (SVM).

1. Introduction

Handwritten character recognition is increasingly gaining

momentum owing to its application areas for significantly

reducing time in applications such as data entry, filling

forms, banking, automation in postal services, etc.

However, developing a more dependable approach or

more technically ‘a system’ for recognizing handwritten

characters of such regional scripts still poses a challenge

to researchers. The main reason behind the problem is the

variation in the shapes of the characters that may other-

wise depend upon certain factors like acquisition device,

ink colour, the width of the pen and many other factors.

Moreover, handwritten Meetei-Mayek characters tend to

be much more complex in comparison with common

English characters due to the presence of modifiers, shape

and structure. These factors demand a sophisticated pat-

tern recognition algorithm that will be able to efficiently

handle the challenging task of classifying these

characters.

In this paper, the design of a Handwritten Manipuri

Meetei-Mayek (HMMM) character recognition system is

being discussed. The history and origin of Meetei-Mayek

can be found in detail in the works of literature by

Wangkhemcha [1], Mangang [2] and Hodson [3]. Manipuri

or Meeteilon is one of the scheduled languages of India

and also the official language of Manipur, which is one of*For correspondence
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the states located in the North-Eastern part of India. The

script contains a total of 56 characters, which can be

classified into 5 different categories: Iyek Ipee/Mapung

Iyek, which consists of 27 alphabets, Cheitek Iyek (8

symbols), Lonsum Iyek (8 letters), Khudam Iyek (3 sym-

bols) and Cheishing Iyek, which consists of 10 numeral

figures. Apart from the three Khudam Iyek, all other

characters are internationally accepted symbols. The basic

characters or the Iyek Ipee appear only as the main char-

acter of a word, which may be modified by adding one of

the extended symbols or Vowel modifiers to produce the

required pronunciation. All the original characters of the

Manipuri Meetei-Mayek (MMM) alphabets are drawn,

winded and wreathed based on the features of the human

anatomy. Accordingly, the alphabets are named after dif-

ferent parts of the human body [2]. The Meetei-Mayek

characters for which recognitions are performed in the

current work is shown in figure 1(a) along with the

meaning against their names.

The paper is organized in the following order. Section 2

highlights some works related to handwritten character

recognition. Section 3 presents the system design of the

proposed handwritten character recognition method. Sec-

tion 4 presents the experimental results, error analysis and

evaluations of the proposed character recognition approa-

ches described in section 3. Section 5 charts a comparison

between the two approaches for determining size of the

feature descriptor, and also to other existing research works

for MMM character recognition. Section 6 concludes the

paper.

2. Related works

Introduction of MMM OCR is in an infant stage whereas

many research works have already been carried out on other

Indian scripts of different languages. Sections 2.1 and 2.2

highlight the research works carried out on popular Indian

languages and MMM, respectively.

2.1 Research works on other Indian languages

Rani et al [4] focused on the problem of recognition related

to Gurumukhi script; they used different techniques for

extracting features such as projection histogram, back-

ground directional distribution (BDD) and zone-based

diagonal features. These features extraction techniques

were classified using a support vector machine (SVM)

classifier with 5-fold cross-validation and RBF (radial basis

function) kernel. They achieved a very high accuracy of

99.4% using a combination of BDD and diagonal features

with SVM classifier. Arora et al [5] discussed the charac-

teristics of some classification methods that have been

successfully applied to handwritten Devanagari character

recognition. The results showed that good classification of

Devanagari can be achieved with SVM. Sinha [6] presented

an overview of the historical development of the modern

Indian scripts’ writing system, their mechanization and

adaptation to computing and examined how it facilitated

the development of Indian language processing. He con-

centrated primarily on the Devanagari script and also dis-

cussed those features found in current language usage; he

explained how the unifying characteristics of the scripts and

languages have been exploited for all Indian scripts and

languages. Pal et al [7] proposed a system for recognizing

offline Bengali handwritten compound characters using

Modified Quadratic Discriminant Function (MQDF). Using

a 5-fold cross-validation technique they were able to obtain

an accuracy of 85.90% from a dataset of Bengali compound

characters containing 20,543 samples. Sharma et al [8]

proposed a scheme for unconstrained offline handwritten

Devanagari numeral and character recognition using a

Figure 1. (a) Meetei-Mayek script. (b) A sample of the

handwritten character ‘MIT(Ma)’. (c) Pre-processed image.

(d) All elements are detected and then encapsulated prior to

extraction of each one of them.
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quadratic classifier based on feature obtained from chain

code histogram. They were able to achieve an average

accuracy of 98.86% for Devanagari numerals and 80.36%

for Devanagari characters. Basu et al [9] presented a

recognition system for handwritten Bengali alphabets using

a 76-element feature set, which included 24 shadow fea-

tures, 16 centroid features and 36 longest-run features. The

recognition performances achieved for training and test sets

were 84.46% and 75.05%, respectively. Plamondon and

Srihari [10] presented a comprehensive survey for online

and offline handwriting recognition; they described the

nature of handwritten language and the basic concepts

behind written language recognition algorithms. They also

indicated in their literature the algorithms for pre-process-

ing, character word recognition and performance with

practical systems. Other fields of application like signature

verification, writer authentication and handwriting learning

tools were also considered.

2.2 Research works on MMM

Maring and Dhir [11] described the recognition of

Meetei-Mayek numerals for both handwritten as well as

printed. A Gabor filter was used for feature extraction

and classification was carried out using SVM. The

experiment was carried out using 14� 10 pixel images

and overall accuracy of 89.58% and 98.45% was

achieved for handwritten and printed, respectively.

Romesh et al [12] described the design of an OCR sys-

tem for handwritten text in Meitei-Mayek alphabets using

artificial neural network (ANN). The database contained

1000 samples, from which 500 samples were considered

as a training database and the remaining samples were

kept for testing and validation purpose. They observed

that the success of the system depended on the feature

used to represent the character as well as on the seg-

mentation stage of the test image. Chandan and Sanjib

[13] in their literature presented an SVM-based hand-

written numeral recognition system for Manipuri script or

Meetei-Mayek. They used various techniques for

extracting features such as BDD, zone-based diagonal,

projection histograms and Histogram Oriented features,

which were then classified using SVM as 5-fold cross-

validation with RBF kernel. They were able to achieve

maximum accuracy of 95%. Romesh et al [14] described

a way for simulating and modelling handwritten Meitei-

Mayek digit using back-propagation (BP) neural network

approach. They were able to achieve an overall perfor-

mance of 85%. Thokchom et al [15] proposed methods

for training BP network with probabilistic features, fuzzy

features and a combination of both features for recog-

nizing handwritten Meetei-Mayek characters. They were

able to achieve an accuracy of 90.3% for the proposed

27-class classifier neural network with a combination of

probabilistic and fuzzy features.

3. System design

The motivation of this paper is to propose a robust method

for classifying offline HMMM characters. In the current

work, a comparison of Multilayer Perceptron Neural Net-

work (MLPNN)-based classification with Histogram of

Oriented Gradient (HOG) descriptors and multiple-feature-

size HOG descriptor with linear kernel SVM classifier is

presented (figures 2 and 3). The work began with a thor-

ough literature survey of the existing works in MMM script.

It was realized that so far no literature exists that can

successfully or efficiently classify handwritten Meetei-

Mayek alphabets and numerals, which is due to the com-

plex nature of the script. However, previous works reported

on numerals alone were quite successful as reported in

section 2.2 under the heading ‘Research works on MMM’.

Inorder to fully comprehend the nature of problemaffecting

the recognition accuracy of such handwritten characters, two

different approaches are being studied in detail. To beginwith,

all the acquired sample images are pre-processed to remove

noise as well as for extracting them individually. The pre-

processing steps are discussed in section 3.1. The pre-pro-

cessed image samples are passed to HOG descriptor system

having their required cell sizes for the purpose of extracting

feature vectors. As a first approach, the HOG feature vectors

were trained and recognized usingMLPNN. The classification

task using this approach as described in section 3.3 under the

Figure 2. Perceptron neural network.

Figure 3. Feedforward neural network.
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heading ‘MMM recognition using MLPNN with HOG

descriptors’ was done once, i.e. using 128� 128 input image

sizes. It was learnt that an increase in the input image size

resulted in just a meagre increase in recognition result, which

did not justify the accuracy, however small the time taken to

train the network was. It was also realized from the three

confusion matrices that most of the characters like ‘ (2)’, ‘

(4)’, ‘ (LAI)’, ‘ (MIT)’, ‘ (PA)’, ‘ (NA)’, ‘

(CHEEN)’, ‘ TIL’, ‘ (KHOU)’, ‘ (‘WAI)’, ‘

(GOK)’, ‘ (RAAI)’, ‘ (GHOU)’, ‘ (DHOU)’, ‘

(BHAM)’, ‘’ (KOK-LONSUM)’, ‘ (MIT-LONSUM)’,

‘ (NGOU- LONSUM)’, ‘ (EE-LONSUM)’, ‘ (INAP)’,

‘ (UNAP)’, ‘ (SOUNAP)’, ‘ (CHEINAP)’ and ’

(NUNG)’ were consistently misclassified or confused

amongst themselves despite the increase in the number of

image size. However, other characters showed a slight

improvement in their individual accuracies.

Therefore, based on the work by Dalal and Triggs [16],

section 3.3 describes a procedure for efficiently recogniz-

ing HMMM using HOG feature descriptors and linear

SVM classifier. Their feature extractor worked by dividing

up an image into small spatial regions or cells; each of

these regions accumulated a local 1-D edge orientation

over pixels of the cell, and the combined histogram entries

formed the representation. In this work, multiple cell sizes

for extracting HOG features have been considered in order

to determine which size yielded better results for our cur-

rent classification problem. The extracted feature vectors

were used as training data for the linear kernel SVM

classifier. Thus, we were able to obtain a significant

increase in overall or average accuracy along with a

tremendous decrease in training time as compared with the

former.

3.1 Processing the handwritten image

In this section, the stages prior to recognition stage are

being described.

3.1a Image acquisition: In this stage, raw data are created

and collected. A total of 5600 handwritten samples were

collected from people having different handwriting styles.

Secondly, the image samples were scanned using a scanner

and saved as a jpeg file. A sample of the acquired hand-

written image for the letter ‘ (MIT)’ is shown in

figure 1(b).

3.1b Pre-processing: In order to make the image suit-

able for further processing the acquired images must be pre-

processed. The term pre-processing refers to the removal of

any form of noise that is corrupting the useful data so that

efficiency as a result of it is not decreased. For character

recognition tasks, a binary image is sufficient to work with,

so the input grey image is suitably transformed using

thresholding. Morphological erosion is performed so as

to close the discontinuities between some letters; a

square-shaped structural element having a size equal to 2 is

selected for the purpose. Morphological erosion is a simple

operator in mathematical morphology that is usually per-

formed in binary images or greyscale images. The purpose

of the operation is to erode or decay the boundaries of

regions of the foreground pixels (i.e. white pixels), and

therefore the areas of foreground pixels shrink in size, and

holes within those regions become larger. The morpho-

logically eroded image is finally converted into a binary

image [17]. Figure 1(c) shows the final image after pre-

processing.

3.1c Extracting individual elements: Prior to extracting

each element from the binary image so obtained in the

previous step, each of them must be labelled so that auto-

matic extraction from them is possible. For this purpose,

each of the elements is bounded by rectangular boxes. It

can be seen from figure 1(d) that the size of each of the

boxes differs due to the fact that some characters are bigger

than others and vice-versa. The bounding box property for

each object is an array having 4 elements, which are for-

matted as [x, y, w, h], where (x,y) represents the row–col-

umn coordinates of the upper left corner of the box; w and

h are, respectively, the width and height of the box. The

next step is creating a 4-column matrix that encapsulates all

of these bounding box properties together, where each row

denotes a single bounding box. It is necessary to define a

good illustration of these bounding boxes, and thus a red

box is drawn around each character that is detected. Now,

the final task is to extract all of the characters and place

them into a cell array because the character sizes are

uneven, so putting this into a cell array will accommodate

for the different sizes. A cell array is a type of container

used for indexing data called cells; each cell may contain

any type of data. Commonly they may contain combina-

tions of text and numbers, or list of strings or numeric

arrays of varying sizes. Now simply looping over every

bounding boxes that we have and then extracting the pixels

within each of them will result in a character that can be

placed in a cell array. Thereafter, using a loop function,

each of the characters in the cell array is written into the

directory for further usage.

3.2 Feature extraction from Handwritten Meetei-

Mayek script using HOG descriptors

Detecting features in Meetei-Mayek script is a complicated

task due to similarity complex of each character. The very

first requirement is a robust feature detector that conforms

to the shape or structure of the input image so that char-

acters can be discriminated clearly. The current study

inclines on the issues of feature set extraction from Hand-

written Meetei-Mayek script using the HOG descriptors.

The features extracted by multiple-cell-sized HOG features
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are used as training data for multiple classifiers; the detailed

implementation is explained in sections 3.3 and 3.4.

HOG is a standard image feature used, among others, in

object detection and deformation object detection. The

method evaluates normalized histograms of gradient ori-

entation of images in a dense grid. The most simple

explanation is because the shapes and appearance of an

object can be characterized easily by distributing the edge

detection even without exact knowledge of the corre-

sponding edge positions. It is implemented by dividing up

the image window into ‘cells’, which are small spatial

regions. Each cell will accumulate a local 1-D histogram of

gradient directions over the cell, and the combined his-

togram entries form the notation. It is also useful to prop-

erly equalize the contrast for improved invariance to

shadowing or illumination effects before putting them to

use. This feature is achieved by accumulating a measure of

‘energy’ of the local histogram over somewhat larger spa-

tial ‘blocks’ or region and then normalizing all of the cells

in the block. This is also referred to as HOG descriptor.

HOG divides the input image into square cells of cell

size, fitting as many cells as possible, filling the image

domain from the upper-left corner down to the right one.

For each row and column, the last cell is at least half

contained in the image. More precisely, the number of cells

obtained in this manner is

width hog ¼ðwidthþ cellsize=2Þ=cellsize; ð1Þ

height hog ¼ðheight þ cellsize=2Þ=cellsize: ð2Þ

Later, the image gradient dlðx; yÞ is computed using central

difference, which is then assigned to one of the 2*number

of orientations orientation in the range [0,2p]. The con-

tributions are then accumulated using bilinear interpolation

to four neighbouring cells, which results in a histogram of

dimension 2*number of orientations, called directed ori-

entations since it accounts for the direction as well as the

orientation of the gradient.

Implementation: The implementation of the HOG feature

descriptors for Meetei-Mayek script is based on the

research work by Dalal and Triggs [16]. The detector has

been tested in our Meetei-Mayek database, which roughly

comprises 56 different classes multiplied by 100 samples

each.

The training images comprise roughly 56 different

classes times 75 samples each. The pre-processing pro-

cedure detailed in section 3.1 is used to segment each of

the character samples and finally, the images are resized

to 50� 50 pixels. For testing, the remaining 25 samples

for each of the character/class are used to validate

how well the classifier performs on data that are

different from the training data. Although this is not the

most representative dataset, there are enough data to train

and test a classifier, and show the feasibility of the

approach.

The data that are used for training the classifier are the

HOG feature vectors extracted from the input training

images. Hence, it is important that the feature vector

encodes a sufficient amount of information about the

object. With the variation in cell size parameter, the amount

of information encoded by each feature vectors can be

observed. Each of the pixels in the image calculates a

weighted vote for an edge orientation histogram channel.

The weighted vote, which is based on the orientation of the

gradient element, is accumulated into bins over local

regions, which are termed as cells. The orientation bins are

specified as a logical scalar and they are evenly spaced

from 0 to 180 degree. In this case, a scalar of value less than

0 is placed into the ?180 degree value bin. The dark to

light versus light to dark transitions contained within some

areas of an image can be differentiated using signed ori-

entation. The bilinear interpolation of votes between the

neighbouring bin centres can reduce aliasing for orientation

as well as position. Increasing cell size can be used for

capturing large-scale spatial information. It may be noted

that cell size is specified as a 2-element vectored form in

pixels. The suppression of changes in local illumination

may be reduced with increasing cell size, i.e., losing minute

details as a result of averaging. Therefore, a reduction in the

size of blocks will help in capturing the significance of

local pixels. However, in actual practice, the gradient

parameters must be varied by repeatedly training and test-

ing for identifying the optimal parameter settings.

For instance, in the current work, the optimal block size

of HOG feature that must be maintained for efficiently

recognizing Meetei-Mayek characters is explored by con-

sidering the cell sizes, viz., 6� 6, 7� 7 and 8� 8. Figure 4

shows the features extracted using HOG descriptors for the

Meetei-Mayek numeral ‘ (9)’.

The extracted HOG features are returned as a 1�N

vector (the features encode local shape information from

regions or from point locations within an image) where N is

HOG feature length and is based on the image size and the

function parameter values. Let us suppose that Bimage is the

number of blocks per image, C is the cell size, Nb is the

number of bins, Bo is the block overlap, Bsize is the block

size and sizeimage is the size of the image. The following

equations are used for appropriately deducing the value of

N:

N ¼ BimageBsizeNb ð3Þ

where

Bimage ¼
sizeimage

C
� Bsize

� �

Bsize � Bo

þ 1: ð4Þ

Table 1 highlights the number of detected features on

MMM for different cell sizes. It is important to deduce the

dimension of cell size that gives us the best recognition

performance when combined with classifiers.
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3.3 MMM recognition using MLPNN with HOG

descriptors

ANNs can be aptly stated as one of the popular techniques

for task related to recognition and classification because of

their learning and generalization abilities. They are com-

posed of multiple layers, within which large processing

elements or more specifically neurons are interconnected to

one another and also work in unison for solving problems.

They can be tuned for solving specific applications like

MMM recognition using MLPNN data classification or

pattern recognition via a learning approach. The multilayer

perceptron is a network of fully connected neurons having

an input layer, hidden layer(s) and an output layer. The

neurons in a layer are connected to each and every neuron

in the next layer by a weighted link through which the state

of the neuron is transmitted. Each layer has a different

activation function, with different neurons in it.

3.3a Perceptron: The perceptron neural network consists

of a single layer of S neurons connected to R inputs through

a set of weights wi;j as shown in figure 2. The indices i and j

indicate that wi;j is the strength of the connection from the

jth input to the ith neuron.

3.3b Feedforward neural network: Feedforward network

usually consists of one or more hidden layers of sigmoid

neurons followed by linear output neurons. More than one

hidden layer with a non-linear type transfer function will

facilitate the network to learn non-linear as well as the

linear relationship between the input and output vectors.

The linear output layer produces values in the range

–1 to ?1.

On the other hand, a sigmoid-type transfer function

should be used if the outputs of the network are required to

be constrained (such as between 0 and 1). The superscript

on the weight matrices is determined by the number of

layers in case of multiple-layered network structure, which

can also be noted from the neuron model and network

architectures. As seen in figure 3, a two-layered tansig/

purelin network is shown; it can be used as a general

approximation function to suitably approximate any type of

function with a finite number of discontinuities, provided

the number of neurons in the hidden layer is sufficient.

3.3c BP algorithm: The BP algorithm is the most popular

method for neural networks training and it has been used to

solve numerous real-life problems. BP is a multilayer

feedforward neural network that performs iterative mini-

mization of a cost function by making weight connection

adjustments according to the error between the computed

and the desired output values. Figure 2 shows a general

three-layer network. The error or cost function is the mean

squared sum of differences between the output values and

the desired target values of the desired network. The fol-

lowing formula is used for this error:

E ¼ 1

2

X
p

X
k

ðtpk � opkÞ2
 !

: ð5Þ

In the current work, a general three-layer BP network is

being used. When wik changes, it affects the error only on

one output unit k. When wij changes, it affects the error on

all the output units. Here p in the subscript represents a

pattern and k represents the output units. Thus, tpk is the

target value of output unit k for pattern p and okp is the

actual output value of the output layer unit k for pattern p.

This error function is commonly used; however, other

types of error function can also be applied. During the

training process, a set of pattern examples is used, each

example consisting of a pair with the input and corre-

sponding target output. The patterns are presented to the

network sequentially in an iterative manner. Appropriate

weight corrections are performed during the process to

adapt the network to the desired behaviour. The iterative

procedure continues until the correction weight values

allow the network to perform the required mapping; each

Figure 4. (a) Sample of the pre-processed handwritten Meetei-

Mayek numeral ‘9’. (b) HOG feature of 6� 6 size cell with length

1764. (c) HOG feature of 7� 7 size cell with length 1296.

(d) HOG feature of 8� 8 size cell with length 900.

Table 1. Cell size versus HOG feature length.

Cell size Length

6� 6 1764

7� 7 1296

8� 8 900
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iterative presentation of the whole pattern set is named an

epoch. The minimization of the error function is carried out

using a gradient descent technique. The necessary correc-

tions to the weights of the network for each iteration n are

obtained by calculating the partial derivative of the error

function in relation to each weight wjk, which gives a

direction of steepest descent. A gradient vector represent-

ing the steepest slope in direction of weight space is

obtained. The weight update value dwjk uses the negative

of a gradient vector to perform a minimization. Based on

the gradient direction, the delta rule will determine the

required amount of weight update along with step size:

dwjk ¼ �g
dE
dwjk

ð6Þ

The parameter g represents the step size and is called the

learning rate.

We have the weight change in the hidden layer equal to

dwij ¼ gdjOi ð7Þ

The dk for the output units can be calculated using directly

available values since the error measure is based on the

difference between the desired tk and the actual ok values.

However, this measure is not available for the hidden

neurons. The solution is to back-propagate the dk values

layer by layer through the network so that finally the

weights are updated. A momentum term was introduced in

the BP algorithm by Rummelhart. The idea consists in

incorporating in the present weight update some influence

of the past iterations. The delta rule thus becomes

dwijðnÞ ¼ �g
dE
dwjk

þ adwijðn� 1Þ ð8Þ

where a is the momentum parameter and it determines the

amount of influence from the previous iteration on the

present one. It introduces a ‘damping’ effect on the search

procedure, thus avoiding oscillations in irregular areas of

the error surface by averaging gradient components with

opposite sign and accelerating the convergence in long flat

areas. In some situations, it possibly avoids the search

procedure from being stopped in local minima. It may be

considered as an approximation to a second-order method

as it uses information from the previous iterations. In some

applications, it has been shown to improve the convergence

of the BP algorithm [18, 19].

3.3d Implemented neural network architecture: The neu-

ral network architecture consists of three layers: the input

layer, the hidden layer and the output layer. The input layer

consists of 16384 neurons, which is because the originally

pre-processed samples are converted to Glyph images of

size 128� 128. The output layer is composed of only 6

neurons which represent only 0 or 1, i.e., binary represen-

tation; ‘tansig’ and ‘logsig’ transfer functions are used

because their output range is 0–1 and perfect for learning to

give output as Boolean values. The matched character is in

the form of binary digits, which can be decoded from

values stored in 6-digit binary numbers. The 6 output

neurons have the capability for representing a total of 63

characters according to binary calculations.

A hidden layer of 100 neurons was finally selected after

testing on different layer sizes for its optimum results

because many numbers of neurons will increase the chances

of overfitting. Characters were resized, normalized and

formed into vectors to feed-in the network for training.

Figure 5 presents the neural network architecture. In our

current work, the same neural network architecture is used

in three different ways: i.e., the training samples are used

with three different HOG cell sizes (6� 6, 7� 7 and 8� 8)

to study the effects on accuracy.

Training set: A total of 56 different characters/classes

with 100 handwritten samples each were collected, out of

which 75 samples for each of the characters were used for

training the neural network. Out of the 75 samples for each

of the classes, 80% are used for training, 10% are used for

validation and remaining 10% are used to test during the

regression. The 57 different classes of Meetei-Mayek

characters considered in the current work comprises 43

alphabets and 10 digits as shown in figure 1(a).

As described earlier, training of the neural network was

done in two passes during each iteration – forward pass and

backward pass. In the forward pass, the input signals are

propagated from the neural network input layer to the

output layer. In the reverse pass, error signals generated at

the output layer are propagated backward through the

network for adjusting the weights of the neurons. The

training of the neural network is done using a training

function that updates weight and bias values according to

gradient descent momentum and an adaptive learning rate.

The performance goal was set to 0.0005. Due to constant

optimization during the regression phase, the neural

network with HOG cell size 6� 6 converges to its

maximum accuracy in just 123 epochs with a training time

of 2 min and 34 s. Secondly, the neural network that was

trained using Glyph images of HOG cell size 7� 7 took

190 iterations or epochs, in 5 min and 17 s to converge to its

maximum accuracy. Lastly, for the HOG cell size 8� 8 the

solutions converged to their maximum accuracy in 117

Figure 5. Neural network for 20� 20 pixel feature size.
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epochs in just 1 min and 8 s. The mean squared error versus

epochs for the networks trained with HOG cell sizes 6� 6,

7� 7 and 8� 8 is shown in figures 6, 7 and 8, respectively.

3.4 MMM recognition using linear SVM classifier

with HOG feature descriptors

The current section provides a deep analysis of how fea-

tures can be extracted from HMMM using multiple cell

sizes HOG descriptors and then using them to train a

classifier for efficient recognition. A linear kernel type

SVM classifier has been used in the current training tasks

because of its speed and reliability. The following subsec-

tions explain the basic terminologies involved, implemen-

tation and performance of the proposed approach.

SVM is a classifier separating classes in feature space; it

is used to identify a set of linearly separable hyperplanes,

which are linear functions of the feature space. Among the

separable hyperplanes, only one hyperplane is chosen and

placed such that the distance between the classes is maxi-

mum. SVM has a very high accuracy rate for two-class

problems but it can be also modified to classify multiclass

problems. If a classifier works with a large number of

adjustable parameters and therefore large capacity, it

probably learns the training set without error. The effective

number of parameters is adjusted automatically to match

the complexity of the problem [20]. The equation wtxþ
b ¼ 0 is a hyperplane separating two classes. Let us con-

sider ðXi; YiÞ for i ¼ 1; 2; 3; :::;N denoting the training

dataset, where Yi is the training data of Xi. There may be

numerous hyperplanes that can separate the two classes, but

the aim of SVM is to find the one that gives equal and

maximum margin from both the classes. Mathematically,

the aim of SVM is to maximize the objective function LðaÞ
given by

LðaÞ ¼
X

ai �
1

2

XN
i¼1

aiajNjNi ¼ YiYj/ðXiÞðXjÞ ð9Þ

subject to the constraint

XN
k¼1

aiYj ¼ 0; 0� ai �C 8i ð10Þ

where C is the cost parameter that determines the cost

caused by constraint violation, ai is the hyper-parameter

and /ð:Þ is the feature mapping function. Asking for the

maximum-margin linear separator in Eq. (17) leads to

standard quadratic programming (QP) problems. With the

mentioned constraints, the QP solution leads to the fol-

lowing classification function for SVMs:

Figure 6. Mean squared error (mse) versus epochs for HOG cell

size 6� 6 with MLPNN.

Figure 7. Mean squared error (mse) versus epochs for HOG cell

size 7� 7 with MLPNN.

Figure 8. Mean squared error (mse) versus epochs for HOG cell

size 8� 8 with MLPNN.
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Y ¼sgnðW/ðZÞ þ bÞ ð11Þ

Y ¼sgn
Xq

i¼1

aiYiðXiZ þ bÞ
 !

ð12Þ

where ai is the Lagrange multiplier assigned to each

training data, whose value depends on the role of training

the data in the classifier system. The non-zero values of ai
correspond to the support vectors that are used to construct

the classifier in (20); ‘q’ denotes the number of support

vectors. If the feature functions /ð:Þ are chosen with care

one can calculate the scalar products without actually

computing all features, thereby greatly reducing the com-

putational complexity. In SVM the learning algorithms

require only dot products between the vectors in the orig-

inal input space, and the mapping is chosen such that these

high-dimensional dot products can be computed within the

original space means of a kernel function, also called

‘kernel trick’ [20]:

Kðx; xiÞ ¼ /ðxÞ:ðxiÞ: ð13Þ

4. Experimental results and evaluation

The current section highlights the experimental results and

evaluation in detail for the two implementation strategies

mentioned earlier. Finally, the comparison subsection also

verifies the selection of a suitable type of feature extractor

and classifier for efficiently recognizing HMMM

characters.

4.1 Experimental results and error analysis

for MLPNN with HOG feature descriptors

The experimental results described in the current section

are a follow-up of the procedure explained in section 3.3.

As described earlier, the network was tested against each of

the remaining 25 samples from each of the 56 classes of the

script for three different HOG cell sizes, i.e. 6� 6, 7� 7

and 8� 8. Table 2 shows the success percentage against

each of the characters.

Using HOG cell size 6� 6: It can be seen from tables 4

and 5 that most of the characters have very low accuracy,

i.e. as low as 4% for characters like ‘ (0)’ and

‘ (KHOU)’, whereas characters that have only about

30–50% accuracy rates are ‘ (SAM)’, ‘ (MIT)’, ‘

(CHEEN)’, ‘ (THOU)’, ‘ (EE)’, ‘ (DIL)’ and ‘

(4)’. Other characters whose accuracy are low and in the

range 50–80% include ‘ (1)’, ‘ (2)’, ‘ (3)’, ‘ (4)’, ‘

(6)’, ‘ (8)’, ‘ (KOK)’, ‘ (LAI)’, ‘ (PA)’, ‘

(NGOU)’, ‘ (WAI)’, ‘ (PHAM)’, ‘ (ATIYA)’, ‘

(RAAI)’, ‘ (BAA)’, ‘ (GHOU)’, ‘ (DHOU)’, ‘

(KOKLONSUM)’, ‘ (LAILONSUM)’, ‘ (MITLON-

SUM)’, ‘ (PALONSUM)’, ‘ (NGOULONSUM)’, ‘

(EELONSUM)’, ‘ (INAP)’, ‘ (SOUNAP)’, ‘ (YET-

NAP)’, ‘ (OTNAP)’, ‘ (CHEINAP)’, ‘ (NUNG)’, ‘

(QUESTION MARK)’, ‘ (COMMA)’ and ‘ (FULL-

STOP)’, whereas the remaining characters showed fair

level to good level of accuracy. The overall accuracy

achieved is 68.61%.

Using HOG cell size 7� 7: Tables 4 and 5 show that the

use of HOG cell size 7� 7 results in increased accuracy in

comparison with its 6� 6 counterpart. It can be seen that

there are more characters for which the accuracy has

crossed 80%. However, there are three characters for which

the accuracy is below 50%: ‘ (0)’, ‘ (MIT)’ and ‘

(CHEEN)’. The characters for which the accuracy lies

between 51% and 80% are: ‘ (1)’, ‘ (2)’, ‘ (5)’, ‘ (8)’,

‘ (KOK)’, ‘ (SAM)’, ‘ (LAI)’, ‘ (MIT)’, ‘ (PA)’,

‘ (NA)’, ‘ (CHEEN)’, ‘ (KHOU)’, ‘ (THOU)’, ‘

(UN)’, ‘ (EE)’, ‘ (PHAM)’, ‘ (ATIYA)’, ‘ (RAAI)’,

‘ (DIL)’, ‘ (GHOU)’, ‘ (LAILONSUM)’, ‘

(PALONSUM)’, ‘ (NALONSUM)’, ‘ (NGOU-

LONSUM)’, ‘ (EELONSUM)’, ‘ (INAP)’, ‘ (SOU-

NAP)’, ‘ (YETNAP)’, ‘ (OTNAP)’, ‘ (CHEINAP)’, ‘

(NUNG)‘ and ‘ (FULLSTOP)’. The overall accuracy

achieved is 75.57%.

Using HOG cell size 8� 8: Tables 4 and 5 show that
when HOG cell size 8� 8 is used it results in a slight
decrease in individual accuracy as compared with that
of 7� 7. It can be seen that there are more characters
for which the accuracy has crossed 80%. However,
there are some characters for which the accuracy is
below 50%: ‘ (0)’, ‘ (SAM)’ , ‘ (MIT)’, ‘ (NA)’,

‘ (CHEEN)’ , ‘ (KHOU)’, ‘ (THOU)’, ‘ (EE)’

and ‘ (YETNAP)’. The characters for which the accuracy

lies between 51% and 80% are ‘ (1)’, ‘ (2)’, ‘ (3)’, ‘

(4)’, ‘ (9)’, ‘ (KOK)’, ‘ (LAI)’, ‘ (PA)’, ‘

(TIL)’, ‘ (NGOU)’, ‘ (WAI)’, ‘ (UN)’, ‘ (DIL)’,

‘ (GHOU)’, ‘ (DHOU)’, ‘ (LAILONSUM)’, ‘

(PALONSUM)’, ‘ (NALONSUM)’, ‘ (TILLON-

SUM)’, ‘ (NGOULONSUM)’, ‘ (EELONSUM)’, ‘

(SOUNAP)’, ‘ (OTNAP)’, ‘ (CHEINAP)’, ‘ (NUNG)’

and ’ (FULLSTOP)’. The overall accuracy achieved is

66.78%.

Table 2. Tabulation of the resulting accuracy (%) and time taken

for training the classifier in seconds.

Cell size Accuracy (%) Training time (s)

6� 6 68.61 154

7� 7 75.57 317

8� 8 66.79 68

The bold values indicate the best values in comparison to the remaining

ones.
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4.1a Evaluation: The current work has demonstrated the

application of MLP networks with HOG descriptors for

HMMM character recognition problem. It can be seen that

the accuracies are greatly affected by the use of HOG cell

sizes; choosing a suitable value of HOG cell size is a must.

Maximum accuracy can be seen when HOG cell is set to

7� 7. The total time it took to train the network was 5 min

and 17 s, and the solution converged in 190 iterations as

highlighted earlier. The lower percentage of successful

character recognition is because of the roundedness, start-

ing and finishing style of the Meetei-Mayek characters.

Finally, it can be learnt from the current application that

training a model from a very complex dataset using neural

network is too computationally intensive, which means that

it will be slow on low-end PCs, or machines without math

co-processors. However, processing speed alone is not the

only factor in performance and neural networks do not

require the time programming and debugging or testing

assumptions that other analytical approaches do. Therefore,

there is a need to improve the performance of our system

using a more robust feature and pattern recognition system

like SVM in the classification phase. The limitations of the

current character recognition tasks such as speed and

accuracy are alleviated with the help of HOG descriptors

combined with linear SVM.

4.2 Experimental results and evaluation using

multiple-HOG-feature vector with multiclass

linear kernel SVM classifier

The current section describes the experimental results of

the HMMM character recognition operation using multi-

ple-HOG-feature vector with multiclass linear kernel SVM

classifier as described in section 3.4. The use of linear

SVM classifier returned a fully trained multiclass, error-

correcting output codes (ECOC) model using the training

features or HOG descriptors and the class labels in the

HOG feature. The One-versus-one coding scheme was

employed. In this scheme, for each binary learner, one

class is positive, another is negative and the software

ignores the rest. This design exhausts all combinations of

class pair assignments. The number of binary learners is

KðK � 1Þ=2, where K is the number of unique classes of

labels [21, 22]. In the current study, a handwritten char-

acter recognition for Meetei-Mayek script based on HOG

feature descriptors and trained by SVM linear kernel is

successfully implemented. Three different values of cell

sizes have been considered, which were examined for

accuracy by training the linear SVM classifier individu-

ally. Table 3 shows the time taken to train the linear SVM

classifiers and the accuracy achieved in each case. Testing

of the classifier was performed using the remaining 20

samples from each of the 56 classes of the script; the

individual performance or the success rates are recorded in

tables 4 and 5. Some of the characters that are marked

with an asterisk (*), viz. ‘ (PA)’, ‘ (KHOU)’ and ‘

(WAI)’ in table 4, have very low accuracy in comparison

with other characters. For the ‘ (PA)’ character the

accuracy increased drastically from 40% to 96%, which is

promising. However, the worst recognition rate is achieved

in case of ‘Khou’, in which the accuracy starts from just

20% and ends at a maximum of 52%. While most of the

characters need to be worked on for better efficiency, some

other characters like ‘LAI’ and ‘THOU’ also need an

increase in accuracy. Despite the low accuracy readings

mentioned earlier, there are also 14 cases where the 100%

accuracy holds for all cell sizes, viz. - ‘ (7)’, ‘ (8)’, ‘

(SAM)’, ‘ (PHAM)’, ‘ (GOK)’, ‘ (RAAI)’ , ‘

(BAA)’, ‘ (ATAP)’, ‘ (UNAP), ‘ (YETNAP), ‘

(NUNG)’, ‘ (QUESTION MARK)’, ‘ (COMMA)’ and ‘

(FULLSTOP). Table 5 also shows a huge variation in

training time extending from 50.99 up to 67.91 s, which is

due to the varying length of HOG feature sizes for each

cell size. Thus, it can be aptly stated that offline hand-

written Meetei-Mayek can be most suitably used with

HOG feature vector of cell size 6� 6 to achieve an

accuracy of about 96.928%.

5. Comparison

This section is broken up into two major portions. In

subsection 5.1 the current study, i.e. HOG features with

SVM classifier, is being compared against the MLPNN

with HOG descriptors. Subsection 5.2 shows a comparison

of our results against some of the top performing character

recognition works in MMM.

5.1 Comparison between the MLPNN with HOG

descriptors and linear SVM with HOG descriptors

classifiers

In this study, we propose a novel feature-extraction-cum-

classification approach for recognizing HMMM by estab-

lishing that HOG features can play a crucial role in increasing

the accuracy of classifiers. This objective is accomplished by

Table 3. Tabulation of the resulting accuracy (%) and time taken

for training the classifier in seconds.

Cell size Accuracy (%) Training time (s)

6� 6 96.928 67.91

7� 7 94.339 58.86

8� 8 93.714 50.99

The bold values indicate the best values in comparison to the remaining

ones.
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comparing two different models as mentioned earlier: in the

first model, HOG feature vectors are trained using MLPNN,

while in the secondmodel, HOG features are used for training

a fast and reliable SVM classifier. The implementation

strategies and the discussion for the two approaches are

explained in detail in section 3.

The results obtained by training and testing our Meetei-

Mayek database are well tabulated in tables 4 and 5 for

comparison. A total of 56 different classes are being put up

for comparison. The value recorded in the tables gives the

accuracy achieved against each character, which is calcu-

lated by tabulating the number of recognition times for each

character in multiple confusion matrices. A total of 6

confusion matrices were recorded for the tasks, 3 for the first

method and 3 for the secondmethod. For both the techniques,

three different HOG cell sizes are used: 6� 6, 7� 7 and

8� 8.

The average recognition rate for each of the classifiers as

recorded in table 6 shows that the when HOG feature

vectors extracted from MMM are simply trained by

MLPNN, a maximum accuracy of about 75.57% can be

realized using a cell size of 7� 7. However, if these HOG

vectors are trained using SVM classifier, a maximum

accuracy of about 96.928% can be realized using a cell size

of 6� 6, which is greatly increased as compared with the

MLPNN with HOG descriptor method. The level of

Table 4. Comparison of accuracy for each class of the MMM between MLPNN with HOG feature and linear SVM with HOG-feature-

based classifiers.

Sl. no.

Class

Accuracy (%)

MLPNN with HOG Linear SVM with HOG

HOG cell size HOG cell size

Mayek Notation 6� 6 7� 7 8� 8 6� 6 7� 7 8� 8

Cheising Mayek (digits)

1 0 4 44 40 100 100 96

2 1 68 76 52 96 100 92

3 2 56 60 68 80 92 76

4 3 80 84 52 100 92 92

5 4 64 96 76 100 100 100

6 5 86 80 60 100 88 96

7 6 64 88 84 92 88 88

8 7 100 96 92 100 96 100

9 8 80 80 100 100 100 100

10 9 92 96 76 100 100 100

Eeyek Eepee (main alphabets)

11 KOK 80 76 76 96 96 96

12 SAM 44 60 36 100 100 100

13 LAI 56 56 60 88 92 92

14 MIT 40 44 24 100 100 100

15 PA 52 60 60 88 92 96

16 NA 48 64 44 100 100 100

17 CHEEN 36 36 32 92 88 96

18 TIL 60 92 68 92 96 100

19 KHOU 4 44 28 52 44 40

20 NGOU 88 88 80 96 100 100

21 THOU 36 52 40 76 88 84

22 WAI 64 96 60 72 92 80

23 YANG 96 84 92 100 100 100

24 HUK 96 96 96 96 96 96

25 UN 96 60 56 96 96 96

26 EE 36 68 48 76 80 76

27 PHAM 80 72 96 100 100 100

28 ATIYA 76 64 92 96 96 96
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accuracy can still be improved using more number of

training samples per class.

5.2 Comparison to other works on MMM

The current techniques, i.e. HOG features with SVM and

the linear SVM with HOG features, are compared to four

other research works on MMM. It can be seen that, previ-

ously, most of the work was performed either on the 10

numerals or on the 27-character decimals. However, for

developing a complete OCR platform, there is a need to

classify all the classes of the script by a single baseline

classifier and that too with a high level of accuracy. In this

sense, we are the first to implement a recognition system

that is able to classify all the 56 different classes of the

script with a high level of accuracy. Table 7 shows a

comparison of the proposed approach with some previous

works in MMM character classification or recognition.

Numeral classification: Romesh et al [14] used around

700 and 300 training and testing samples, respectively, for

classifying the 10 different numeral classes of the script.

Table 5. Comparison of accuracy for each class of the MMM between MLPNN with HOG feature and linear SVM with HOG-feature-

based classifiers.

Sl. no.

Class

Accuracy (%)

MLPNN with HOG Linear SVM with HOG

HOG cell size HOG cell size

Mayek Notation 6� 6 7� 7 8� 8 6� 6 7� 7 8� 8

Lom Eeyek (addl. alphabets)

29 GOK 88 96 92 100 100 100

30 JHAM 72 80 84 92 100 96

31 RAAI 76 76 80 100 100 100

32 BAA 80 88 88 100 100 100

33 JIL 84 96 96 96 92 96

34 DIL 40 52 60 84 84 84

35 GHOU 68 76 64 96 96 92

36 DHOU 76 88 52 92 84 76

37 BHAM 88 88 88 100 100 100

Lonsum Eeyek (alphabets with short ending)

38 KOK-L 60 96 100 72 84 88

39 LAI-L 64 76 80 84 84 84

40 MIT-L 76 88 96 92 92 92

41 PA-L 72 80 68 92 96 92

42 NA-L 92 56 72 96 96 100

43 TIL-L 92 92 80 88 100 92

44 NGOU-L 60 56 72 92 96 88

45 EE-L 72 76 72 88 92 88

Cheising Eeyek (vowel signs)

46 ATAP 92 96 100 100 100 100

47 INAP 76 76 88 96 92 100

48 UNAP 96 84 84 100 100 100

49 SOUNAP 64 68 52 96 96 96

50 YETNAP 64 56 48 100 100 100

51 OTNAP 64 88 80 100 100 100

52 CHEINAP 56 68 80 92 88 96

53 NUNG 80 84 80 100 100 100

Khutam Eeyek (punctuation marks)

54 QUESTION MARK 72 80 88 100 100 100

55 COMMA 72 88 84 100 100 100

56 FULLSTOP 64 72 72 100 100 100
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They achieved an overall accuracy of 85%. Maring and

Dhir [11], on the other hand, proposed a different archi-

tecture and used around 6000 and 1200 training and testing

samples, respectively, for classifying the same 10 different

classes and achieved an accuracy of around 89.58%.

Character classification: Thokchom et al [15] developed

a technique to categorize all the 27 different main alphabets

of the script using around 459 and 135 training and testing

samples, respectively. They achieved an overall accuracy of

90.3%.

Numeral, character, punctuation mark and additional

letters: In the current paper, the use of HOG features with

SVM classifier is studied in detail using different cell sizes

and also tuned to classify all the 56 classes of the script.

Seven different HOG cell sizes were used (i.e., 6� 6, 7� 7

and 8� 8). For each of them the same numbers of training

and testing samples were used, i.e. 4200 and 1400,

respectively. The overall accuracy of 96.93% with a cell

size of 6� 6 was achieved.

6. Conclusion

In this work, a novel approach for efficiently recognizing

HMMM characters is presented by means of comparison

between the traditional BP-learning-based ANN with HOG

descriptors and the multiple-cell-sized HOG descriptors

with linear SVM classifier. About 5600 handwritten sam-

ples of the 56 different classes of the MMM were collected

from a group of different people. The samples were then

pre-processed to remove the noise in and around the letters

followed by extraction of each letter from the group. The

training and testing phase used three different HOG

descriptors sizes: 6� 6, 7� 7 and 8� 8. The maximum

accuracy that we were able to achieve was 96.928% with a

minimum training time of just 50.99 s.

Therefore, it can be stated that the complex Meeitei-

Mayek characters can be efficiently recognized using the

6� 6 cell-sized HOG descriptors with multiclass linear

kernel SVM classifier.
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