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Abstract. In this paper, Mixed Radix Conversion (MRC)-based Residue Number System (RNS)-to-binary

converters for the three-moduli set {2m - 1, 2m, 2m ? 1} are presented. The proposed reverse converters are

evaluated and compared to reverse converters proposed earlier in literature using Chinese Remainder Theo-

rem (CRT) and New CRT for this moduli set as well as two four-moduli sets {2n - 1, 2n, 2n ? 1, 2n?1 - 1}

and {2n - 1, 2n, 2n ? 1, 2n?1 ? 1} regarding hardware requirement and conversion time.
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1. Introduction

The advantages of Residue Number System (RNS) such as

carry-free operation, modularity and fault tolerance have

made it attractive in applications like cryptography, digital

signal processing (DSP) and communication systems [1–4].

Several three-, four- or more-moduli sets have been

described in literature. They use powers-of-two-related

moduli of the form 2u, 2u ? 1, 2u - 1, 2v ? 3, 2v - 3. In

addition, other three-moduli sets that use consecutive

numbers as moduli also have been investigated, viz.,

{2m - 1, 2m, 2m ? 1} [5] and {2m, 2m ? 1, 2m ? 2} [6],

the latter using two moduli that have a common factor. The

moduli sets {2a - 1, 2a, 2a ? 1} [7–12] and {2b-1 - 1,

2b - 1, 2b} [13–16] are special cases of these two-moduli

sets. Note that the moduli set {2b-1 - 1, 2b - 1, 2b} is

obtained by removing the common factor from one of the

two even moduli 2b - 2 and 2b in the moduli set {2b - 2,

2b - 1, 2b} to make the moduli relatively prime. The

moduli set {2a - 1, 2a?c, 2a ? 1} has been also investi-

gated to give a variable dynamic range (DR) using the

additional degree of freedom c where 0 B c B a. [17]. This

gives an increment of DR by c bits over the moduli set

{2a - 1, 2a, 2a ? 1} with a resolution of 1 bit. On the other

hand, the moduli set {2m - 1, 2m, 2m ? 1} also offers

several other options for realizing a desired DR through

proper choice of m. As an illustration, the DRs of the

popular moduli set starting from a = 3, 4 and 5 are,

respectively, 504, 4080 and 32736. The choice of variable c

leads to the DRs that are 1008, 2016, 4032, etc. In the case

of {2m - 1, 2m, 2m ? 1} starting from m = 3, 4, 5, 6, 7,

etc. the DRs are 210, 504, 990, 1716, 2730, 5814, 7980, etc.

Premkumar [5] suggested the three-moduli set M1

{2m - 1, 2m, 2m ? 1} and several reverse converters for

M1 have been reported in the literature [5, 18–21]. The first

reverse converter for M1 is presented in [5] using CRT.

Later, two reverse converters were presented using a mod-

ification of CRT for reducing the modulo reduction com-

plexity [18]. Reverse converters for this moduli set using

New CRT II [22] also have been investigated [19]. More

recently, improved reverse converters for this moduli set

using CRT have been presented [20, 21]. However, these

converters can be considered to be similar to a Mixed Radix

Conversion (MRC)-type design. The intermediate digits

derived, however, are not amenable for facilitating com-

parison since one of the intermediate digits can be negative.

It is interesting to note that MRC technique has not been

explored for the moduli set M1. It is well known that MRC

technique facilitates easy comparison of two RNS numbers

as well as scaling by one modulus or product of two moduli

[2]. In this paper, we consider the MRC technique for

reverse conversion. Several architectures will be described

that take advantage of the simper multiplicative inverses in

order to arrive at designs with hardware requirement/con-

version time trade-off. All the proposed architectures are

compared to the state-of-the-art reverse converters reported

earlier for the moduli set M1 in the literature as well as two

representative four-moduli sets {2n - 1, 2n, 2n ? 1,

2n?1 - 1} and {2n - 1, 2n, 2n ? 1, 2n?1 ? 1} regarding

hardware requirement and conversion time.*For correspondence
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In section 2, background material has been given in

brief. The proposed MRC-based reverse converter archi-

tectures are presented in section 3. The performance eval-

uation and comparison of the proposed converters with

converters for M1 reported earlier and implementation

results are provided in section 4. Comparison with con-

verters for two representative four-moduli sets is also pre-

sented in section 4. The concluding remarks are given in

section 5.

2. Background material

The two popular approaches used for the reverse conver-

sion process in RNS are Chinese Remainder Theo-

rem (CRT) and MRC. In CRT, we compute decoded binary

number X as

X ¼
Xj

i¼1

xiMi

1

Mi

� �

mi

 !
mod M ð1Þ

where M is the product of all moduli mi, Mi = M/mi and xi
are the given residues defined such that xi = X mod mi.

Note that y ¼ 1
a

� �
b

is known as a multiplicative inverse of

a with respect to modulus b defined such that remainder of

the computation (a 9 y)/b is 1. The main advantage of

CRT is the parallel computation of various terms in (1)

corresponding to the given residues followed by the sum-

mation of various terms mod M.

In MRC for three-moduli set {m1, m2, m3}, the decoded

number X corresponding to residues (x1, x2, x3) is obtained

as

X ¼ U3m2m1 þ U2m1 þ U1 ð2Þ

where the mixed radix digits Ui (i = 1, 2, 3) are computed

as follows:

U1 ¼ x1; U2 ¼ x2 � x1ð Þ 1

m1

� �

m2

 !
mod m2; ð3aÞ

U3 ¼ x3 � U1ð Þ 1

m1

� �

m3

 !

m3

�U2

0

@

1

A 1

m2

� �

m3

0

@

1

A

mod m3: ð3bÞ

Since MRC is a sequential process, in each step a single

mixed radix digit is determined. The next step is to compute

X in (2). Note that the cumbersome modulo M reduction

needed in the case of CRT in (1) is not needed in MRC

since 0 B X\M. In the present paper, we use MRC

technique for deriving various reverse converters.

In the implementation of MRC, we need modulo sub-

tractors for computing (xj - xk) mod mi. They use struc-

tures similar to cost-effective (CE) and high-speed (HS)

modulo adders [2]. We can use the HS architecture of

figure 1a in which we compute T1 = (xj - xk) and

T2 = (xj - xk ? mi) using two parallel adders and based on

the sign of T1 we select either T1 or T2 using a 2:1 multi-

plexer (2:1 MUX). Note that one’s complement of xk and a

carry input of 1 are added to obtain two’s complement of xk.

Thus the hardware requirement is two k-bit carry-propagate

adders (CPA1 and CPA2), one k-bit carry-save adder

(CSA1) and one k-bit 2:1 MUX where k ¼ log2 2mþ 1ð Þ.
The computation time is (k ? 1)DFA ? DMUX where DFA

and DMUX are delays of a full adder and a 2:1 MUX,

respectively. We denote this block as MODSUBA.

Note, however, in the case of mj = 2m - 1, mk =

2m ? 1, for computing (xj - xk) mod mj for xj = 0, xk =

2m, two consecutive additions of mj are needed since

0 - 2m ? (2m - 1) = - 1 and -1 mod (2m - 1) is

(2m - 2). Instead, we compute T3 = (xj - xk) or

CPA1 CSA1

CPA2

2:1 MUX

(xj-xk) mod mi

(a)

xj xk

mi

Ci =1

Ci =1

T1

T2

C1 S1

k k

k

k

MODSUBA

-

CPA4

CPA3 CSA2

3:1 MUX

xj xk

mj

Ci =1

Ci =1

T5 = (2m-2)

T3

T4

C2 S2

(xj-xk) mod mj

(b)

k k

k

k

k

MODSUBB

-

t
CPA5

2:1 MUX

xj xk

mi

Ci =1

T6

T7

(xj-xk) mod mi

MODSUBC

kk

k

CPA6

k

-

(c)

Y

CPA8

(H×m) mod (2m-1)

m
k-1

k

H

h0

k

k-1

k-1

AND 

gates

MODMUL

(d)

Figure 1. Architecture of (a) MODSUBA, (b) MODSUBB,

(c) MODSUBC and (d) MODMUL (modulo multiplier

(H 9 m) mod (2m - 1)).
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T4 = (xj - xk ? 2m - 1) and one among T3, T4 and

T5 = 2m - 2 can be selected using a 3:1 MUX based on the

sign of T3 and T4 as shown in the MODSUBB block in

figure 1b. The computation time, however, is about the

same as that of MODSUBA.

The CE version of a modulo subtractor (MODSUBC

block) can be realized as shown in figure 1c, in which we

compute T6 = (xj - xk) followed by T7 = (T6 ? mj) using

two adders and based on the sign of T6, we select either T6

or T7 using a 2:1 MUX. Thus the hardware requirement is

two k-bit CPAs (CPA5 and CPA6) and one k-bit 2:1 MUX.

The computation time needed is (2k)DFA ? DMUX.

The implementation of (H 9 m) mod (2m - 1) is also

needed in the proposed reverse converter architectures.

This can be carried out by considering H = 2Y ? h0, where

Y is the word formed by (k - 1)-bit MSBs of the k-bit word

H and h0 is the LSB of H, as

H � mð Þ mod 2m� 1ð Þ ¼ 2Y � mþ h0 � mð Þ
mod 2m� 1ð Þ

¼ Y þ h0 � mð Þ mod 2m� 1ð Þ:
ð4Þ

Note that Y is at most Hmax/2 = (2m - 2)/2 = m - 1, in

which case h0 = 0, thus making Y ? ho 9 m = m - 1. In

the other cases, Hmax/2\m - 1 and even if h0 = 1,

(Y ? hom) B (m - 2) ? m = 2m - 2\ 2m - 1. Thus,

(H 9 m) mod (2m - 1) can be realized by adding Y with

hom (obtained by enabling m by ho using (k - 1) two-input

AND gates) using CPA8 as shown in the MODMUL block

of figure 1d. Note that m is available as (k - 1) most sig-

nificant bits of m2 = 2m.

3. Proposed RNS-to-binary converters

In this section, we present new RNS-to-binary converters

for the three-moduli set M1 {2m - 1, 2m, 2m ? 1} using

MRC technique. The MRC algorithm for the three-moduli

set M1 is shown in figure 2. The various multiplicative

inverses needed in the computation are as follows:

a ¼ 1

2mþ 1

� �

2m

¼ 1; ð5aÞ

b ¼ 1

2mþ 1

� �

2m�1

¼ m; ð5bÞ

c ¼ 1

2m

� �

2m�1

¼ 1: ð5cÞ

They can be verified to be true since (2m ? 1) 9 a = 1

mod 2m, ((2m ? 1) 9 b) mod (2m - 1) = 1 and

(2m) 9 c = 1 mod (2m - 1). We denote the residues cor-

responding to the three-moduli m1 = 2m - 1, m2 = 2m and

m3 = 2m ? 1 as (x1, x2, x3) and binary number corre-

sponding to this residue set as X. The DR is

M = 2m(4m2 - 1). The implementation of the MRC

algorithm of figure 2 using various multiplicative inverses

Eq. (5a)–(5c) is presented in figure 3. This converter is

denoted as D6.

The computation of (x2 - x3) mod 2m can be carried out

using CE version of a modulo subtractor MODSUBC of

figure 1c to obtain intermediate result UA*. The mixed

radix digit UA is thus already available as UA* since a is 1

(see Eq. (5a)).

The computation of UB* = (x1 - x3) mod (2m - 1) can

be realized using MODSUBB block shown in figure 1b.

Next, the intermediate result UB is computed from UB* by

performing multiplication with b modulo (2m - 1) in

modulo multiplier block shown in figure 1d since b is

m (see Eq. (5b)). Next, the modulo subtraction (UB - UA)

mod (2m - 1) can be carried out using MODSUBA block

to obtain UC*. The mixed radix digit UC is thus already

available as UC* since c is 1 (see Eq. (5c)).

m3 m2 m1

= 2m+1   = 2m = 2m-1
x3        x2        x1

-x3 -x3

(x2-x3) mod (2m) (= UA*)    (x1-x3) mod (2m-1) (= UB*)
× a (= 1) × b (= m)
UA (= (UA*× a) mod 2m)    UB (= (UB*× b) mod (2m-1))

-UA                                                 

(UB-UA) mod (2m-1) (= UC*)
× c (= 1)
UC (= (UC*× c) mod (2m-1))

Figure 2. Conventional MRC for M1.

3k 
2k 

(UA×m3)+x3

k

CPA9

k

m1

k

k 

m3

x3

m2 m3

2k 

MULT1

MULT2

3k 

MODSUBC

MODMUL

m2
m1

k k k k

k k
UA (=UA*)

UB*

UB

X

UC (=UC*)

k

BLOCK1

x2 x3 x1 x3

- -

-

b (= m)

MODSUBB

MODSUBA

Figure 3. Architecture of MRC-based converter D6 for M1.
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The last stage in the converter computes X using Eq. (2)

as

X ¼ x3 þ UAm3ð Þ þ UCm2m3: ð6Þ

Here the first term (x3 ? UAm3) is computed using a

(k 9 k)-bit merged array multiplier MULT1 that multiplies

two inputs UA and m3 and adds a third input x3 in the carry

save portion of the multiplier [23]. The second term

UCm2m3 in Eq. (6) is computed using a (2k 9 k)-bit array

multiplier MULT2. Thus the decoded integer can be

obtained using 3k-bit CPA9 as shown in BLOCK1 of

figure 3.

The design D6 is based on conventional MRC that

requires sequential modulo reductions in the modulus m1

channel to obtain the mixed radix digits. We explore

techniques to reduce the number of cascaded modulo

reductions next. For this purpose, we choose an ordering of

moduli different from that shown in figure 2. The various

multiplicative inverses needed for this approach shown in

figure 4 are as follows:

e ¼ 1

2m

� �

2mþ1

¼ �1; ð7aÞ

f ¼ 1

2m

� �

2m�1

¼ 1; ð7bÞ

g ¼ 1

2mþ 1

� �

2m�1

¼ m: ð7cÞ

The correctness of Eq. (7a)–(7c) can be easily verified.

The architecture of the converter D7 following figure 4 is

shown in figure 5. The mixed radix digit P can be com-

puted as (x2 - x3) ? tm3 since e = - 1 (see Eq. (7a))

where if x2 C x3, t is 0, else t is 1. Note that (x2 - x3)-

? tm3 is computed using MODSUBC block (see figure 5

with xj = x2 and xk = x3 and mi = m3). The sign bit of the

result (the output of CPA5 in MODSUBC block in fig-

ure 1c) is considered as t.

Next, we consider computation of the mixed radix digit

Q. We compute (x1 - x2) but we defer modulo m1 reduc-

tion since the multiplicative inverse f with which we need

to multiply mod m1 is unity (see Eq. (7b)). Next, unlike in

conventional MRC, we subtract ((x2 - x3) ? tm3) from

(x1 - x2) to obtain the intermediate result:

Q� ¼ x3 � 2x2 þ x1 � tm3ð Þ mod m1

¼ x3 � 2x2 þ x1 � 2tð Þ mod m1: ð8Þ

Note that in the second equality, we have used the fact

m3 mod m1 = 2. The subtraction of ((x2 - x3) ? tm3)

instead of P has the advantage that t is available before P is

available, saving one k-bit CPA delay.

The computation of Eq. (8) requires addition of x3, x1,

(2x2)2C (realized as addition of one’s complement of 2x2

and carry input of 1) and t 9 (2)2C (two’s complement of 2

enabled by t) using CSA3 and CSA4 followed by a modulo

m1 adder. The maximum positive and minimum negative

values of (x3 - 2x2 ? x1 - 2t) are (4m - 4) and

(-4m ? 2), respectively. The maximum positive value

m2 m3 m1

= 2m = 2m+1                  = 2m-1
x2 x3 x1

-x2 -x2

(x3-x2)  (x1-x2) 
× e (= -1) × f (= 1)
P = (x2-x3+tm3)      (x1-x2)

-((x2-x3) + tm3)    
Q* (= (x1-2x2+x3-tm3) mod m1)
× g (= m) 
Q (= (Q*×m) mod m1)

Figure 4. MRC for three-moduli set M1.
Ci =1

x2

C7

k

Q

m2

X

k

3k

3k

P

Q*

BLOCK2

MULT3

MULT4

2k

k

CPA14

2k

k

MODMUL

k

4:1 MUX

T8

T9

T10

Ci =1
C5 S5 C6 S6

S7

T11

CPA11

CPA10CSA5

CPA12

CSA6

CPA13

CSA7

Ci =1 Ci =1

(m1)1C m1

k kC4 S4 

2m1

k+1

t

(2)2C

k

C3 S3 

CSA4

x2

k

x3

m3
MODSUBC

k

(2x2)1C x1

k+1

x3

CSA3

k k

m2 m3(P×m2)+x2

g (= m)

k

-

BLOCK3

Figure 5. Architecture of the MRC-based converter D7 for M1.
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occurs when x1 = (2m - 2) and x3 = 2m and since x2\ x3

in this case, t = 1, thus making the maximum positive value

(4m - 4). On the other hand, when x1 = x3 = 0 and for all

x2 values, t = 0, yielding the minimum negative value

-2(2m - 1) = - 4m ? 2. Hence, for modulo m1 reduction

of the sum of the outputs S4 and C4 of CSA4, at most

addition of m1 or 2m1 or subtraction of m1 (addition of

two’s complement of m1) is needed. This can be realized

using a HS version of a parallel-type modulo m1 adder that

uses a 4:1 MUX to select the correct result Q* as shown in

figure 5. The CPA10 computes sum T9 = C4 ? S whereas

the CSA5 followed by CPA11 computes T8 = C4-

? S - m1, CSA6 followed by CPA12 computes T10-

= C4 ? S ? m1 and CSA7 followed by CPA13 computes

T8 = C4 ? S ? 2m1. Note that one’s complement of m1 is

added with a carry input of Ci = 1 inserted in the free LSB

of CARRY vector C5. The correct result Q* is selected

using a 4:1 MUX as shown in BLOCK2 of figure 5. Next,

the multiplication of Q* with g (= m) (see figure 5) is

carried out to obtain the mixed radix digit Q using MOD-

MUL block shown in figure 1d with H = Q*. We next

compute X as

X ¼ x2 þ Pm2 þ Qm2m3 ð9Þ

using BLOCK3 (similar to BLOCK1 in figure 3). This uses

multipliers MULT3 and MULT4 of sizes k 9 k and

2k 9 k, respectively, followed by CPA14. Note that

MULT3 is a merged multiplier.

In the design of reverse converters following figure 4, we

can notice that the computation of mixed radix digit Q is

the critical path. Hence we present some alternate designs

for computing the mixed radix digit Q employing two

different methods for mod m1 reduction of sum of C4 and S4

in figure 5 to obtain Q*. In the design shown in figure 6a,

we first add C4 and S 4 in CPA15 to obtain T12. Note that

CPA15 has a carry input of 1 to realize two’s complement

of 2x2. We reduce the result T12 mod m1 using one ADD/

SUB unit realized by CPA16 and k exclusive-OR gates and

one adder adding 2m1 using CPA17. The correct result is

selected using a 3:1 MUX based on the sign bits of outputs

of CPA16 and CPA17. Note that the exclusive-OR gates

invert the bits of m1 to facilitate subtraction and a carry

input Ci = s0 is added where s is the sign bit of T12. This

block can be used in the architecture of converter D7 in

figure 5 in place of BLOCK2 to realize converter D8.

In an alternative converter design D9, we use a binary-to-

RNS converter to reduce T12 mod m1 as shown in figure 6b.

Since T12 is (k ? 2)-bit wide, based on the two MSB bits,

we add a constant W to the k-bit LSBs of T12. Denoting

x = 2k mod m1 it can be seen that the two MSBs correspond

to the four values before mod m1 reduction: 00b ? 0, 01b-

? 2k = x, 10b ? -2k?1, 11b ? -2k. (Note that b indi-

cates binary representation and (k ? 1)th bit is sign bit of

T12)). Thus, using a 4:1 MUX, appropriate value among

these can be selected and added with k LSBs of T12 and

reduced mod m1 using CPA18, CSA8, CPA19 and 2:1

MUX to obtain Q*. Note that the sum of W and word

corresponding to k LSBs of T12 is at most (2k - 1) so that a

single subtraction of modulus m1 (addition of (m1)1C with a

carry input of 1 to CPA19) is sufficient to obtain Q* as

shown in figure 6b.

Next, we consider realizing the computation of Q* and

multiplication with m in a single block, instead of the

cascade designs considered in figures 5 and 6. In the design

D10, to determine the mixed radix digit Q, we need to

compute [m 9 ((x3 - 2x2 ? x1 - 2t) mod m1)] mod

(a)

(b)

EXOR 
gates

T13

CPA16

Q*

2m1

Ci = s′
CPA17

3:1 MUX

T14

k+1

k

m1
CPA15

C4 S4

k

Ci =1
s

T12s′

CPA18 CSA8

CPA19

2:1 MUX

Q*

(m1)1C

T15

T16

k

C8 S8

CPA15

C4 S4

T12

k
2

4:1 MUX

0
x

m1-2x
m1-x

k+2

kW

Ci =1

Ci =1

Figure 6. Alternative designs for replacing BLOCK2 in con-

verter D7 for computation of Q* (a) for converter D8 and (b) for

converter D9.
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m1 = (mx3 ? mx1 - x2 - t) mod m1 in one step. Note that

(m 9 2x2) and (m 9 2t) are reduced modulo m1 as x2 and t,

respectively, since (2m) mod x1 = 1. We consider x3 =

2x3H ? x30 and x1 = 2x1H ? x10 where x3H and x1H are the

words formed by the most significant (k - 1) bits of x3 and

x1, respectively. The computation of (mx3 ? mx1) can

be realized by adding m 9 x30, m 9 x10, x3H and x1H

since (2m 9 x3H) mod m1 = x3H and (2m 9 x1H) mod

m1 = x1H. Note that -x2 - t is realized as (x2)1C ?

(1 - t) = (x2)1C ? t0 where t0 is inverted bit t. Thus, we

need to compute (m 9 x30 ? m9x10 ? x3H ? x1H ? x21C

? t0) mod m1 to obtain Q. Note that m 9 x30 and m 9 x10

can be obtained using a pair of (k - 1) AND gates enabled

by x30 and x10, respectively, as shown in figure 7.

The five operands can be added using three-level CSA

tree (CSA9–CSA11) and CPA20 followed by a mod m1

adder. Note that the maximum positive and minimum

negative values of the result of CPA20 are (4m - 4) and

(-2m ? 1), respectively. Hence, at most a single addition

or subtraction of modulus m1 is sufficient to obtain

Q. Hence, a modulo m1 adder using an ADD/SUB unit

formed by CPA21, k exclusive-OR gates and a 2:1 MUX is

used to compute Q.

4. Performance evaluation and comparison

The hardware requirement and conversion time for the

various reverse converters described in [5, 18, 19, 21] for

the moduli set M1 along with the proposed reverse con-

verters have been presented in table 1. Note that FA, HA,

AND and w:1 MUX stand for a full adder, half adder, two-

input AND gate and w:1 multiplexer, respectively. The

notations L1 and L2 are used to represent 2k 9 k and

k 9 k multipliers, respectively, and LiM (for i = 1, 2) is

used to represent merged multiplier [23]. Note that the

hardware requirement of L1 and L2 is (2k2 - 2k)FA and

(k2 - k)FA, respectively, considering that an array multi-

plier using (k - 2) carry save levels followed by a CPA is

used and the delay of L1 and L2 is (3k - 2)DFA and

(2k - 2)DFA, respectively.
The converter D1 due to Premkumar [5] uses CRT. It

needs five two-input adders, three 2k 9 k multipliers each

of the range 4m2 and 5 numbers of 3k-bit 2:1 MUXs.

Premkumar et al [18] suggested two converters D2 (Ar-

chitecture A) and D3 (Architecture B) later by simplifying

the conventional CRT. In this method, the modulo M re-

duction needed in [5] is simplified as modulo (m1 9 m3)

reduction. This converter needs one 2k 9 k and another

k 9 k multiplier of the range 4m2 and 2m, respectively.

Architecture A (D2) presented in [18] needs seven two-

input adders and 6k-bit 2:1 MUXs whereas another

Architecture B (D3) presented in [18], which is a HS ver-

sion, needs nine adders and 5k-bit 2:1 MUXs. In the con-

verter D4 for M1 proposed by Wang et al [19] based on

new CRT II technique, we need one 2k 9 k multiplier and

one k 9 k multiplier, a few adders and a few comparators.

The recent converter D5 for M1 due to Gbolagade et al [21]

is based on the modification of CRT. It realizes modulo m1

reduction using several MUXs and comparators and it

needs one 2k 9 k multiplier and one k 9 k multiplier. The

hardware requirement and conversion time for these five

converters D1–D5 are presented as first five entries in

table 1. The proposed converters are presented as D6–D10

in table 1.
Among all the converters using two multipliers L1 and

L2 for the moduli set M1, converter D5 needs the least area

and D4 needs the highest area. However, it may be noted

that the area of multipliers L1 and L2 has quadratic

dependence on k and hence, for large k, the area of the

multipliers dominates the total area. All the converters need

similar conversion time except converters D2, D3, D8 and

D9. The converters D2 and D3 need larger conversion time

than converters D8 and D9. The m and n values needed for

realizing DRs ranging from 8-bit to 64-bit for various

moduli sets are presented in table 2. As an illustration,

m = 21 for 16-bit DR of M1 implies use of the moduli set

{41,42,43}. We have also considered the three reverse

converters D11–D13 for the four-moduli set M2 {2n - 1,

2n, 2n ? 1, 2n?1 - 1} [24–26] and two reverse converters

D14 and D15 for the four-moduli set M3 {2n - 1, 2n,

(x2)1C
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s
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k
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Figure 7. Architecture for the computation of mixed radix digit

Q in D10.
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2n ? 1, 2n?1 ? 1} [25, 27] for the purpose of comparison.

Note that they use the efficient RNS to binary converters for

the three-moduli set {2n - 1, 2n, 2n ? 1} [9–12] followed

by a two-moduli MRC to include the fourth modulus. The

hardware resource and conversion time requirements in

terms of basic gates for the proposed reverse converters

along with the converters for M1–M3 are also presented

using unit-gate model [28] in table 3 for the general case

and for the six standard DRs in table 4. Note that the

equivalent number of gates for full adder, half adder, 2:1

MUX, EXOR/EXNOR, AND and OR gates is considered

as 7, 3, 3, 2, 1 and 1 and the delays are considered as 4Dg,

2Dg, 2Dg, 2Dg, Dg and Dg, respectively, where Dg is unit-

gate delay.

From table 4, it can be observed that for all the stan-

dard DRs, among the considered three- and four-moduli

sets the design D12 is preferable regarding lower hard-

ware resource requirement and the converter D13 needs

least conversion time among all the converters. Among

the converters D5–D10 for moduli set M1, the proposed

converter D10 needs the lowest hardware resources for

DR 8 and 16 bits whereas converter D5 is better for 24-,

32-, 48- and 64-bit DRs. Regarding conversion time, for

all considered standard DRs, D5 and D10 are better than

other converters D6–D9. It can also be observed that the

proposed converters D6–D10 need less conversion time

than converters D14 and D15 for all the considered

standard DRs.

The proposed converters D6–D10 as well as design D5

[21] were implemented using Cadence (Version 14.20),

Compiler: RC 14.25 and synthesized using the Cadence

Encounter tool using 180-nm technology. The post place

and route results of area, conversion time and power dis-

sipation for all these designs for DRs of 8, 16, 24, 32, 48

and 64 bits are presented in table 5.

Regarding hardware requirements, for 8- and 64-bit DRs,

the design D5 is superior to the converters D6–D10 and the

design D6 outperforms converters D5 and D7–D10 for 16-,

24-, 32- and 48-bit DRs. For 16-bit D7 and D8 and for

32-bit and 48-bit DR, converter D8 require less hardware

resources than D5. The converter D9 is preferable com-

pared with D5 regarding area for 16-, 24-, 32- and 48-bit

DRs.

Regarding conversion time, for 8, 32 and 64 bits, D5

performs better than D6–D10 and for 16-, 24- and 48-bit

DRs, D6 outperforms converters D5 and D7–D10. The

converter D7 also requires less conversion time than D5 for

16-bit DR.

Table 4. Area and delay comparison for 8-, 16-, 24-, 32-, 48- and 64-bit DR three- and four-moduli set reverse converters using unit

gate model.

Design

8-bit DR 16-bit DR 24-bit DR 32-bit DR 48-bit DR 64-bit DR

Area Delay Area Delay Area Delay Area Delay Area Delay Area Delay

D5 629 123 1149 177 2244 258 3184 312 7012 474 11357 609

D6 695 128 1267 182 2440 263 3432 317 7416 479 11891 614

D7 853 132 1469 186 2708 267 3744 321 7860 483 12445 618

D8 681 153 1239 215 2391 308 3369 370 7311 556 11751 711

D9 718 154 1298 216 2483 309 3483 371 7491 557 11986 712

D10 598 122 1136 176 2258 257 3216 311 7098 473 11488 608

D11 198 124 387 212 604 304 849 396 1423 580 2109 764

D12 147 116 318 208 517 300 744 392 1282 576 1932 760

D13 257 104 492 164 755 224 1046 284 1712 404 2490 524

D14 447 280 793 408 1165 536 1593 664 2617 920 3865 1176

D15 378 161 756 259 1246 355 1848 449 3388 638 5376 825

Table 3. Hardware requirement and delay estimation based on

unit gate model for various three- and four-moduli set reverse

converters.

Design Unit gate area Unit gate delay (Dg)

D5 21k2 ? 50k ? 93 27k ? 15

D6 21k2 ? 76k ? 55 27k ? 20

D7 21k2 ? 98k ? 125 27k ? 24

D8 21k2 ? 69k ? 69 31k ? 29

D9 21k2 ? 80k ? 62 31k ? 30

D10 21k2 ? 59k ? 26 27k ? 14

D11 3.5n2 ? 73.5n ? 37 44n ? 4a ? 32

D12 3.5n2 ? 64.5n ? 4 46n ? 24

D13 3.5n2 ? 96.5n ? 50 30n ? 44

D14 7n2 ? 102n ? 108 64n ? 88

D15 14n2 ? 77n ? 21 46n ? 8 log2n ? 10

Table 2. Values of ‘m’ and ‘n’ to be considered for various DRs

of M1–M3.

Moduli

set

8-bit

DR

16-bit

DR

24-bit

DR

32-bit

DR

48-bit

DR

64-bit

DR

M1 m 4 21 129 813 32769 1321123

M2 n 2 4 6 8 12 16

M3 n 3 5 7 9 13 17

99 Page 8 of 10 Sådhanå (2019) 44:99



Regarding power dissipation, 8-, 32-, 48- and 64-bit

DRs, the converter D5 is superior than D6–D10 and for

16-bit DR, the converters D6, D7, D9 and D10 outperform

converter D5. For 24-bit DR, the converter D7 needs less

power dissipation than D5, D6 and D8–D10. Among the

proposed converters, for 8-bit DR, the converter D6 is

preferable and for 16- and 32-bit DRs, the converter D10 is

superior to the other converters regarding power dissipa-

tion. For 24-, 48- and 64-bit DRs, the converter D7 needs

least power dissipation compared with other proposed

converters.

5. Conclusions

In this paper we have presented RNS-to-binary converters

for the moduli set {2m-1, 2m, 2m ? 1} using MRC

technique. All the proposed converters were evaluated

based on the hardware resource requirement as well as

conversion time with all converters described in literature

for the moduli set {2m-1, 2m, 2m ? 1}. The proposed

converters have also been compared to two four-moduli

reverse converters. All the proposed converters are imple-

mented and compared to the area-efficient converter [21]

for M1 regarding area and conversion time for different

DRs. The proposed converters also need less conversion

time than reverse converters for some four-moduli sets. The

proposed converters for M1 were shown to be better than

some of the other converters regarding area and conversion

time while having the advantage of availability of mixed

radix digits.
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