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Abstract. The challenge in cache-based attacks on cryptographic algorithms is not merely to capture the cache

footprints during their execution but to process the obtained information to deduce the secret key. Our principal

contribution is to develop a theoretical framework based upon which our AES key retrieval algorithms are not

only more efficient in terms of execution time but also require up to 75% fewer blocks of ciphertext compared

with previous work. Aggressive hardware prefetching greatly complicates access-driven attacks since they are

unable to distinguish between a cache line fetched on demand versus one prefetched and not subsequently used

during a run of a victim executing AES. We implement a multi-threaded spy code that reports accesses to the

AES tables at the granularity level of a cache block. Since prefetching greatly increases side-channel noise, we

develop sophisticated heuristics to ‘‘clean up’’ the input received from the spy threads. Our key retrieval

algorithms process the sanitized input to recover the AES key using only about 25 blocks of ciphertext in the

presence of prefetching and, stunningly, a mere 2–3 blocks with prefetching disabled. We also derive analytical

models that capture the effect of varying false positive and false negative rates on the number of blocks of

ciphertext required for key retrieval.

Keyword. AES; access-driven; cache attacks; side channel; table look-up.

1. Introduction

Side-channel attacks leak sensitive cryptographic informa-

tion through physical channels such as power, timing, etc.

and typically are specific to the actual implementation of

the cryptographic algorithm [1]. An important class of these

attacks is based on obtaining access time measurements

from cache memory systems. The Advanced Encryption

Standard (AES) [2] is a widely adopted algorithm for secret

key cryptography. Most software implementations of AES,

including those in the cryptographic library OpenSSL [3],

make extensive use of cache-resident table look-ups in lieu

of time-consuming mathematical field operations.

Many cache-based side-channel attacks aim to retrieve

the key of a victim performing AES by exploiting the fact

that access times to different levels of the cache-main

memory hierarchy vary by 1–2 orders of magnitude [4].

The attacker (or spy) and the victim use a single copy of

the same cryptographic library and its binaries are map-

ped to the virtual spaces of attacker and victim. In a

Flush and Reload attack [5], for example, the spy process

flushes out the AES tables from cache. When the victim

is scheduled, it brings in some of the evicted lines. When

the control returns back to the spy, it determines which of

the evicted lines were fetched by the victim by measuring

the time to access them. It then flushes out the AES

tables from cache before relinquishing control of the

CPU. Inputs obtained by the spy are then analysed to

compute the AES key.

Our algorithms to deduce the AES key use (i) several

blocks of ciphertext encrypted with the same key and (ii)

the set of line (or block) numbers of AES table entries

accessed by the victim during the decryption of each of

those blocks of ciphertext. Our use of ciphertext (rather

than plaintext as in some previous works) is far more

realistic since the former is readily available. Several

entries in the AES table are placed on a single cache line

and the spy provides a set (not list) of lines accessed. The

absence of spatial information (the specific table entry on a

line required by the victim) and temporal information (the

order of accesses) makes it challenging to deduce the key,

especially for sets with larger cardinalities.
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1

Sådhanå (2019) 44:88 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-019-1070-8Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)

http://orcid.org/0000-0002-7242-1520
http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-019-1070-8&amp;domain=pdf
https://doi.org/10.1007/s12046-019-1070-8


The goal of this work is the retrieval of the AES key with

the fewest possible blocks of ciphertext. The attack in [6]

was implemented with a similar goal. However, the pres-

ence of false negatives in the spy input defeats their attack.

Moreover, cache prefetching (described later) was disabled

in those experiments. As in [6, 7], we derive 16 equations

that relate the output of a round to blocks of ciphertext and

bits of the AES round key. Our principal contribution is the

development of a theoretical framework upon which our

AES key retrieval algorithms are based. The latter are not

only more efficient in terms of execution time but also

require up to 75% fewer blocks of ciphertext compared

with previous work. The dramatic increase in efficiency of

our approach and its error tolerance is attributed, in part, to

our exploitation of the peculiar structure of these equations

and extraction of the maximum possible information from

them. The key retrieval algorithms are agnostic with respect

to cache attack strategy (‘‘Flush and Reload’’ [5], ‘‘Prime

and Probe’’ [8], etc.), to specific software implementations

(for example, single/multiple look-up tables [3]), to single

core versus multi core attack scenarios and to noise volume

on the cache side channel.

The complexity of cache attacks is exacerbated by

hardware prefetchers [9] (implemented internally by pro-

cessors to reduce memory latency). When a cache miss

occurs, the processor not only fetches the missed line but

also the next or previous line in anticipation of its use.

Processors targeted in earlier attacks [8, 10] employed

stride prefetchers while modern processors sport far more

sophisticated prefetchers. The latter use history tables to

record patterns of cache miss addresses, make predictions

of future misses and perform aggressive prefetching based

on their predictions [11]. The substantial increase in false

positive rate (due to lines prefetched but not subsequently

used during a run of the victim executing AES) has a

serious adverse effect on the efficiency of access-driven

attacks.

Our efforts with prefetching turned off enabled us to

retrieve the AES key with a mere 2–3 blocks of ciphertext

– two orders of magnitude better than the best result

obtained so far. The natural question to be asked then is

with prefetching turned on, what is the number of

decryptions required? Our main contribution is to answer

this question by implementing (i) prefetching-aware multi-

threaded spy code, (ii) heuristics to sanitize the input

received from the spy threads and (iii) key retrieval algo-

rithms that operate on the sanitized input. The spy code

was ported on to the Intel Core 2 Duo, Core i3, Core i5 and

Core i7 (the latter three with very aggressive prefetchers

[9]). Our heuristics and key retrieval algorithms succeeded

in retrieving the entire AES key with only about 25 blocks

of ciphertext.

Our second contribution is a systematic investigation

into the effect of errors on the number of decryptions

(ciphertext blocks) required. False positives and false

negatives in the input provided by the spy threads are

caused, in part, by measurement errors. Moreover, because

of the way the spy threads are designed to operate, there is

a substantial rise in false negatives besides the expected

increase in false positives. All of our experiments were

conducted in a lab setting with few other processes

sharing the core in addition to the victim and spy. In more

realistic scenarios, we would expect even greater noise

and hence higher error rates. We develop analytical

models to study the effect of varying false positive and

false negative rates on the number of decryptions required

and compare these to actual results from our experiment

set-up. This work is the first in attempting a quantitative

investigation of the effect of noise on the success proba-

bility of key retrieval.

This paper is organized as follows. Section 2 summarizes

work related to the theme of this paper. Section 3 contains

an introduction to AES and, in particular, its software

implementation. Our analytical models were corroborated

through experiments – the experimental set-up, spy code

and key retrieval strategy are also described in section 3.

Sections 4 and 5 present the algorithms, model and results

related to the First Round and Second Round Attacks,

respectively. Section 6 discusses other issues of relevance,

including limitations and countermeasures, and section 7

contains the conclusion.

2. Related work

It was first mentioned by Hu [12] that cache memory can be

considered as a potential vulnerability in the context of

covert channels to extract sensitive information. Later

Kocher [13] demonstrated the data-dependent timing

response of cryptographic algorithms against various pub-

lic-key systems. Based on his work, [14] mentioned the

prospects of using cache memory to perform attacks based

on cache hits in S-box ciphers like Blowfish. One formal

study of such attacks using cache misses was conducted in

[15].

Access-driven cache attacks were reported in [16] on

RSA for multithreaded processors. Tromer et al [8] pro-

posed an approach and analysis for the access-driven cache

attacks on AES for the first two rounds. They introduced

the Prime?Probe technique for cache attacks. In the Prime

phase, the attacker fills the cache with its own data before

the encryption. In the Probe phase, it accesses its data and

determines whether each access results in a hit or miss. In

the synchronous version of their attack, 300 encryptions

were required to infer a 128-bit AES key on the Athlon64

platform.

The ability to detect whether a cache line has been

evicted or not was further exploited by Neve et al [17].

They designed an improved access-driven cache attack on

the last round of AES on a single-threaded processor.

Aciiçmez et al [18] presented a realistic access-driven

cache attack targeting I-cache based on vector quantization
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and hidden Markov models on OpenSSL’s DSA

implementation.

Gullasch et al [10] proposed an efficient access-driven

cache attack when attacker and victim use a shared

crypto library. Their experimental measurement method is

similar to ours but their key retrieval is very different. It

does not require synchronization or knowledge of the

plaintexts or ciphertexts. They retrieved the AES key

using about 100 blocks of ciphertext. Extending the work

of Gullasch et al [10], Yarom and Falkner [5] conducted

a cross-core attack on the LLC (Last Level Cache, L3 on

processors with three levels of cache) with the spy and

the victim executing concurrently on two different cores.

They introduced the Flush?Reload technique, which is

effective across multiple processor cores and virtual

machine boundaries. The first access-driven cache attack

on smartphones was proposed in [19] on misaligned AES

T-tables.

Acıiçmez and Koc [20] provided an analytical treatment

of trace-driven cache attacks and analysed its efficiency

against symmetric ciphers. Trace-driven cache attacks were

first theoretically introduced in [15]. Gallais et al [21]

proposed an improved adaptive known plaintext attack on

AES implemented for embedded devices. Their attacks

recover a 128-bit AES key with exhaustive search of at

most 230 key hypotheses. Trace-driven cache attacks were

further investigated by Zhao and Wang [22] on AES and

CLEFIA by considering cache misses and S-box

misalignment.

Tsunoo et al [23] pioneered the work on time-driven

cache attacks. They demonstrated that DES could be bro-

ken using 223 known plaintexts and 224 calculations. A

similar approach was used by Bonneau and Mironov [24],

where they emphasized individual cache collisions during

encryption instead of overall hit ratio. Although this attack

was a considerable improvement over previous work, it still

required 213 timing samples. Bernstein [25] presented a

practical known plaintext attack on a remote server running

AES encryption. [26] is a recent work applying Bernstein’s

attack on ARM Cortex-A platform used on Android-based

systems.

Neve et al [27] revisit Bernstein’s attack technique and

explain why his attack works. Concurrent to but inde-

pendent of the work of Bernstein [25], Osvik et al [28]

introduced the Evict?Time technique in which an attacker

evicts cache lines from all levels of the cache and then

identifies those that are accessed during the encryption.

Other time-driven attacks were investigated by

[23, 29–33].

Irazoqui et al [34] introduced a new shared LLC attack

that works across cores and VM boundaries. Their attack is

implemented on the basis of Prime?Probe technique

enabled by huge pages without de-duplication. A similar

LLC attack was proposed in [35] on various versions of

GnuPG. Another attack on LLC was implemented in [36]

that does not require the use of large pages.

Zhang et al [37], targeting virtualized environments,

extract the private ElGamal key of a GnuPG description

running in the scheduler of the Xen hypervisor [38].

Weiß et al [39] used Bernstein’s timing attack on AES

running inside an ARM Cortex-A8 single core system in

a virtualized environment to extract the AES encryption

key. Irazoqui et al [40] performed Bernstein’s cache-

based timing attack in a virtualized environment to

recover the AES secret key from co-resident VM with 229

encryptions. Later Irazoqui et al [41] used a Flush?Re-

load technique and recovered the AES secret key with 219

encryptions.

Hardware prefetchers, first discussed in [42], aim to

provide temporal locality by bringing data into the cache,

complicating the various cache-based attacks as also

observed in [10, 28, 43]. Tromer et al [8] discussed a

pointer chasing technique in which the attacker’s memory

is organized into a linked list. They mounted Prime?Probe-

based attack by traversing the list to avoid the read-ahead of

memory by the hardware prefetcher.

Liu et al [44] discusses an LLC attack on ElGamal

decryption in which the authors randomly organize the

memory lines in each eviction set as a linked list. Their

random permutation prevented the hardware prefetching

memory lines in the eviction set. Recently, [45] described a

novel prefetch side-channel attack exploiting weakness of

prefetch instructions to obtain address information by

defeating SMAP, SMEP and kernel ASLR. The attack is

based on the primitive that prefetch can be used to fetch

inaccessible privileged memory into caches without per-

forming any privilege checks.

Fuchs and Lee [46] presented a randomized set-balanced

policy able to disrupt the cache footprint construction and

thwart Prime?Probe cache attacks. They suggested two

extensions to the conventional prefetching scheme – ran-

domized prefetching policy to operate at different levels of

aggressiveness and a set balancer to balance the load across

all cache lines. Hardware prefetching has been discussed

further in [16, 47].

3. Background and attack preliminaries

We first summarize the key points in the software implemen-

tation of AES and then describe the espionage infrastructure

designed by us. Finally, the strategy used for key retrieval is

explained. The notations used are described in table 1.

3.1 AES preliminaries

AES is a symmetric key block cipher whose construction is

based on a substitution-permutation network. It supports a

key size of 128, 192 or 256 bits and block size = 128 bits. A

round function is repeated a fixed number of times (10 for

key size of 128 bits) to convert 128 bits of ciphertext to 128
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bits of plaintext, during decryption. The 16-byte ciphertext

C ¼ ðc0; c1; . . .; c15Þ may be thought of as being arranged

column-wise in a 4� 4 array of bytes. Each byte (repre-

sented as two hex characters) is an element in the binary

field, GF 28ð Þ. This ‘‘state array’’ gets transformed after

each step in a round. At the end of the last round, the state

array contains the plaintext.

In decryption, all rounds except the last involve four

steps - InvSubBytes (inverse byte substitution), InvShif-

tRows (inverse row shift), InvMixColumns (inverse column

mixing) and a round key addition (the last round skips the

inverse column mixing step). The substitution and column

mixing steps are defined using algebraic operations over the

field GF 28ð Þ with irreducible polynomial

x8 þ x4 þ x3 þ xþ 1. For example, in the inverse column

mixing step, the state array is pre-multiplied by the fol-

lowing matrix B�1, where B�1 is the inverse of the matrix B

used in the column mixing step of encryption:

B�1 ¼

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

0
BBB@

1
CCCA; B ¼

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

0
BBB@

1
CCCA:

Like a block of plaintext, ciphertext and the state array, the

128-bit AES key, the original 16-byte secret key K is

arranged columnwise in a 4� 4 array of bytes. It is used to

derive 10 different round keys to be used in the round key

operation of each round. The round keys are denoted as

KðrÞ; r ¼ 1; 2; . . .; 10. In a software implementation, field

operations are replaced by relatively inexpensive

table look-ups, thereby speeding encryption and decryption.

In the versions of OpenSSL targeted in this paper, five

tables are employed (each of size 1 KB). A

table Tt ; 0� t� 4, is accessed using an 8-bit index,

resulting in a 32-bit output. Let x rð Þ ¼ x
rð Þ
0 ; . . .; x

rð Þ
15

� �

denote the input to Round r. The output of Round r

(r ¼ 1; . . .; 9) is obtained from the input using 16

table look-ups (4 per table Tt ; 0� t� 3) and 16 XOR

operations as shown in (1)–(4):

x
rþ1ð Þ
0 ; x

rþ1ð Þ
1 ; x

rþ1ð Þ
2 ; x

rþ1ð Þ
3

� �

 T0 x
rð Þ
0

h i
� T1 x

rð Þ
13

h i
� T2 x

rð Þ
10

h i
� T3 x

rð Þ
7

h i
� K

rð Þ
0 ;

ð1Þ

x
rþ1ð Þ
4 ; x

rþ1ð Þ
5 ; x

rþ1ð Þ
6 ; x

rþ1ð Þ
7

� �

 T0 x
rð Þ
4

h i
� T1 x

rð Þ
1

h i
� T2 x

rð Þ
14

h i
� T3 x

rð Þ
11

h i
� K

rð Þ
1 ;

ð2Þ

x
rþ1ð Þ
8 ; x

rþ1ð Þ
9 ; x

rþ1ð Þ
10 ; x

rþ1ð Þ
11

� �

 T0 x
rð Þ
8

h i
� T1 x

rð Þ
5

h i
� T2 x

rð Þ
2

h i
� T3 x

rð Þ
15

h i
� K

rð Þ
2 ;

ð3Þ

x
rþ1ð Þ
12 ; x

rþ1ð Þ
13 ; x

rþ1ð Þ
14 ; x

rþ1ð Þ
15

� �

 T0 x
rð Þ
12

h i
� T1 x

rð Þ
9

h i
� T2 x

rð Þ
6

h i
� T3 x

rð Þ
3

h i
� K

rð Þ
3 :

ð4Þ

Here K
rþ1ð Þ
j refers to the jth column of round key K rþ1ð Þ.

In the last round, table T4 is used instead of T0; . . .; T3
due to the absence of the column mixing step. The value

returned by the table look-up is XORed with the corre-

sponding byte of the round key. Since each round

involves 16 table accesses, a complete encryption/de-

cryption using 128-byte key involves a total of 160

table accesses.

For performance reasons, the tables reside in cache. The

granularity of transfer between the cache and main memory

is a line that is 64 bytes on all machines we experimented

with. Each of T0 � T3 contains 256 4-byte elements. Hence,

16 elements reside on a single cache line and each of T0 �
T3 occupies 16 lines. An index into a table is 8 bits – the

high-order nibble specifies the line within the table and the

low-order nibble specifies the element within a line.

3.2 Experimental set-up

Executions of the spy process and the victim performing

decryptions are interleaved on the same core. Ideally, the

victim (V) makes a few AES table accesses during its run

before being preempted. The spy, scheduled next, then

Table 1. Notations.

Notation Explanation

ki ith byte of 10th round key of AES

ci; ci; j ith byte of ciphertext (in jth block)

Tt AES T-table, 0� t� 4

y0 high-order nibble of byte y

y00 low-order nibble of byte y

xi;t;r;d table index of ith access to Tt in Round r of Decryption

d

xj equivalent to xi;t;r;d where j ¼ t þ 4i; r ¼ 2 and d is

dropped for brevity

Gi;t;r;d set of guesstimates of the line number corresponding to

ith access to Tt in Round r of Decryption d

P(A) probability of event A

fq average false negative rate in set of guesstimates after

q refinements

j G jq average cardinality of the set of guesstimates after

q refinements

d number of decryptions considered
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attempts to infer the line numbers of the table elements

accessed in the preceding run of V. In most operating

systems (OSs), however, the time slice provided to an

executing process is about a millisecond. This is sufficient

for V to decrypt tens of blocks of ciphertext, making it

impossible for the spy to deduce the decryption key. What

is needed is a way to restrict the duration of V’s time slice

to about 1100 ns.

Similar to [10], we employ a multi-threaded spy process.

The spy program creates a high-resolution POSIX timer

(used by all the spy threads) and an array of binary sema-

phores – S[i] is the semaphore associated with Thread i. All

but one of the semaphores are initialized to 0. Hence, all

threads are blocked on their respective semaphores except

for the one that is initialized to 1. The unblocked thread

accesses a pre-determined list of cache lines to determine

which of these have just been accessed by V. The exact list

depends on whether prefetching is enabled and, if so, the

type of prefetcher. The spy thread then flushes all the lines

containing the AES tables from cache.

The last task of the spy thread is to arm the timer by

initializing its value to t� 1100 ns. It then returns to the first

statement of the loop, wherein it blocks on its semaphore

(Line 6). Now all the spy threads are blocked on their

respective semaphores. Hence, V is scheduled next and it

resumes performing decryptions. On expiration of the timer

value, the kernel sends a signal to the signal handler, which

unblocks Thread iþ 1 (Line 3). V is preempted and Thread

iþ 1 is scheduled for the reason explained here.

Beginning with version 2.6.23 of the Linux kernel, the

default process scheduler is the CFS (Completely Fair

Scheduler). For each process or thread, the OS maintains a

virtual run time that is a crude measure of CPU run time

granted to that process. Scheduler fairness implies that V

and the n spy threads each get roughly 1=ðnþ 1Þth of the

CPU time (ignoring other processes executing on the core).

When a thread is blocked, its virtual run time remains fixed.

The unblocked threads and processes get scheduled in turn

and their virtual run times increase. Hence, when the

blocked thread is unblocked its virtual run time is suffi-

ciently low that V is preempted and the former gets

rescheduled.

When a spy thread executes, it accesses lines of the AES

tables in order. A cache miss results in the next (or previ-

ous) line being prefetched, causing the spy to wrongly infer

that the prefetched line was accessed in the previous run of

the victim. To defeat the effect of lines prefetched during

the execution of the victim process, the number of accesses

made by the victim during each of its runs should be

minimized. This was accomplished by setting the time

interval of the high-resolution POSIX timer to � 1100 ns

on Intel Core i3/i5/i7 processors and � 1700 ns on Core 2

Duo.

One possible way to defeat prefetching during the exe-

cution of the spy is to access only the even-indexed lines

(with a stride of 2). This strategy results in a high rate of

false negatives since all odd-indexed lines are missed out.

Worse still, the prefetcher is able to detect fixed strides in

the access sequence and prefetch lines, thus defeating our

strategy. We modify our approach by randomly generating

all even numbers between 0 and 72 using the expression

ð17imod37Þ � 2. This generates the sequence of line num-

bers 34, 60, 58, 24, 38, 54, ..., 2, 0, which are loaded into

the array cacheLines in the spy program. With this modi-

fication, we obtained the correct set of even indices

accessed by the victim on the Core 2 Duo since its pre-

fetcher is now unable to detect a fixed stride.

This strategy fails on the Intel Core i3/i5/i7 since it

incorporates a more aggressive prefetcher that tracks and

remembers the forward and backward strides of the 16 most

recently accessed 4-KB pages [9]. Hence, we modified the

spy code to access 32 randomly selected pages between two

consecutive accesses to the AES tables. Our spy program is

versatile enough to handle the prefetchers in both Intel Core

2 Duo and Intel Core i3/i5/i7.

3.3 Key retrieval strategy

Key retrieval involves two steps. In the first, the high-order

nibble of each byte of the AES key is obtained and in the

second, the low-order nibbles are deduced. The two steps

use inputs to the First and the Second Rounds; hence, they

are referred to as First and Second Round Attacks,

respectively.

Each round uses 16 equations. The LHS of an equation

is the input to a round (except for the first round, this is

also the output of the previous round). As mentioned in

section 3.1, the LHS can also be thought of as an index to
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an AES table. The RHS of an equation involves bytes of the

ciphertext and the key. From the RHS of each equation, we

identify a bunch of bits in the AES key (sub-key) whose

true value we attempt to determine. The high-order nibble

of the table index is the cache line number. The information

provided by the spy threads is sets of line numbers. A

preprocessing step is involved in converting this input to

guesstimates of each cache line number accessed by the

victim. Let xi;t;r;d be the table index and Gi;t;r;d be the set of

guesstimates of the line number corresponding to the ith

access to the tth table in Round r of Decryption d.

Histograms are composed, one per equation; m sets of

Bernoulli trials are conducted per histogram. Within a set,

each sub-key value is assigned a score, 0 or 1 (success), which

is determined as follows. The RHS of the equation is com-

puted by substituting the sub-key value and ciphertext. If the

high-order nibble of the computed byte matches a line

number in the corresponding set Gi;t;r;d, the outcome is suc-

cess. The sub-key value with the highest cumulative score is

declared the winner and is assumed to be the actual sub-key.

Let Xc and Xi; 1� i� 2s; i 6¼ c, respectively, denote the

random variables associated with the scores of correct and

incorrect values of the sub-key and let pc and pin denote their

success probabilities. Here 2s is the number of possible val-

ues of the s-bit sub-key. These variables are binomially dis-

tributed, i.e., Xc�Bðpc;mÞ and Xi�Bðpin;mÞ.

Lemma 1 The probability Phðpc; pin; 2s;mÞ that the score
of the correct s-bit sub-key value is greater than those of all

others after m Bernoulli trials is

Xm�1
n¼0

PðXc ¼ nþ 1Þ½ � PðXi� nÞ½ �2
s�1

n o
:

The next two sections describe the algorithms for the First

and Second Round Attacks and include results from, both,

experiments and a model.

4. First Round Attack

We first show how guesstimates are computed and then

used in the algorithms for the First Round Attack.

4.1 Obtaining the guesstimates

Let c0;j; c1;j; . . .; c15;j denote the 16 bytes of block j of the

ciphertext and let k0; k1; . . .; k15 be the bytes of the 128-bit

AES key. Before the start of the First Round, the ciphertext

is XORed with the key, so the table indices are computed as

xi;t;1;d ¼ ctþ4i;d � ktþ4i; 0� i; t� 3; 1� d� d: ð5Þ

In the First Round Attack, we obtain the high-order nibbles

of the AES key from the ciphertext and table line numbers

as in

k0tþ4i ¼ x0i;t;1;d � c0tþ4i;d; 0� i; t� 3; 1� d� d ð6Þ

where x0 and x00 denote, respectively, the high-order and

low-order nibble of byte x. The first step in the attack is to

obtain the 16 sets of guesstimates.

Figure 1 shows the exact sequence of line numbers

accessed during the first two rounds of a decryption for a

given key and ciphertext block. Table 2 shows the corre-

sponding line numbers accessed by V in the first 10 runs as

reported by the spy threads. For clarity of viewing, we

represent line numbers in the range 0–63. Lines 0–15 are in

T0, 16–31 are in T1, 32–47 are in T2 and 48–63 are in T3.

Line 32 is the 4th even line number access in Round 2 but it

appears early on in Run 3, potentially leading to the erro-

neous conclusion that it occurs in Round 1. Also, the same

line number may appear in multiple consecutive runs even

though it has been accessed just once.

A typical scenario encountered by V and the spy threads

is as follows. During a run, V suffers one or more cache

misses since all AES tables are flushed out by the previ-

ously executing spy thread. Modern processors employ out-

of-order execution so that, in the event of a memory stall,

later instructions are executed assuming no data depen-

dences. Table access instructions further upstream cause

more cache misses and requests to main memory. The first

few missed lines are fetched into cache and processed by

the CPU while a few others are placed in cache but not

processed. Just then, V is preempted. When the next spy

thread is scheduled, it reports the presence of several lines

in cache. Of these, only the first few have actually been

processed, so the remainder of those fetched will have to be

re-fetched during the next run of V and so on, thus

appearing superfluously in multiple runs of the spy input.

We attempt to eliminate redundancies in the spy input by

deriving two auxiliary tables – an Addition Table and a

Deletion Table (table 2). In the former, we include, for Run

i, only the line numbers appearing in Run i but not Run

i� 1 of the spy input. In the Deletion Table, we include

only line numbers missing in Run i but present in Run i� 1

of the spy input.

The challenge is that the spies provide us with only the

even line numbers and, then too, we are not sure of their

exact positions. Moreover, a round is not aligned on a run

boundary, so we cannot precisely identify the point at

which the First Round accesses end and the Second Round

Figure 1. Sequence of table line numbers accessed.
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begins. One simple strategy is to include the fewest number

of rows from the Addition Table at the start of a decryption

so that the union of line numbers in those rows is 8 or more.

The choice of 8 is because a round involves 16 table ac-

cesses; of these, 8 accesses, on average, would be to even

line numbers.

Returning to table 2, we include the first two rows of the

Addition Table to give us a total of 10 line numbers. From

this, we compute the guesstimates as follows:

Gi;0;1;d ¼ f8; 12; 14g

Gi;1;1;d ¼ f16; 18g

Gi;2;1;d ¼ f36; 38; 42g

Gi;3;1;d ¼ f50; 60g

0� i� 3:

Note that line numbers 36 and 50 in Gi;2;1;d and Gi;3;1;d,

respectively, were incorrectly reported by the spy threads

(they do not occur in the trace of Round 1 accesses in

figure 1). We refer to such spurious accesses as false pos-

itives. Also, line number 28 was accessed but does not

appear in Gi;1;1;d. Each missing element in a set of

guesstimates is treated as a false negative with respect to

the line number being guessed. Line 28 appears in the third

row of the Addition Table. If we included the elements in

this run to our guesstimates, then lines 32 and 44 (which are

false positives) would also have to be added to Gi;2;1;d.

False positives and false negatives could be due to errors

in the measurements made by the spy threads – for exam-

ple, lines 36 and 50 are two such errors. On the other hand,

they could be due to our preprocessing strategy being either

too conservative or too liberal. With only two runs of the

Addition Table, we excluded line 28. However, with three

runs, we eliminated the false negative at the expense of two

more false positives. Thus, there is, in general, a delicate

tradeoff between reducing the number of false positives and

reducing the number of false negatives.

4.2 Key recovery algorithm

Having computed the guesstimates, we next introduce an

algorithm to recover the high-order nibbles of each byte of

the AES key given d blocks of ciphertext.

Algorithm 1 builds 16 histograms, one per high-order nibble

of the AES key. We start with histograms 0, 4, 8 and 12 con-

structed from the Guesstimates Gi;0;1;d; 0� i� 3, containing

line numbers of T0. After d decryptions (a decryption is asso-

ciated with a Bernoulli trial for each of the 64 nibble values, 16

per histogram), we identify the nibble value across all four his-

tograms with the highest score. In the event of a tie, the value

with themost convincing lead over the others in that histogram is

selected.We declare it to be the true value of that nibble and the

histogrambearing thewinner is set aside. Let thewinner be value

y in hist4m, so k
0
4m ¼ y.We then compute the corresponding line

numbers accessed in T0 using Eq. (6). Line number y� c04m;1 is

deleted fromGuesstimatesGn;0;1;1 and y� c04m;2 is deleted from

Gn;0;1;2 and so on, where 0� n� 3 and n 6¼ m.

This procedure is repeated for the remaining three his-

tograms (Line 4 of Algorithm 1), then for the remaining

two and finally for the last histogram. At this point, key

nibbles k04m; 0�m� 3, are obtained. This is repeated for the

histograms corresponding to each of the other tables (Line 1

of Algorithm 1) to retrieve all high-order nibbles of the key.

4.3 Analysis and results

We next analyse the performance of Algorithm 1 as a

function of the false positive and false negative rates.

Consider key nibbles k04m; 0�m� 3. We refined the set

of guesstimates after retrieval of every key nibble among

the four considered. After every refinement, the average

cardinality of the set of guesstimates decreases and the

average false negative rates increase since some line

numbers may be accessed more than once in a round.

Table 2. Cache line numbers reported by consecutive spy threads.
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Let fq be the average false negative rate after q refine-

ments to the set of guesstimates. It can be thought of as the

probability that the line number accessed is not included in

the set of guesstimates. The average cardinality of the set of

guesstimates after q refinements, denoted as j G jq, is a

measure of the false positive rate per element1 accessed.

Let pc and pin, respectively, denote the probabilities of the

correct and incorrect nibbles in a histogram receiving a

boost. Hence

pc ¼ 1� fq; 0� q� 3 ð7Þ

and

pin ¼ fq
j G jq
15

� �
þ ð1� fqÞ

j G jq �1
15

� �
: ð8Þ

Equation (8) follows from the fact the probability that an

incorrect nibble receives a boost in case of a false negative

is
jGj
15
, and is

jGj�1
15

otherwise.

The probability that the correct value of a key nibble is

the unrivalled top scorer in a histogram is computed from

Phðpc; pin; 2s;mÞ in Lemma 1 with m ¼ d, the number of

decryptions 2s ¼ 16, the number of possible values of a key

nibble and success probabilities pc and pin obtained,

respectively, from Eqs. (7) and (8). Lines 12 and 13 of

Algorithm 1 first attempt to find an unrivalled top scorer in

at least one of four histograms, hist4m; 0�m� 3. The

probability that this succeeds is 1� ð1� Phðpc; pin; 24; dÞÞ4.
The success probability of Algorithm 1 is given in the

following theorem.

Theorem 1 The probability of successfully recovering all

16 high-order nibbles of the AES key in d decryptions is

Y3
q¼0

1� ½1� Phðfq; j G jq; 24; dÞ�4�q
h i( )4

where Phðfq; j G jq; 24; dÞ ¼ Phðpc; pin; 24; dÞ; fq and j G jq
are derived in Appendix I.

We performed experiments on an Intel Core i3 running

Debian 8, Linux kernel 3.18 with OpenSSL version 1.0.2a.

We generated 1000 samples – each sample comprises a

randomly selected decryption key together with 50 random

blocks of ciphertext. We ran each sample with 200 spy

threads and created the set of guesstimates from the spy

input. Using Algorithm 1, we attempted to deduce the AES

key with varying number of ciphertext blocks.

Figure 2 shows the number of successes in 1000 samples.

By success, we mean that all 16 high-order nibbles are

recovered. In some cases, we recovered 15 nibbles suc-

cessfully but a tie occurred in determining the last nibble.

All of these cases were, however, easily resolved by closer

inspection of the spy input. We included all such cases as

successes. The unsuccessful case typically involved one or

a few nibble values that were incorrectly guessed. With 16

decryptions, the success rate is 74%, but increases to 86%

and 96% with 20 and 26 decryptions, respectively. For

comparison, we included the unrefined version of Algo-

rithm 1, which works on each histogram independently

without updating the guesstimates. As shown in figure 2,

the performance of the unrefined algorithm is considerably

inferior to the refined one.

1The false positive rate per element is equal to

fq j G jq þð1� fqÞðj G jq �1Þ ¼ j G jq þfq � 1.

Figure 2. Number of successes per 1000 samples (Round 1).
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We also ran the key retrieval algorithm on the same sam-

ples but assuming ideal guesstimates. Gi;t;1;d is a set of ideal

guesstimates if it contains line numbers only from Tt acces-

sed in Round 1 of decryption d, and its only false negatives

are the odd-numbered cache lines accessed in Round 1. This

is an ideal experiment – one inwhich nomeasurement error is

committed by the spy threads and inwhich the end of the First

Round is unambiguously identified. j G j0 and f0 in the ideal
case are, respectively, 1.82 and 0.5. With experimentally

obtained spy inputs and the preprocessing strategy employed

in deriving guesstimate sets, j G j0 and f0 increase to 2.15 and
0.55, respectively. As figure 2 shows, the success rate in the

ideal case is nearly 100% with 14 decryptions. Thus the

errors, whether induced by lapses in spy measurements or

inherent in the preprocessing strategy, are seriously detri-

mental to performance.

5. Second Round Attack

The goal of the Second Round Attack is to obtain the low-

order nibble of each byte of the key.

5.1 Theoretical underpinnings

From the algorithm used to generate round keys and by

tracking how the input to Round 1 gets transformed to its

output, we derived 16 equations shown here. They relate

the second round inputs to the ciphertext and to various

bytes of the key.

In the LHS of Eqs. (9)–(24), xj represents an element in

table Tt. For simplicity, we use a single subscript instead of

xi;t;r;d used earlier. Here, the subscript j is equal to t þ 4i.

We use Round 2 accesses, so r ¼ 2. Also, these equations

are true for all the decryptions. In addition, we use ctþ4i in
lieu of ctþ4i;j (the second subscript j, the block number of

ciphertext is suppressed for brevity). Also s�1 is the inverse
substitution function in AES.

x0 ¼ 0e 	 s�1ðc0 � k0Þ � 0b 	 s�1ðc13 � k13Þ
� 0d 	 s�1ðc10 � k10Þ � 09 	 s�1ðc7 � k7Þ
� 0e 	 ðk0 � sðk9 � k13Þ � 36Þ � 0b 	 ðk1 � sðk10 � k14ÞÞ
� 0d 	 ðk2 � sðk11 � k15ÞÞ � 09 	 ðk3 � sðk8 � k12ÞÞ;

ð9Þ

x1 ¼ 09 	 s�1ðc0 � k0Þ � 0e 	 s�1ðc13 � k13Þ
� 0b 	 s�1ðc10 � k10Þ � 0d 	 s�1ðc7 � k7Þ
� 09 	 ðk0 � sðk9 � k13Þ � 36Þ � 0e 	 ðk1 � sðk10 � k14ÞÞ
� 0b 	 ðk2 � sðk11 � k15ÞÞ � 0d 	 ðk3 � sðk8 � k12ÞÞ;

ð10Þ

x2 ¼ 0d 	 s�1ðc0 � k0Þ � 09 	 s�1ðc13 � k13Þ
� 0e 	 s�1ðc10 � k10Þ � 0b 	 s�1ðc7 � k7Þ
� 0d 	 ðk0 � sðk9 � k13Þ � 36Þ
� 09 	 ðk1 � sðk10 � k14ÞÞ
� 0e 	 ðk2 � sðk11 � k15ÞÞ � 0b 	 ðk3 � sðk8 � k12ÞÞ;

ð11Þ

x3 ¼ 0b 	 s�1ðc0 � k0Þ � 0d 	 s�1ðc13 � k13Þ
� 09 	 s�1ðc10 � k10Þ � 0e 	 s�1ðc7 � k7Þ
� 0b 	 ðk0 � sðk9 � k13Þ � 36Þ
� 0d 	 ðk1 � sðk10 � k14ÞÞ
� 09 	 ðk2 � sðk11 � k15ÞÞ � 0e 	 ðk3 � sðk8 � k12ÞÞ;

ð12Þ

x4 ¼ 0e 	 s�1ðc4 � k4Þ � 0b 	 s�1ðc1 � k1Þ
� 0d 	 s�1ðc14 � k14Þ � 09 	 s�1ðc11 � k11Þ
� 0e 	 ðk0 � k4Þ � 0b 	 ðk1 � k5Þ � 0d 	 ðk2 � k6Þ
� 09 	 ðk3 � k7Þ;

ð13Þ

x5 ¼ 09 	 s�1ðc4 � k4Þ � 0e 	 s�1ðc1 � k1Þ
� 0b 	 s�1ðc14 � k14Þ � 0d 	 s�1ðc11 � k11Þ
� 09 	 ðk0 � k4Þ � 0e 	 ðk1 � k5Þ � 0b 	 ðk2 � k6Þ
� 0d 	 ðk3 � k7Þ;

ð14Þ

x6 ¼ 0d 	 s�1ðc4 � k4Þ � 09 	 s�1ðc1 � k1Þ
� 0e 	 s�1ðc14 � k14Þ � 0b 	 s�1ðc11 � k11Þ
� 0d 	 ðk0 � k4Þ � 09 	 ðk1 � k5Þ � 0e 	 ðk2 � k6Þ
� 0b 	 ðk3 � k7Þ;

ð15Þ

x7 ¼ 0b 	 s�1ðc4 � k4Þ � 0d 	 s�1ðc1 � k1Þ
� 09 	 s�1ðc14 � k14Þ � 0e 	 s�1ðc11 � k11Þ
� 0b 	 ðk0 � k4Þ � 0d 	 ðk1 � k5Þ � 09 	 ðk2 � k6Þ
� 0e 	 ðk3 � k7Þ;

ð16Þ

x8 ¼ 0e 	 s�1ðc8 � k8Þ � 0b 	 s�1ðc5 � k5Þ
� 0d 	 s�1ðc2 � k2Þ � 09 	 s�1ðc15 � k15Þ
� 0e 	 ðk4 � k8Þ � 0b 	 ðk5 � k9Þ � 0d 	 ðk6 � k10Þ
� 09 	 ðk7 � k11Þ;

ð17Þ
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x9 ¼ 09 	 s�1ðc8 � k8Þ � 0e 	 s�1ðc5 � k5Þ

� 0b 	 s�1ðc2 � k2Þ � 0d 	 s�1ðc15 � k15Þ

� 09 	 ðk4 � k8Þ � 0e 	 ðk5 � k9Þ � 0b 	 ðk6 � k10Þ

� 0d 	 ðk7 � k11Þ;
ð18Þ

x10 ¼ 0d 	 s�1ðc8 � k8Þ � 09 	 s�1ðc5 � k5Þ

� 0e 	 s�1ðc2 � k2Þ � 0b 	 s�1ðc15 � k15Þ
� 0d 	 ðk4 � k8Þ � 09 	 ðk5 � k9Þ � 0e 	 ðk6 � k10Þ
� 0b 	 ðk7 � k11Þ;

ð19Þ

x11 ¼ 0b 	 s�1ðc8 � k8Þ � 0d 	 s�1ðc5 � k5Þ

� 09 	 s�1ðc2 � k2Þ � 0e 	 s�1ðc15 � k15Þ
� 0b 	 ðk4 � k8Þ � 0d 	 ðk5 � k9Þ � 09 	 ðk6 � k10Þ
� 0e 	 ðk7 � k11Þ;

ð20Þ

x12 ¼ 0e 	 s�1ðc12 � k12Þ � 0b 	 s�1ðc9 � k9Þ

� 0d 	 s�1ðc6 � k6Þ � 09 	 s�1ðc3 � k3Þ
� 0e 	 ðk8 � k12Þ � 0b 	 ðk9 � k13Þ � 0d 	 ðk10 � k14Þ
� 09 	 ðk11 � k15Þ;

ð21Þ

x13 ¼ 09 	 s�1ðc12 � k12Þ � 0e 	 s�1ðc9 � k9Þ

� 0b 	 s�1ðc6 � k6Þ � 0d 	 s�1ðc3 � k3Þ
� 09 	 ðk8 � k12Þ � 0e 	 ðk9 � k13Þ � 0b 	 ðk10 � k14Þ
� 0d 	 ðk11 � k15Þ;

ð22Þ

x14 ¼ 0d 	 s�1ðc12 � k12Þ � 09 	 s�1ðc9 � k9Þ

� 0e 	 s�1ðc6 � k6Þ � 0b 	 s�1ðc3 � k3Þ
� 0d 	 ðk8 � k12Þ � 09 	 ðk9 � k13Þ � 0e 	 ðk10 � k14Þ
� 0b 	 ðk11 � k15Þ;

ð23Þ

x15 ¼ 0b 	 s�1ðc12 � k12Þ � 0d 	 s�1ðc9 � k9Þ

� 09 	 s�1ðc6 � k6Þ � 0e 	 s�1ðc3 � k3Þ
� 0b 	 ðk8 � k12Þ � 0d 	 ðk9 � k13Þ � 09 	 ðk10 � k14Þ
� 0e 	 ðk11 � k15Þ:

ð24Þ

For ease of explanation, we refer to (9)–(12) as Set-1

equations, (13)–(16) as Set-2, (17)–(20) as Set-3 and

(21)–(24) as Set-4 equations. Consider the equations in

Set-2, Set-3 and Set-4. Because field multiplication is

distributive over field addition, it is possible to split each

of the last four terms in the RHS of those equations.

Upon rearranging terms, (14), for example, can be re-

written as

x5 � 09 	 s�1ðc4 � k4Þ � 0e 	 s�1ðc1 � k1Þ

� 0b 	 s�1ðc14 � k14Þ � 0d 	 s�1ðc11 � k11Þ

� 09 	 ððk0 � k4Þ
0
0000Þ � 0e 	 ððk1 � k5Þ

0
0000Þ

� 0b 	 ððk2 � k6Þ
0
0000Þ � 0d 	 ððk3 � k7Þ

0
0000Þ

¼ 09 	 ð0000 ðk0 � k4Þ
00
Þ � 0e 	 ð0000 ðk1 � k5Þ

00
Þ

� 0b 	 ð0000 ðk2 � k6Þ
00
Þ � 0d 	 ð0000 ðk3 � k7Þ

00
Þ:
ð25Þ

Let the RHS of (25) be equal to the byte denoted as

(u0 u1 u2 u3 u4 u5 u6 u7). Also, let a0a1a2z0; a3a4a5z1; a6
a7a8z2 and a9a10a11z3 denote the bits of the nibbles ðk0 �
k4Þ00; ðk1 � k5Þ00; ðk2 � k6Þ00 and ðk3 � k7Þ00, respectively.

Multiplication in a binary field involves shifting and

XORing of the multiplicand and, if necessary, reduction

of the result by an irreducible polynomial. Table 3 shows

the shift operation on RHS terms of (25). The high-order

nibble (u0; u1; u2; u3) of the sum of the terms on the RHS

is

u0 ¼ 0;

u1 ¼ a0 � a3 � a6 � a9;

u2 ¼ a1 � a3 � a4 � a7 � a9 � a10;

u3 ¼ a2 � a3 � a4 � a5 � a6 � a8 � a10 � a11:

Table 3. Field multiplications involved in RHS of (25).

u0 u1 u2 u3 u4 u5 u6 u7

_ a0 a1 a2 z0 _ _ _ 9 (1001)

_ _ _ _ a0 a1 a2 z0

_ a3 a4 a5 z1 _ _ _ e (1110)

_ _ a3 a4 a5 z1 _ _

_ _ _ a3 a4 a5 z1 _

_ a6 a7 a8 z2 _ _ _ b (1011)

_ _ _ a6 a7 a8 z2 _

_ _ _ _ a6 a7 a8 z2

_ a9 a10 a11 z3 _ _ _ d (1101)

_ _ a9 a10 a11 z3 _ _

_ _ _ _ a9 a10 a11 z3
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From table 3, it is evident that the bits denoted z0; z1; z2 and
z3 do not affect the high-order nibble of the resultant byte.

It follows that, of the 16 unknown bits corresponding to the

four terms on the RHS of (25), only 12 bits determine the

high-order nibble on the RHS.

The operations involved in calculating u1; u2 and u3 can

be represented using the matrix equation

u1

u2

u3

0
B@

1
CA ¼ M9ebd 	 A ð26Þ

where

M9ebd ¼
1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 1 1 0 0 1 0 1 1 0

0 0 1 1 1 1 1 0 1 0 1 1

0
@

1
A

and A ¼ ða0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11ÞT :

The subscript ‘‘9ebd’’ reflects the order of coefficients in

the RHS of (25).

Let F122 represent a 12-dimensional binary vector space.

We define 8 equivalence classes as follows:

C9ebd ðu1; u2; u3ÞT
� �

¼ A 2 F122 : M9ebd 	 A ¼
u1

u2

u3

0
B@

1
CA

8><
>:

9>=
>;
:

ð27Þ

M9ebd is in row canonical form with pivots in the first 3

columns. Hence, a0; a1; a2 are pivot variables and the

remaining nine are free variables in A. Thus, each equiva-

lence class has 29 ¼ 512 sub-keys with class representative

ðu1u2u3 000 000 000Þ. It leads to the following theorem.

Theorem 2 F122 can be partitioned into 8 equivalence

classes based on (27), each containing 512 sub-keys. The

class representatives are ð 0; 1f g3 000 000 000Þ.

This theorem implies that instead of validating all the 212

sub-keys, it is sufficient to validate only the class

representatives.

The coefficients of the ciphertext-independent terms in

the RHS of (13), (15) and (16) are shifted versions of those

in (14). Analogous to M9ebd, we define Mebd9;Mbd9e and

Md9eb. These matrices are obtained in a manner similar to

M9ebd (table 3) and are column-shifted versions of M9ebd.

Moreover, they are linearly related as follows:

Mebd9 ¼ M1 	M9ebd ð28Þ

Md9eb ¼ M2 	M9ebd ð29Þ

Mbd9e ¼ M3 	M9ebd ð30Þ

where M1 ¼
1 0 0

1 1 0

1 1 1

0
B@

1
CA; M2 ¼

1 0 0

1 1 0

0 1 1

0
B@

1
CA

and M3 ¼
1 0 0

0 1 0

1 0 1

0
B@

1
CA: ð31Þ

Let A1 2 C9ebd u1; u2; u3ð ÞT
� �

. From (27)

M9ebd 	 A1 ¼ u1; u2; u3ð ÞT :

Pre-multiplying by M1 on both sides gives

Mebd9 	 A1 ¼ M1 	 u1; u2; u3ð ÞT :

Hence, A1 2 Cebd9 M1 	 u1; u2; u3ð ÞT
� �

. This leads to the

following theorem.

Theorem 3 If A1 2 C9ebd u1; u2; u3ð ÞT
� �

, then

A1 2 Cebd9 M1 	 u1; u2; u3ð ÞT
� �

;

A1 2 Cbd9e M2 	 u1; u2; u3ð ÞT
� �

;

A1 2 Cd9eb M3 	 u1; u2; u3ð ÞT
� �

:

The following is of crucial importance in the design of

Algorithm 2.

Corollary 1 If A1;A2 belong to an equivalence class

w.r.t. M9ebd, then they also belong to a single equivalence

class w.r.t. Mebd9 or Mbd9e or Md9eb.

Thus, M9ebd;Mebd9;Mbd9e and Md9eb, each induce an

identical partitioning over F122 .

5.2 Algorithm 2: description

The guesstimate sets that are inputs to Algorithm 2 are

derived as follows. Let r be the maximum number of runs,

from the starting run of decryption d containing no more

than 8 distinct cache line numbers. Let n be the minimum

integer such that the number of distinct line numbers in

runs r þ 1; r þ 2, ..., r þ n is 8 or more. Let c be the set

containing these line numbers. Then populate

Gi;t;2;d; 0� i; t� 3, with line numbers from c in the range

from 16t to 16ðt þ 1Þ � 1. From the guesstimate sets and

ciphertext, we derived the four histograms using Algo-

rithm 2.

Algorithm 2 builds three histograms corresponding to

the three sets of equations (Set-2, Set-3 and Set-4). A

histogram contains 219 bins, each representing a possible

sub-key. A sub-key for Set-2, for example, is formed by

concatenating k004 ; k
00
1 ; k
00
14; k

00
11 to a three-bit attribute (lines

14–16 of algorithm 2). The first four nibbles are the

unknowns in the LHS of Eq. (25).
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From Theorem 2, the space of unknown key bits in the

RHS of Eq. (25) that impacts the high-order nibble of the

RHS can be reduced to just eight equivalence classes, each

represented by three bits. These three bits comprise the last

attribute of the sub-key. Further, from Corollary 1, the

equivalence classes and their representatives are identical

across the four equations of a set. Hence, the same ‘‘sub-

key’’ value participates in four Bernoulli trials per

decryption. As in the Round 1 Attack, a trial involves

computing the high-order nibble of the byte value of the

RHS and checking to see if it matches an element in the

corresponding set of guesstimates. If so, the score of that

sub-key value is incremented by 1 in the histogram. After d
decryptions, we pick the sub-key with the highest score and

declare it to be the winner.

The afore-mentioned procedure is completed for the

three histograms and (hopefully) retrieves 12 low-order

nibbles of the key. To recover the remaining nibbles, we

create a histogram to score each of the 216 values of the

sub-key made up of k000 ; k
00
13; k

00
10; k

00
7 . We use the first set of

equations (Set-1) to do so. Once again, we have 4d Ber-

noulli trials but now only 216 possible sub-key values

(against 219 in the earlier three histograms). The winner in

this histogram is presumed to yield the true values of

k000 ; k
00
13; k

00
10; k

00
7 .

Figure 3. Number of successes per 1000 samples (Round 2).

Figure 4. Distribution of the correct sub-key score (yellowish

green) and distribution of the maximum score among the incorrect

sub-keys (red).

Figure 5. Scores of top 40 sub-keys after varying number of

decryptions
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5.3 Analysis and results

As in section 4, f0 and j G j0 are, respectively, the false

negative rate and the average cardinality of the set of

guesstimates. Also pc and pin are, respectively, the proba-

bilities of the correct and incorrect sub-keys receiving a

boost. Hence

pc ¼ 1� f0 ð32Þ

and

pin ¼
j G j0
16

: ð33Þ

From Lemma 1, we obtain probabilities of successfully

recovering the sub-keys from the four histograms. Com-

bining the four probabilities, we obtain the following

theorem.

Theorem 4 The probability of successfully recovering all

16 low-order nibbles of the AES key in d decryptions is

Ph 1� f0;
j G j0
16

; 219; 4d

� �� 	3
Ph 1� f0;

j G j0
16

; 216; 4d

� �

For the Second Round Attack, we used the same 1000

samples and spy input as in the First Round Attack. Fig-

ure 3 shows the number of unqualified successes per 1000

samples for varying number of decryptions. In these cases,

the four histograms throw up unique winners, each with at

least a four-point lead over their nearest rivals. If the four

winners collectively yield the correct key, we refer to the

experiment as an unqualified success.

Theoretically, the distribution of the score of correct sub-

key and the distribution of the maximum score among 219

incorrect sub-keys’ scores are shown in figure 4 after 15

and 25 decryptions. To calculate these distributions, we

assumed f0 ¼ 0:53 and j G j0¼ 2:7 based on our experi-

ments. In our model, scores of correct and incorrect sub-

keys are binomially distributed with success probabilities

pc and pin, respectively, which can be calculated using

Eqs. (32) and (33). It is also interesting to note that while

the distribution of scores of the correct sub-key value has

no skew or excess kurtosis, the distribution of the maxi-

mum score among incorrect sub-keys’ scores exhibits

positive skew and positive excess kurtosis. Using our model

we estimated that the probability of the score of the correct

sub-key exceeding the highest score among incorrect sub-

keys is, respectively, 0.66, 0.88 and 0.97 for 15, 20 and 25

decryptions.

Figure 5 shows the scores of the 40 top-ranked sub-keys

in a histogram. The sub-keys are arranged in order of their

scores obtained after 25 decryptions. Their scores after 10,

15 and 20 decryptions are also shown. The correct sub-key

emerges as the clear winner after only about 22 decryptions

but has 6, 20 and 26 sub-keys at the same or higher score

after 20, 15 and 10 decryptions, respectively. Hence, to

guess the true sub-key value more accurately, we make the

following slight modification to Algorithm 2.

If the top scorer in a histogram does not have a lead of at

least 4 points over the rest, we identify all sub-key values

with scores greater than or equal to the minimum score of

the top eight sub-key values. We then construct a histogram

for each combination of these top scorers from the first

three histograms. Scores for the same 216 sub-key values in

each histogram are obtained as before from the Set-1

equations. The final winner for the complete AES key is

obtained by selecting the global top scorer over all his-

tograms constructed in the final step. With this modifica-

tion, the success rate for 25 decryptions, for example,

increased from 92% to 96%.

The experimentally obtained average values of f0 and

j G j0 for the 1000 samples were, respectively, 0.53 and

2.71. j G j0 in the First Round Attack was much lower at

2.15. This is because the first run of a decryption can be

unambiguously identified and contains only accesses made

in Round 1. This is not true for the first run of Round 2.

From Eqs. (32) and (33), the success probabilities pc and pin
are, respectively, 0.47 and 0.17. The means of the distri-

butions of the correct and incorrect sub-key scores (equal to

4dpc and 4dpin) are much further apart than in the First

Round Attack (equal to dpc and dpin). This might suggest

that the winner in the Second Round Attack can be iden-

tified with fewer decryptions.

The number of sub-key values in the histogram for

Round 1 is only 16 while it is 216 or 219 for Round 2. Thus,

despite smaller intersection of the tails of the two distri-

butions of Round 2, the sheer number of sub-key values

increases the probability that one of the incorrect sub-key

values has a higher score than the actual sub-key2. These

two effects seem to balance out, resulting in roughly the

same number of decryptions required for the First and

Second Round Attacks.

Figure 3 also shows the successes in the case of ideal

guesstimates. The success rate is nearly 100% with just 15

decryptions. This is attributed to the fact that j G j0 in the

ideal case is only 1.82 (average over 1000 samples).

6. Discussion

In this section, we discuss further optimizations along with

limitations of our approach and countermeasures.

6.1 Further optimizations and enhancements

With prefetching disabled, we were able to successfully

retrieve all 16 bytes of the AES key in 2–3 decryptions.

2The higher variance for the Round 2 distribution is a secondary

effect, which favours a larger number of decryptions for the Second

Round Attack.
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From the deletion table, we obtained the near-exact order in

which the line numbers were accessed, resulting in about

one line number per guesstimate set. With prefetching

enabled, our spy code skips the odd-numbered lines and we

get only a partial order of the even-numbered lines acces-

sed. However, using the temporal information provided by

the deletion table, we could use different per-element

guesstimate sets instead of using the same guesstimate set

for all elements accessing a given table. Moreover, weights

could be assigned to different elements in the guesstimate

set, resulting in fractional scores assigned to sub-keys

rather than 0/1 scores in the current histograms. We expect

that this change will speed up the convergence of our

algorithms. Finally, if Algorithm 2 throws up multiple

candidates for the final key, we could use equations for the

third round to resolve the ties.

Most of the Intel caches have a block size of 64 bytes.

However, the IBM Power PC processor has block size of

128 bytes. Our attack can be adapted to work on the latter.

The First Round Attack will obtain the first three bits of

each AES key. Obtaining the remaining five bits (Second

Round Attack) will take a lot more time since the space of

sub-keys will be much larger now.

6.2 Limitations

We assume that the core running the victim and spy does

not simultaneously host another active process running

AES decryption. Otherwise, the table accesses made by the

latter may be mistaken for accesses by the victim, possibly

leading to flawed conclusions.

As with some access-driven attacks, we assume that the

victim and spy process are on the same processor core. This

is not always possible though a determined attacker may be

able to co-locate itself with the victim. For example, in a

multiuser environment, an attacker together with her

accomplices could simply request inordinate CPU resour-

ces and obtain access to multiple cores, including the one

victim is running on.

Hardware support for AES is available via the AES-NI

instructions on many modern processors beginning with

Intel’s Westmere family. Since the hardware implementa-

tion does not use processor cache to store the look-up

tables, the attack described here will not work. Use of the

AES-NI instructions (rather than the software implemen-

tation) is the default option with the newer OpenSSL ver-

sions. However, some processors like Core 2 Duo with an

installed base that is not insignificant do not have hardware

support for AES as also the Pentium and Celeron models

within the Westmere family. The default option in more

recent versions of OpenSSL is the assembly language

implementation. This uses only a single table and may not

be vulnerable to the attacks presented in this paper. How-

ever, it can be easily overridden by setting no-asm flag

during compilation.

Most recent Linux kernel versions support control groups

(cgroups). When enabled, the CPU will be allocated equally

among the processes of different cgroups. If the victim and

spy are in different cgroups, then the victim will get

roughly the same amount of CPU time as the spy, so it will

perform many decryptions during its run, thus rendering

this attack infeasible.

6.3 Countermeasures

An extreme countermeasure is physical isolation between

a sensitive application and all others. The more practical

countermeasures are either processor-based or OS-based.

In [48], the OS makes spurious requests to obfuscate

cache usage. Most cache-based side-channel attacks are

critically dependent on the ability of the adversary to

measure the state of the cache frequently. This is

achieved by pre-emption of the victim after a few

microseconds. By modifying the OS to enforce a lower

limit of say 100 ls on the minimum run time of a CPU-

bound process [49], attacks such as these may be

thwarted.

A processor-based defense is to drop the flush instruction

from the instruction repertoire as in some versions of ARM.

However, [50] shows that it may still be possible to evict

cache lines by accesses to the same cache set. In this paper,

we have retrieved the AES key despite the presence of the

hardware prefetcher. Existing prefetchers could be

enhanced by randomized and set-balanced stride prefetch-

ers [46] to severely disrupt the cache footprint of a side-

channel attack, leading to negligible leakage of useful

information.

Removing the support of the high-resolution timer

[10, 16] or reducing its accuracy [51, 52] has been sug-

gested as a countermeasure to the cache attacks. However,

it has been demonstrated [50] that removal of the timer is

not a solution as a very high resolution can be achieved by

incrementing a global variable in an endless loop by a

counting thread. The boundaries (maximum stride) of the

prefetcher can also be extended to defend against this

attack.

7. Conclusion

We implemented cache access attacks on the Core 2 Duo

and Core i3/i5/i7 processors to recover the AES key using

a multi-threaded spy process. Hardware prefetchers on

modern machines complicate cache access attacks as the

prefetched cache lines are wrongly reported as being

accessed by the victim. Our spy code decreased the

number of false positives but greatly increased the number

of false negatives. Yet, our key retrieval algorithms

required about 25 blocks of ciphertext to retrieve the key

with prefetching enabled and only 2–3 blocks with
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prefetching disabled. We also presented analytical models,

which provide deeper insight into the effect of prefetching

and of errors (false positives and false negatives) on

performance.

Appendix I: Proof of Theorem 1

Say fq and j G jq are, respectively, the average false nega-

tive rate and the average cardinality of the set of guessti-

mates after q refinements are made in initial set of

guesstimates. Average false negative rate can also be

thought of as the probability of occurrence of a false

negative:

pc ¼ 1� fq: ðA1Þ

This equation follows from the observation that the correct

nibble in the histogram receiving a boost and the occur-

rence of a false negative are mutually exclusive and

exhaustive events. To derive pin, consider the following

reasoning. When there is a false negative, all the guessti-

mates lead to boosting some incorrect nibble in the his-

togram; hence in this case, probability of an incorrect

nibble receiving a boost is
jGjq
15
, since there are 15 incorrect

nibbles. When there is no false negative, all the guessti-

mates except one lead to boosting some incorrect nibble in

the histogram. This guesstimate boosts the correct nibble.

Hence, in this case, the probability of an incorrect nibble

receiving a boost is
jGjq�1
15

. Combining both the cases, we

obtain the following equation:

pin ¼ fq
j G jq
15

� �
þ ð1� fqÞ

j G jq �1
15

� �
: ðA2Þ

After obtaining a key nibble, we refine the set of guessti-

mates. The cardinality of the set of guesstimates decreases

by 1 with probability 1� fq. This is the probability of

absence of a false negative, i.e., there must be a guesstimate

that led to boost of correct nibble and it was removed from

set of guesstimates during refinement. Also, the average

false negative rate increases due to refinement since some

line numbers may be accessed more than once in a round

and they are removed during refinement:

j G jqþ1¼j G jq �ð1� fqÞ; 0� q� 2: ðA3Þ

Let f be the probability of the occurrence of a false negative

due to the spy input and preprocessing strategy. Let pq be

the probability of false negative occurrence due to refining

of guesstimate sets (some line numbers may be accessed

more than once in a round) after q refinements. Assuming

that these two sources of false negatives are independent of

each other, we have the following equation:

fq ¼ f þ pq � ðf 	 pqÞ; 0� q� 3 ðA4Þ

where p0 ¼ 0; p1 ¼
1

16
; p2 ¼

31

256
; p3 ¼

721

4096
:

As p0 corresponds to zero refinements, there would not

be any false negatives due to refinement, so p0 ¼ 0. After

refining once, there is a chance of false negative occurrence

since the removed line number might have been accessed

more than once. For the second nibble to be recovered, the

removed line number is a false negative if the removed line

number is accessed due to this nibble. As there are 16

possible line numbers, probability of this event is 1
16
. Hence,

p1 ¼ 1
16
.

After two refinements, the probability of a false negative

occurrence due to refinement is equal to the probability of

line number accessed being either of the first two nibbles

recovered, which is 16þ16�1
16x16

¼ 31
256

. Hence p2 ¼ 31
256

.

After three refinements, the probability of false negative

occurrence due to refinement is equal to probability of the

line number accessed being either of the first three nibbles

recovered. Let Ai be the event in which the line number

accessed corresponding to ith nibble recovered matches

corresponding to last nibble recovered. Then, p3 is

PðA1 [ A2 [ A3Þ, which is

X3
i¼1

PðAiÞ �
X3
i¼1

X3
j[ i

PðAi \ AjÞ þ PðA1 \ A2 \ A3Þ:

When matching with any one of the three, other two are free

to take any of the 16 possible values; hence out of 16� 16�
16 possibilities, 16� 16 are favourable, so PðAiÞ ¼ 256

4096
.

Whenmatchingwith any two of the three simultaneously, the

third one is free to take any of the 16 possible values. Out of

16� 16� 16 possible cases, 16 are favourable, so

PðAi \ AjÞ ¼ 16
4096

. As there is only 1 way in which all three

match, out of 16� 16� 16 possible cases,

PðA1 \ A2 \ A3Þ ¼ 1
4096

. Using these values, we can calculate

p3 ¼ 3� 256

4096
� 3� 16

4096
þ 1

4096
¼ 721

4096
:

As explained in section 4.3, probability of recovering the

first nibble among k
0
4m; 0�m� 3, is

1� ½1� Phðpc; pin; 24; dÞ�4:

Hence, probability of retrieving a nibble after q refinements

is

1� ½1� Phðfq; j G jq; 24; dÞ�4�q:

where Phðfq; j G jq; 24; dÞ ¼ Phðpc; pin; 24; dÞ:
Hence, probability of retrieving all the 4 nibbles

k
0

4m; 0�m� 3, is

Y3
q¼0

1� ½1� Phðfq; j G jq; 24; dÞ�4�q
h i

:
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It is also the same as the probability of correctly retrieving

all the four nibbles k
0
tþ4m; 0�m� 3, for a given t; 0� t� 3.

Hence, overall probability of retrieving all the 16 high-

order nibbles is

Y3
q¼0

1� ½1� Phðfq; j G jq; 24; dÞ�4�q
h i( )4

:

Appendix II: AES equations and T-table usage

Deriving equations
Input to Round 1 of decryption is

c0 � k0 c4 � k4 c8 � k8 c12 � k12

c1 � k1 c5 � k5 c9 � k9 c13 � k13

c2 � k2 c6 � k6 c10 � k10 c14 � k14

c3 � k3 c7 � k7 c11 � k11 c15 � k15

0
BBB@

1
CCCA

where C ¼ ðc0; c1; . . .; c15Þ and K ¼ ðk0; k1; . . .; k15Þ,
respectively, denote ciphertext and tenth round key (in

terms of key scheduling algorithm used for encryption; in

implementation for storage-constrained environments, this

key is stored and other round keys are generated on the fly).

After inverse byte substitution and inverse row shift oper-

ations, input transforms to

s�1ðc0 � k0Þ s�1ðc4 � k4Þ s�1ðc8 � k8Þ s�1ðc12 � k12Þ
s�1ðc13 � k13Þ s�1ðc1 � k1Þ s�1ðc5 � k5Þ s�1ðc9 � k9Þ
s�1ðc10 � k10Þ s�1ðc14 � k14Þ s�1ðc2 � k2Þ s�1ðc6 � k6Þ
s�1ðc7 � k7Þ s�1ðc11 � k11Þ s�1ðc15 � k15Þ s�1ðc3 � k3Þ

0
BBB@

1
CCCA:

For keys generated using key scheduling algorithm for

encryption, round key addition and then inverse column

mixing should be performed. To have a similar structure to

decryption as that of encryption, round key addition and

inverse column mixing steps are interchanged but this

requires that the round key is suitably transformed. Here,

first we will consider doing round key addition and then we

perform inverse column mixing.

Let W36;W37;W38 and W39 denote 4 words (1 word = 4

bytes) of 9th round key in encryption procedure. Let

W40;W41;W42 and W43 denote 4 words of 10th round key in

encryption procedure. According to key scheduling algo-

rithm for encryption, these words are related as described in

following equations:

W40 ¼W36 � f ðW39Þ;
W41 ¼W37 �W40;

W42 ¼W38 �W41;

W43 ¼W39 �W42:

These equations are used to obtain the 10th round key using

the 9th round key in encryption. In these equations, f(W) is

obtained by first doing one left cyclic rotation of bytes of

word W and then applying S-box on each of the bytes. It is

then XORed with a round-dependent constant. We can

manipulate these equations to obtain the 9th round key,

given the 10th round key:

W36 ¼W40 � f ðW39Þ;
W37 ¼W40 �W41;

W38 ¼W41 �W42;

W39 ¼W42 �W43:

The equation to obtain W36 can be re-written as

W36 ¼ W40 � f ðW42 �W43Þ;

using these equations. Combining two different notations

for the 10th round key, we have

W40 W41 W42 W43ð Þ ¼

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

0
BBB@

1
CCCA:

According to the definition of f(W)

f ðW42 �W43Þ ¼

sðk9 � k13Þ � 36

sðk10 � k14Þ
sðk11 � k15Þ
sðk8 � k12Þ

0
BBB@

1
CCCA

where 36 is the round-dependent constant. In any round-

dependent constant, last three bytes are all zeros. Hence, the

9th round key of encryption is

k0 � sðk9 � k13Þ � 36 k0 � k4 k4 � k8 k8 � k12

k1 � sðk10 � k14Þ k1 � k5 k5 � k9 k9 � k13

k2 � sðk11 � k15Þ k2 � k6 k6 � k10 k10 � k14

k3 � sðk8 � k12Þ k3 � k7 k7 � k11 k11 � k15

0
BBB@

1
CCCA:

We XOR this matrix and the result we obtain after inverse

byte substitution and inverse row shift operations. Next, we

perform inverse column mixing to obtain the output of first

round of decryption:

B�1 ¼

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

0
BBB@

1
CCCA:

Hence, the last step before obtaining output of first round of

decryption is pre-multiplication by this matrix B�1.

Appendix II.1: explaining T-tables

Each Tt; 0� t� 3, takes one byte as input and returns 4

output bytes. Output from Tt table is product of tth column
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of B�1 and inverse S-Box applied to the input of the table.

Hence

T0½a� ¼ ð0e 	 s�1ðaÞ; 09 	 s�1ðaÞ; 0d 	 s�1ðaÞ; 0b 	 s�1ðaÞÞ;
T1½a� ¼ ð0b 	 s�1ðaÞ; 0e 	 s�1ðaÞ; 09 	 s�1ðaÞ; 0d 	 s�1ðaÞÞ;
T2½a� ¼ ð0d 	 s�1ðaÞ; 0b 	 s�1ðaÞ; 0e 	 s�1ðaÞ; 09 	 s�1ðaÞÞ;
T3½a� ¼ ð09 	 s�1ðaÞ; 0d 	 s�1ðaÞ; 0b 	 s�1ðaÞ; 0e 	 s�1ðaÞÞ:

Total possible number of inputs is 28. A table stores 4 bytes

at each index position, so the size of each table size is

4� 28 ¼ 210 bytes = 1 KB.
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