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Abstract. The recent years have witnessed rapid strides in the use of cloud computing and its countless

applications. A cloud can contain massive volumes of multimedia data in the form of images, video and

audio. Cloud computing platforms confront challenges in terms of data confidentiality, message integrity, user

authentication and compression. Multimedia data needs plenty of storage capacity. Consequently, there is a

need for multimedia data compression to reduce data size. Compression techniques are quite reliable, offering

benefits to organizations dealing with metasized data in the cloud. Compressing large quanta of data leads to

superior utilization of cloud storage. Compression techniques can compress data used for storage and

transmission, yet compression alone is inadequate because multimedia data shared should, of necessity, be

secure. Therefore, both multimedia compression and security are mandatory in the cloud. The chief goal of

this paper is to propose a new framework, comprising multiscale transforms, public key cryptography and

appropriate encoding techniques, that performs joint medical image compression and image encryption in the

cloud. Multiscale transforms play a lead role in image compression, and the ones discussed in this paper

include wavelet, bandelet, curvelet, ridgelet and contourlet transforms. Wavelet transforms offer robust

localization both in terms of time and frequency domains. Bandelet transforms offer natural images geometric

regularity to help improve the efficiency of representation. Curvelet transforms handle curve discontinuities

well, with ridgelet transforms being the core idea behind curvelets. Contourlet transforms capture smooth

contours and edges at any orientation. The Rivest-Shamir-Adleman (RSA) algorithm is used to encrypt

images to provide maximum security when they are being transferred. Encoding techniques involved in this

paper comprise the Embedded Zerotree Wavelet (EZW), Set Partitioning in Hierarchical Trees (SPIHT),

Wavelet Difference Reduction (WDR), and Adaptively Scanned Wavelet Difference Reduction (ASWDR).

Performance parameters such as peak signal to noise ratio (PSNR), mean square error (MSE), image quality

index and structural similarity index (SSIM) are used for evaluation. It is justified that the proposed

framework compresses images securely in the cloud.

Keywords. Cloud computing; RSA; bandelet; wavelet; curvelet; countourlet; ridgelet; SPIHT; EZW; WDR;

ASWDR.

1. Introduction

Cloud computing [1] is, arguably, the fastest-growing

internet technology around today. A cloud in cloud

computing can be termed as a set of hardware, networks,

storage, services, and interfaces that combine to deliver

assorted aspects of computing as a service. It is unnec-

essary to install hardware or software to use the cloud:

rather, cloud applications can be used as services as and

when needed. The cloud comprises volumes of comput-

ing resources, storage and data. Cloud computing is a

type of computing used to share resources among cloud

users. Given that lots of people and companies use

services from the cloud, it is crucial to provide security

as well as fast transmission/sharing of data. Conse-

quently, cloud computing faces two key challenges:

storage and security. Compression techniques are used to

reduce the size of the data in the cloud and make for

efficient transmission. In this paper, image compression

[2] – a process to reduce storage space taken up by

images – in the cloud is discussed. Image compression

techniques can be classified into lossless and lossy

techniques. With lossless compression, the original

image is recovered in exactly the same way after

decompression. Lossy compression suffers marginal data

loss in the decompressed image.
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1.1 Medical image compression and encryption

The usual steps involved in compressing an image are

sub-band decomposition, quantization and encoding.

Subband decomposition involves the application of the

appropriate transform to the input image to obtain coef-

ficients. Quantization refers to the process of approxi-

mating a continuous set of values in the image data with

a finite (preferably small) set of values. Encoding is the

process of removing statistical redundancy in a given

source. Another challenge in cloud computing is data

confidentiality – providing data the security it requires.

Therefore, following sub-band decomposition, an

appropriate cryptography algorithm is applied. Cryptog-

raphy can be divided into two major categories, sym-

metric and asymmetric. This paper uses asymmetric key

cryptography, which means that two different keys are

used for encryption and decryption purposes. Encryption

is the process of converting plaintext into ciphertext and

decryption is its reverse.

1.2 Related work

Subband decomposition of an image is performed by a

mathematical transform. A transform is indented to de-

correlate input pixels in image compression. Certain lossy

image compression techniques are based on discrete

wavelet transform [3–5]. In paper [6], a compression

algorithm based on the wavelet transform, the key point of

the method being to reorder pixels to make way for a very

smooth 1D signal. Various image compression techniques

under wavelet domain is evaluated [7].

Curvelet transform [8] provides an optimally sparse

representation of objects displaying a curve-punctuated

smoothness. Curvelets also have microlocal features,

making them especially suited to certain reconstruction

problems with missing data. Elaiwat et al [9] presented a

robust, single modality feature-based algorithm for face

recognition by using curvelet transform features. In this

paper, using curvelet coefficients, the authors discovered

the key points in a face.

Do and Vetterli introduced the contourlet transform

[10], used in image enhancement and texture classifica-

tion. A new approach to the problem of video super

resolution was proposed based on the contourlet trans-

form, used to carry out preprocessing functions and

obtain coefficients [11]. Two pan-sharpening methods

was proposed for representing directional information

and capturing the intrinsic geometrical structures of

objects, based on the contourlet transform [12]. A new

approach was proposed for multiresolution fusion using

the contourlet transform to provide better directional

edges in an image [13].

Ridgelet transform was introduced [14] as a sparse

expansion for functions on continuous spaces that are

smooth, away from discontinuities along lines. Le Pennec

and Mallat [15] introduced the bandelet transform. It is an

excellent multiscale geometric analysis method utilizing

the known geometric information of images to improve

approximation ability. Compared with other transforms, it

has unique features such as multiscale analysis, time-fre-

quency localization, directionality and anisotropy. It also

offers certain properties like strict sampling and adapt-

ability, indispensable for image representation.

After image decomposition, a public key cryptography

methodology titled RSA is applied to the coefficients

obtained. Rivest-Shamir-Adleman proposed a public key

cryptosystem named RSA [16] using two keys, one for

encryption and the other for decryption. An RSA cryp-

tosystem was proposed with a large key size and modular

multiplier architecture [17]. A scheme referred to as a dual

RSA was proposed [18] with the advantage of reducing the

need for the keys’ storage requirements. The dual RSA

provides blind signatures and authentication and, compared

to the normal RSA, better security. Various approaches

were presented to implement RSA crypto-accelerators with

four fundamental architectures, demonstrating that RSA

can be applied in image processing and to error-correcting

codes [19].

After the coefficients are encrypted, a coding process is

applied to reduce the overall number of bits required to

represent an image. For coding, the EZW algorithm was

proposed [20] which is one of the first and most powerful

encoding algorithms built on wavelet-based image com-

pression. The core of the EZW compression is the

exploitation of self-similarity across different scales of an

image wavelet transform.

Said and Pearlman introduced [21, 22] the set partition-

ing in hierarchical trees (SPIHT) technique, an efficient yet

computationally simple image compression algorithm,

using which the highest PSNR values for given compres-

sion ratios for a variety of images can be obtained.

A drawback of the SPIHT is that it implicitly locates the

position of significant coefficients. It is difficult to perform

operations, such as region selection on compressed data,

which depend on the exact position of significant trans-

form values. Another encoding technique called the

wavelet difference reduction (WDR) was proposed by

Tian and Wells [23] and encodes the locations of signifi-

cant wavelet transform values. The WDR can produce

perceptually superior images, especially at high com-

pression ratios.

James Walker [24, 25] introduced the adaptively scanned

wavelet difference reduction (ASWDR) algorithm, used to

modify the scanning order used by the WDR to enhance

performance. The ASWDR adapts the scanning order to

predict the locations of new, significant values. If a pre-

diction is right, the output specifying that location will only

be a sign of the new significant value, and the reduced

binary expansion of the number of steps will be empty. A

secure encrypted compression method was proposed that

achieves a good compression ratio [26].
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1.3 Motivation and justification of the proposed

approach

A novel feature-based photo album compression

scheme was proposed [27] for cloud storage using local

features instead of pixel values to discover relationships

between images. This method adapts content-based feature

matching. A new compression scheme was proposed [28]

which does not compress images pixel by pixel but

describes them instead and retrieves them from the data-

base through descriptors. The wavelet transform is used to

compress images in cloud computing. This paper uses the

wavelet transform and different multiscale transforms to

analyze their performance in compressing images in the

cloud. A hierarchical scheduling optimization scheme in

the hybrid cloud was proposed [29] which takes advantage

of cloud users’ interaction.

Performance of wavelets and bandelets were analyzed

[30] by comparing them with conventional coding methods.

In [31], features obtained from the contourlet transform are

compared with those from the wavelet transform for image

texture classification, showing that the accuracy of the

contourlet transform in image acquisition conditions is

better than that of the wavelet transform. A new method for

image denoising was proposed [32] by combining wavelet

and curvelet transforms.

Offering users data security is the biggest challenge in

cloud computing. Cloud computing adoption framework

(CCAF) was devised [33] for securing cloud data. The

CCAF framework blocks Trojans and Sundry viruses.

Issues and challenges confronting cloud computing security

were presented [34, 35] alongside ideas on the development

of cloud security methods. Security issues in cloud com-

puting platforms were presented [36] taking into consider-

ation five parameters including confidentiality, integrity,

availability, accountability, and privacy-preservability. A

survey of all attribute-based encryption (ABE) schemes

was performed [37] and created a comparison table of the

key criteria for these schemes in CLOUD applications. A

scheme titled ciphertext-policy attribute-based ENCRYP-

TION (CP-ABE) was proposed [38] for encryption that can

rise to the challenge of secure data sharing in CLOUD

COMPUTING WITH an efficient file hierarchy attribute-

based encryption scheme.

Compression along with security becomes a great deal

for the researchers. A review of compression in information

security is presented [39] in the aspects of theoretical and

application oriented. Simultaneous compression and

encryption in an image is one of the most widespread

applications. Medical image compression should not affect

the quality of the image. A predictive image coding method

is proposed [40] which protect the quality of the medical

image even after performing the compression by preserving

the diagnostically important region of the given medical

image. Self encryption methods [41] were also proposed in

image processing applications.

From the above literature survey, it is plain that com-

pression and security are the greatest challenges in cloud

computing. Hence the motivation in this paper is to present

a new holistic methodology for both compression and

security in the cloud. The proposed methodology provides

excellent security and image compression results.

1.4 Outline of the proposed work

The proposed work has adopted the following method.

Medical images are taken, the selected transform applied to

it and the coefficients obtained. Later, the image com-

pression encoding technique is applied to get the com-

pressed bits. The reverse is done to revert to the input

image. The outline of the approach is shown in figure 1.

1.5 Organization of the paper

The rest of the paper is organized as follows. Multiscale

transforms are discussed in section 2, and the RSA algo-

rithm in section 3. Image compression encoding techniques

are discussed in section 4, and the experimental results are

given in section 5. Performance evaluation is presented in

section 6, and conclusions are provided in section 7.

2. Multiscale transforms

2.1 Discrete Wavelet Decomposition (DWT)

The DWT is computed by successive low-pass and high-

pass filters, applied to each row of an image one by one so

that low-frequency components and high-pass components

are computed. The low-pass filter is related to the scaling

function that produces coarse approximations. High-pass

components are placed beside low-pass ones. The high-pass

filter produces detailed information on an image, a proce-

dure done for all rows to obtain wavelet coefficients. In one

level DWT, the resultant image is decomposed into four

subbands: LL, HL, LH and HH. Here, L = Low and H =

High. The LL subband has significant information and all

the others less so. Wavelet transforms have numerous

applications in image denoising, fingerprint verification,

speech recognition and medicine.

2.2 Curvelet and ridgelet transforms

The ridgelet transform is a two-step process, involving the

calculation of the discrete Radon transform and an appli-

cation of a wavelet transform. The primary application of

the ridgelet transform is to represent objects with line sin-

gularities, and is used in other applications where images

contain edges and straight lines. The curvelet transform, on

the other hand, is most suitable for objects with curves.
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Multiple wavelet coefficients are required to account for

edges in the ridgelet transform but the minimal number is

needed to account for them in the curvelet transform. For

the curvelet transform, the image is initially partitioned into

sub-images and the ridgelet transform applied to them. The

curvelet transform has applications in image denoising,

image enhancement and compressed sensing.

Steps in the curvelet transform include subband decom-

position, smooth partitioning, renormalization and ridgelet

analysis. Subband decomposition involves the given input

image being filtered into subbands, a step used to divide the

image into several resolution layers, each containing details

of different frequencies. Smooth partitioning is a collection

of smooth windows, localized around dyadic squares. With

renormalization, each square in the previous step is renor-

malized to unit scale. Finally, each square is analyzed with

the ridgelet system.

2.3 Contourlet transform

The contourlet transform comprises two major stages: sub-

band decomposition and directional transform. The Laplacian

pyramid (LP) was used for subband decomposition and

directional filter banks (DFB) for directional transform. In the

Laplacian pyramid, the spectrum of the input image is divided

into lowpass and highpass subbands. The lowpass subband is

downsampled by two, both horizontally and vertically, and

passed onto the next stage. The highpass subband is further

separated into several directions by directional filter banks.

The contourlet transform has applications in image enhance-

ment, radar despeckling and texture classification.

2.4 Bandelet transform

First-generation bandelet transform was introduced [42]

based on a 2-D separable wavelet transform. The given

image is initially segmented into macroblocks like a

quadtree structure, and the geometric flow of each mac-

roblock determined. Wavelet functions are warped to adapt

to the flow line of each macroblock and bandeletization

performed to resolve problems with the vanish moment of

the scaling function. Finally, a separable 2D wavelet

transform is performed.

Second generation bandelet transforms – used in such

areas as image fusion, image denoising and image seg-

mentation – involve the initial performance of the multi-

scale transform with 2-D orthogonal or biorthogonal

wavelets. The best quadtree decomposition is constructed

for each highpass subband through the quadtree division

method and the bottom-up CART (classification and

regression trees) algorithm. The best geometric flow

direction is found for all the quadtree division blocks

obtained according to the Lagrangian penalty function

method. Finally, a 1-D wavelet transform is applied to the

1-D discrete signal, acquired by an orthogonal projection

and a reordering of the wavelet coefficient, according to the

best geometric flow direction of each quadtree division

block, thereby obtaining the coefficients of the bandelet

transform.

3. RSA

The coefficients obtained from multiscale transforms are

encrypted using the RSA algorithm. The following steps in

the RSA are used for key generation, encryption and

decryption.

1. Select two large prime numbers, referred to as p and q.

2. Compute N = p * q, where ø(N) = (p - 1)(q - 1).

3. Choose an odd integer e that is relatively prime to

ø(N) and not 1, where 1\ e\ ø(N), gcd(e, ø(N)) = 1.

4. Now calculate d to be the multiplicative inverse of ‘e’

modulo ‘ø(N)’ where e.d = 1 mod ø(N) and 0 B d B N.

5. The ordered pair (e, n) is the RSA public key used for

encryption and the ordered pair (d, n) is the RSA private

key used for decryption.

6. Encryption is done as C = Me mod N where 0 B M\
N. C is the encrypted message and M is the original

message.

7. Decryption is done as M = Cd mod N where

0 B M\N.

4. Encoding techniques

4.1 EZW

In the EZW, the bitstream is embedded and coefficients

ordered, based on significance and precision, so it can be

truncated according to the bit-rate need. It efficiently makes

use of the similarity between subbands of similar

Input Medical Image 

Multiscale Transforms (Wavelet, Bandelet, Curvelet, 
Contourlet and Ridgelet) 

RSA

Encoding Techniques (EZW, SPIHT, ASWDR and 
WDR) 

Compressed Bits

Figure 1. Outline of the proposed approach.
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orientation and attains significant data reduction. However,

the EZW has certain drawbacks in that a single embedded

file is unable to deliver the best performance at all target bit

rates. The EZW uses a zerotree structure and a scanning

order to scan the image. The EZW process consists of three

stages: significance map, dominant stage and subordinate

stage. The significance map involves the choosing of an

initial threshold t0 using the following condition (1),

t0 ¼ 2log2 max � x;yð Þj jð Þð Þ ð1Þ

where Max represents the maximum coefficient value in the

image and � x; yð Þ represents the wavelet coefficient.

There are two passes used to code an image. The first

pass, called the dominant pass, is where the image is

scanned and a symbol outputted for every coefficient. If the

coefficient is larger than the threshold a P (positive) is

coded, else an N (negative) is coded. If the coefficient is the

root of a zerotree, a T (zerotree) is coded and, finally, if the

coefficient is smaller than the threshold but not the root of a

zerotree, a Z (isolated zero) is coded. The second pass is the

subordinate pass that determines the magnitude of the

coefficients already found to be significant. If the magni-

tude of the coefficient is in the upper half of an old cell, 1 is

provided, else 0. An example of EZW implementation is

shown in figure 2.

4.2 SPIHT

SPIHT is the most efficient of all algorithms where wave-

let-based image compression is concerned. It is optimized

for progressive image transmission and produces a fully

embedded coded file. It uses a pyramid structure known as

the spatial orientation tree [21, 22], where a wavelet

transform is applied to an image. In the spatial orientation

tree, four facets are defined before processing the algo-

rithm. They are O(i,j), D(i,j), H(i,j) and L(i,j).

O(i,j) refers to the set of coordinates of all offsprings of

node (i,j), that is, only children. D(i,j) refers to the set of

coordinates of all descendants of node (i,j), that is, children,

grandchildren, etc. H(i,j) refers to the set of all tree roots,

that is, parents. L(i,j) is obtained from D(i,j) – O(i,j), which

means all descendents except the offspring.

The SPIHT algorithm maintains three lists: list of

insignificant pixels (LIP), list of significant pixels (LSP),

and list of insignificant sets (LIS). The algorithm has three

phases: initialization, sorting pass and refinement pass. In

initialization, all the coefficients are present in the LIP and

n is calculated using the following formula, shown in (2).

LSP remains empty and LIS contains the Ds of roots

referred to as type A entries.

n ¼ log2 maxjcoeffjð Þ½ � ð2Þ

In the sorting pass, for each entry in the LIP, the SPIHT

performs significance testing by using the following for-

mula (3).

Sn sð Þ ¼
1 max

i;jð Þ2s
Ci;j

�
�

�
�� 2n

0 Otherwise

(

ð3Þ

If the result of the significance test (based on (3)) is 1, it

indicates that a particular test is significant, so the coeffi-

cient is moved to LSP and coded. Otherwise it is 0, indi-

cating that the particular coefficient is insignificant.

Insignificant sets are moved to LIS. The SPIHT sorting pass

is shown in figure 3. In the refinement pass, the n-th most

significant bit is output based on each entry (i,j) available in

the LSP (except those added in the last sorting pass with the

same n). Finally, n is decremented by 1 and the steps

repeated until n = 0. An example of the SPIHT algorithm is

shown in figure 4.

4.3 WDR

The WDR conducts a significance pass and a refinement

pass for each bit plane. A wavelet transform is first applied

to the image, and the bit-plane-based WDR encoding

algorithm for the wavelet coefficients is carried out there-

after. In the significance pass, an initial threshold value T is

chosen so that all transform values are put into a significant

test. A wavelet coefficient is termed significant when the

value is greater than or equal to the threshold value. It is

otherwise termed insignificant.

The distinguishing feature of the WDR is its difference

reduction method. For example, if the significant values

found in the significant pass are 3, 5, 9, 24, 45, the WDR

works with the successive differences (that is, 3, 2, 4, 15,

21) instead of working with these values. In this list, the

first number is termed the starting index and each succes-

sive number that follows is the number of steps needed to

reach the next index.

64 -35 49 10 7 13 -12 7 
-31 24 14 -13 3 4 6 -1 
15 14 4 -12 5 -7 3 9 
-10 -8 -14 9 4 -2 3 2 
-5 9 -1 47 4 6 -2 2 
3 0 -3 2 3 -2 0 4 
2 -3 6 -4 3 6 3 6 
5 11 5 5 0 3 -4 3 

Dominant Pass 1 PNZTPTTTTZTTTTTTTPTT 
Subordinate Pass 1 1010 

Figure 2. An example of the EZW.
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The binary expansions of the successive differences

above are (11)2, (10)2, (100)2, (1111)2, and (10101)2. The

most significant bit (1) is the same for all the binary

expansions above. Consequently, it will be dropped and the

signs of the significant transform values used instead, ter-

med as ? 1 ? 0 - 00 ? 111 _0101, following which the

symbols are encoded.

The second pass is the refinement pass that determines

the magnitude of the coefficients already found to be sig-

nificant. For instance, if an old significant transform value’s

magnitude lies in the interval [34, 50] and the present

threshold is 8, then the magnitudes lies in either (34, 42) or

(42, 50). If the magnitude of the coefficient is in the upper

half of the old cell, then 1 is provided or else 0 is.

4.4 ASWDR

The ASWDR algorithm is a simple modification of the WDR

algorithm. Initially, awavelet transform is applied to an image.

Secondly, the transformed values are scanned through linear

ordering by choosing a scanning order. The scanning order is a

zig-zag through subbands from lower to higher. Thereafter, an

initial threshold T is chosen such that at least one transform

value has a magnitude greater than or equal to T and all

transform values have magnitudes less than 2T.

The algorithm has two passes, the first being the signifi-

cance pass. In this pass, a transformed value greater than or

equal to the present threshold is referred to as significant and

encoded, based on the difference reduction method. The

second pass is the refinement pass in which refinement bits are

recorded for significant transform values determined using

larger threshold values. This generation of refinement bits is

the standard bit-plane encoding used in embedded codecs.

After the refinement pass, a new scanning order is chosen.

5. Experimental set-up

Input images such as CT Skull, MRI and Mammogram

(shown in figure 5) are taken for the experiment and mul-

tiscale transforms applied to them to obtain coefficients.

Figure 3. SPIHT sorting pass.

Figure 4. An example of SPIHT implementation: After first

sorting and refinement pass.
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The number of the decomposition level is four. The bi-

orthogonal wavelet transform and filters like the pyramidal

directional filter bank and the atrou-quad filter are used in

the experiment to obtain the coefficients. After applying

multiscale transforms, the RSA encryption algorithm is

used to encrypt the coefficients, thereafter given to the

appropriate encoding technique.

6. Performance evaluation

6.1 Performance metrics

In this paper, the results of multiscale transforms with

encoding techniques are compared using parameters such

as peak signal to noise ratio (PSNR), mean square error

(MSE), image quality index and structural similarity index

(SSIM). The PSNR formula is shown below:

PSNR ¼ 10log10
2552

MSE

� �

ð4Þ

The MSE represents the cumulative squared error

between the compressed and the original image. The mean

square error is calculated using the following formula

MSE ¼

PN�1

i¼0

PN�1

j¼0

ðx̂i;j � xi;jÞ2

PN�1

i¼0

PN�1

j¼0

ðxi;jÞ2
ð5Þ

where xi,j is the original image and x̂i,j the decompressed

image.

The SSIM index can be viewed as a quality measure of

one of the images being compared, provided the other

image is regarded as being of perfect quality. It is calcu-

lated using the following formula:

SSIM x; yð Þ ¼
2lxly þ c1
� �

2rxy þ c2
� �

l2x þ l2y þ c1

� �

r2x þ r2y þ c1

� � ð6Þ

lx the average of x, ly the average of y, c1 and c2 are

constants, rxy the covariance of x and y, r2
x the variance of

x, r2
y the variance of y

If the row number and column number of the image are

N and M, then the overall normalized quality index is:

Q ¼ 1

N �M
XN

i¼1

XM

j¼1
Qij ð7Þ

6.2 Performance analysis and discussion

The performance of different multiscale transforms and

encoding techniques in cloud-based medical image com-

pression is analyzed. The PSNR, MSE, SSIM, image

quality index, Time and Space values are shown in table 1,

it is found that the ASWDR and SPIHT with the bandelet

transform attain high PSNR values and low MSE values

when compared to other combinations. Bandelet and cur-

velet transforms perform well with all encoding techniques,

producing high PSNR values. The bandelet transform gives

images geometrical regularity and is used to analyse their

edges and textures. The wavelet transform does offer geo-

metrical regularity but its advantage lies chiefly in image

fidelity.

Next to the bandelet transform, the curvelet transform

performs competently, approximating edge discontinuity

well. Likewise, the contourlet transform also performs

reasonably well, with better features - such as edges, lines

and contours - than the wavelet transform. Table 1

demonstrates that the image quality index and SSIM values

are good for the SPIHT and ASWDR encoding techniques

and the bandelet transform, the latter producing values like

0.99. Similarly, the curvelet transform also provides good

values.

Combining encryption with image compression supports

compression consummately. Encryption does not affect

the time complexity of the overall process. It is found

from the experiments that the RSA supports image com-

pression most effectively (see table 1). The time and

memory space taken for the proposed approach is less. So

it is justified that the proposed joint compression and

encryption operation does not make any delay in the

overall process.

Figure 5. Input medical images.
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7. Conclusion

In this paper, a new framework is proposed for medical

image compression and encryption in the cloud. This work

successfully identifies the performance of multiscale

transforms, encoding techniques and the supporting

encryption algorithm with compression. It is observed that

the bandelet transform produces favorable results with all

encoding techniques, clearly improving the results of image

compression and encryption when compared to other

transforms. The bandelet transform is based on the geo-

metric flow of the image and the warped wavelet. The

advantage of the bandelet transform is that it can obtain the

warped basis adaptive to the image’s edge direction. Fur-

ther, it is established that the SPIHT and ASWDR encoding

techniques produce high PSNR and low MSE values with

all multiscale transforms. It is, therefore, concluded that the

bandelet transform provides excellent results in joint

medical image compression and encryption.
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