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Abstract. A data warehouse (DW) is designed primarily to meet the informational needs of an organization’s

decision support system. Most queries posed on such systems are analytical in nature. These queries are long and

complex, and are posed in an exploratory and ad-hoc manner. The response time of these queries is high when

processed directly against a continuously growing DW. In order to reduce this time, materialized views are used

as an alternative. It is infeasible to materialize all views due to storage space constraints. Further, optimal view

selection is an NP-Complete problem. Alternately, a subset of views, from amongst all possible views, needs to

be selected that improves the response time for analytical queries. In this paper, a quantum-inspired evolutionary

view selection algorithm (QIEVSA) that selects Top-K views from a multidimensional lattice has been proposed.

Experimental comparison of QIEVSA with other evolutionary view selection algorithms shows that QIEVSA is

able to select Top-K views that are comparatively better in reducing the response times for analytical queries.

This in turn aids in efficient decision making.

Keywords. Data warehouse; on-line analytical processing; materialized view selection; quantum-inspired

evolutionary algorithm.

1. Introduction

Ever since the invention of computers, and especially since

their ever-increasing acceptance with businesses, almost all

organizations have nowadays computerized their business

operations. Business data are collected and stored using

computers. Managing increasing volumes of digital data

was a tricky proposition from the very beginning. On-Line

Transaction Processing (OLTP) systems were developed to

collect transaction data [1]. These systems were designed

with complex structures in order to minimize data redun-

dancies on account of very fast write operations. The

informational value of this stored transactional data was

recognized from the very beginning considering that many

applications, based on them, for report generation, trend

analysis, etc., were developed for decision support. OLTPs

were not designed for fast retrieval operations of huge

volumes of data for their analysis; hence it performed very

limited analysis and that to inefficiently [1, 2]. With the

advent of computer networks having multiple communi-

cation protocols, computers with varied hardware configu-

rations, distinct operating systems and disparate database

management systems, the stand-alone transactional data

sources of an organization became incompatible and

obsolete. As a result, the credibility of an organization’s

data asset for analysis diminished and data analysis using

incompatible data sources became an exorbitantly costly

process, causing information bottlenecks in the organiza-

tion [3]. A data warehouse (DW) was designed as an

alternative to address this crisis with the aim of meeting the

informational needs of the organization’s decision support

system (DSS) [4]. DW is a centralized repository of historic,

integrated, subjected-oriented, time-variant and non-vola-

tile data, created and maintained for supporting complex

data analysis, for acquiring information to support strategic

and tactical decision making [1–3]. In the DW, data from

various disparate, remote, heterogeneous and incompatible

transactional data sources are extracted, transformed, con-

solidated and integrated to obtain correct, unambiguous,

consistent and complete data. In transactional data sources,

data are organized and stored around specific operational

applications; however, in a DW, data are organized and

stored not by their applications, but by business subjects

crucial for the organization [2, 3, 5]. Generally, operational

systems store the current value of data by overwriting its

previous value; they do not maintain a record of all its

preceding values. As a result, historical analysis cannot be

performed using such operational data. In contrast, a DW,

in addition to the current value of data, stores all values

ever assigned to the data since its creation. The data that

enter a DW are never deleted, but stored permanently

throughout the life of the organization. Such time-variant
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and non-volatile data facilitates historical and predictive

analysis. A DW stores atomic data, as well as summarized

data, to support detailed and fast analytical queries.

The sequence of interactive and multi-perspective data

analysis performed on the DW using some data analytical

tool is called On-Line Analytical Processing (OLAP), as

this is the primary goal of building a DW [2, 6–8]. OLAP

queries access very large volumes of historical and aggre-

gate data at different levels of granularity using roll-up and

drill down OLAP operators along certain combinations of

dimensions (sets of attributes). They use slice and dice

OLAP operators to select and project a desired portion of

data. A pivot operator is used by them to reorient the data to

another view. These complex OLAP operations are made

possible by the multidimensional data model [6–8]. It

provides a multidimensional view of the data comprising

measures and dimensions [9]. A measure is the numerical

quantification of an event of interest and a dimension is a

set of attributes forming the context of a measure [9].

Product, Customer and Time can be dimensions for a sales

measure as shown in figure 1. The multidimensional data

model is implemented using star schema in relational

database management systems. It is implemented using

multidimensional arrays in a multidimensional database

[9]. The star schema with Sales as a fact table and Cus-

tomer, Product and Time as the dimensional tables is shown

in figure 2.

One of the major challenges during an OLAP session is

the speed with which the DW and OLAP components of a

DSS are able to respond to OLAP queries posed by analysts.

Although the available OLAP operators have been suc-

cessfully assisting such queries, if DSS takes hours or days

to answer these, the analysis would be very limited and less

productive as response delays would break the chain of ad-

hoc analytical thoughts of an analyst and the information

obtained at the end of such a long OLAP sessions would

mostly be obsolete and irrelevant. Not only the depth and

width of the information are essential but also the speed at

which such information is delivered is all the more

important to stay competitive in a dynamic market envi-

ronment having many other competitors [3]. OLAP queries

are usually long, complex, exploratory and ad hoc in nature.

These queries when posed against a voluminous DW con-

sume lot of time for their processing, thereby increasing the

query response time. This problem worsens due to the

continuously growing data in a DW, as these queries may

take hours and days to process, where the desired require-

ment is of only a few seconds and minutes. Although

several query optimization techniques and indexing strate-

gies [10–14] exist, they do not scale up with the ever

increasing voluminous data in the DW. Scalability can be

addressed by pre-computing relevant and frequently

accessed data in the DW and storing it separately as

materialized views [15] in the DW. This pre-computed

information, which is significantly small when compared

with the voluminous DW, can be used to process OLAP

queries in an efficient manner.

Materialized views, unlike virtual views, store data along

with their query definition. Their primary purpose is to

reduce the response time of OLAP queries. Amongst the

issues associated with materialized views like view main-

tenance, view synchronization, view adaptation, answering

queries using views and view selection [12], view selection

is the focus of this paper and is discussed next.

1.1 View selection

View selection is concerned with the selection of an

appropriate subset of views from amongst all possible

views for a given query workload that can improve the

query performance, while conforming to the resource

constraints in terms of storage space, maintenance cost, etc.

[16–20]. It has been studied in the context of query opti-

mization, warehouse design, distributed databases, seman-

tic web databases, etc. [17, 21–23]. According to [20], view

selection is concerned with the selection of views, for a

given query workload, from a database that is capable of

being stored within the available storage space. Since the

number of views is exponential with respect to the number

of dimensions, all possible views cannot be materialized

due to storage space constraint. Thus, there is a need to

select a subset of views that conform to the storage space

constraints from amongst all possible views. Further,Figure 1. Data cube.

Customer 
CID
Name
Address

Sales
PID
CID 
TID 
Qty

Product
PID
Category
Cost

Time
TID
Day
Month
Year

Figure 2. Star schema.
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optimal selection of subse t of views is a NP-Complete

problem [13]. The objective then is to select a subset of

good quality views, if not optimal, for materialization. This

subset cannot be arbitrarily selected, as it may result in

selecting views that are irrelevant and not capable of

answering the OLAP queries. Several approaches exist that

have been attempted to select this subset of views, which

are broadly classified as empirically based or heuristically

based [24]. The empirically based view selection approach

[24–33] considers data accessed by past queries as indica-

tors of data that are likely to be accessed by future queries.

These approaches monitor and assess these queries on

parameters like the query frequency, data accessed, etc.,

and use this information to select subsets of views from

materialization. On the other hand, heuristically based view

selection approaches use heuristics, to prune the search

space of all possible views to select views that can reduce

the response time of OLAP queries. Most of these are based

on greedy heuristics [12, 13, 34–50]. Among these, most of

them focus on the issues and problems associated with the

greedy view selection algorithm given in [13], also referred

to as HRUA [36, 37, 43–49]. This paper also proposes a

view selection algorithm that attempts to address the issues

and problems associated with the greedy view selection

algorithm HRUA given in [13].

HRUA, in each iteration, computes the benefit of each

view of a multidimensional lattice, using its size, and

selects amongst them the one having maximum benefit. For

selecting Top-K views, this process continues for K number

of iterations. HRUA aims to select the Top-K views that

minimize the total cost of evaluating all the views. How-

ever, HRUA has certain limitations. Since the number of

views is exponential with respect to the number of

dimensions, increase in the number of dimensions leads to a

deterioration in the quality of views selected using HRUA

with respect to TVEC. This is because the possible number

of views from which to select Top-K views increases with

increase in the number of dimensions. Thus HRUA, being a

greedy algorithm, selects a sub-optimal quality of views.

Another limitation with HRUA is that it is not scalable for

higher dimensions, i.e., it becomes computationally infea-

sible to select views for higher dimensional data sets. These

limitations need to be addressed in order to select good

quality views for higher dimensional data sets. One way to

address this problem is by selecting views using evolu-

tionary algorithms. Darwin’s theory of evolution by means

of natural selection has been the heuristic used in evolu-

tionary algorithms [51]. According to it, genetically and

behaviourally well adapted progenies survive and replace

their parents to reproduce in order to prolong the existence

of their species. Many aspects of natural evolution have

been viewed as computational processes and have been

adapted with stochastic elements to solve complex com-

putational problems [51]. These algorithms have been used

for view selection. Evolutionary view selection is discussed

next.

1.2 Evolutionary view selection

Evolutionary view selection would select views by

exploring and exploiting the search space of all possible

views using evolutionary operators like selection, crossover

and mutation with an aim to select good sets of views for

materialization. Several evolution-based view selection

algorithms exist [52–63]. Reference [62] used a genetic

algorithm (GA) to select an optimal set of views, for a given

set of multiple query processing plans, to minimize its

processing cost. The proposed GA performed better than

heuristics of [62] and [18]; it was also observed that the

hybrid of GA and heuristics of [62] and [18] performed

better than the GA and heuristics of [62] and [18]. Refer-

ence [52] used the Genetic Local Search (GLS) algorithm

using AND–OR view graph to address the view selection

problem. The GLS searches in two steps; in the first step it

uses a local search to improve the population of chromo-

somes, whereupon the GA is employed to diversify the

search to look out for an unexplored solution space. It was

applied to a real database to determine its efficiency. GA, in

conjunction with OR view graph, was used for the main-

tenance-cost view selection problem [54]. The results

obtained were consistently within 10 percent of the optimal

solution; further, it exhibited a linear execution time. Ref-

erence [61] proposed a two-level structure for materialized

view selection and used evolutionary algorithms with

Multiple View Processing Plan (MVPP) framework to

select views. It was observed that evolutionary algorithms

had impractically long computation time and the quality of

solutions was no better than those of the hybrid of evolu-

tionary algorithms and heuristics of [61] and [18]. Refer-

ence [60] proposed a stochastic ranking evolutionary

algorithm (SEA) for the maintenance cost view selection

problem. In finding optimal solutions, it was observed that

SEA was able to obtain near-optimal results that were very

close to those obtained by A*-heuristic; it was also noticed

that SEA performed much better than the algorithm pro-

posed by [54]. A* and SEA performed better than the

algorithm proposed by [54] and the inverted-tree greedy for

smaller instances of the problem. As A* and inverted-tree

greedy were not able to handle lattices with 256 nodes,

SEA and the algorithm of [54] were compared for higher

dimension data sets; it was observed that the solutions

obtained by SEA were much better than those obtained

through the algorithm of [54], though it took longer time

than the algorithm of [54]. Reference [55] proposed a

genetic greedy method to select a set of materialized cubes

from the data cube; it included a greedy repair procedure to

handle infeasible solutions generated by simple GA. Its

performance was compared to that of the greedy algorithm

of [13] and was observed to be better than the latter. Niched

Pareto Genetic Algorithm (NPGA) and Multi-Objective

Genetic Algorithm (MOGA) have been applied to the

maintenance cost view selection problem in [53] and the

solutions are compared to those produced by HRUA. Their
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performance was studied using real and synthetic data sets.

It was observed that the performances of NPGA and MOGA

were better than that of HRUA for all problems, but their

performance gap decreased for larger instances of the

problem. The performances of NPGA and MOGA were

almost similar for most of the problems, but MOGA per-

formed better than NPGA for skewed problems. Reference

[56] proposed M-OLAP Genetic and M-OLAP co-Genetic

algorithm to select distributed OLAP cubes for material-

ization. They were shown to perform better than the greedy

algorithm. Reference [57] applied GA to the view selection

problem with dual constraints, i.e., space and maintenance

cost constraints. The benefit of the solutions obtained by

GA was at least 64 percent of the benefit obtained of the

optimal solution. The results of GA were compared with

those of exhaustive search and it was observed that the

results of GA were better than the latter. Reference [58]

used the evolutionary algorithm to address the weighted

materialized view selection problem, which included both

the volume and importance of the retrieved data. Simula-

tion results showed that it performed substantially better

than the brute force method and the heuristic approach in

terms of the quality of the solutions and execution time. In

[64], a GA-based view selection algorithm GVSA was

proposed, which was used to select Top-K views from a

multidimensional lattice. GVSA was shown to perform

better than HRUA. Further, in [65], memetic-based view

selection algorithm MVSA was proposed, which incorpo-

rated iterative improvement into the evolutionary nature of

the algorithm. MVSA produced better quality Top-K views

when compared with those produced using GVSA [66].

Later, in [66], algorithm DEVSA that selects Top-K views

from a multidimensional lattice using differential evolution

was proposed. DEVSA, in comparison with GVSA and

MVSA, was able to select comparatively better quality

views.

The effectiveness of evolutionary algorithms depends

upon their ability to achieve an appropriate balance

between exploration and exploitation of the search space,

while arriving at solutions to a given problem. Though the

traditional evolutionary algorithms are characterized by

individual representation, fitness function, selection,

crossover and mutation, they are not able to achieve better

population diversity and thus are unable to explore and

exploit the search space adequately [67]. A quantum-in-

spired evolutionary algorithm (QIEA) has been used as an

alternative to achieve such population diversity using the

principles of quantum computing such as quantum bit and

superposition of states [67, 68]. In QIEA, an individual is

probabilistically represented using a string of Q-bits, where

each Q-bit is the smallest unit of information. Since the Q-

bit individual can represent binary solutions probabilisti-

cally, it can ensure better population diversity, which in

turn would enable better exploration and exploitation of the

search space [67]. Further, the Q-gate operation in QIEA

maintains an appropriate balance between the exploration

and the exploitation of the search space and thereby drives

the individuals towards better solutions [68, 69]. QIEA has

been shown to perform better than the traditional evolu-

tionary algorithms [67, 70–74]. In this paper, an attempt has

been made to use QIEA to address the view selection

problem in the context of a multidimensional lattice

framework. Accordingly, a quantum-inspired-evolution-

based view selection algorithm (QIEVSA) that selects the

Top-K views from a multidimensional lattice has been

proposed. Further, QIEVSA is compared to the existing

view selection algorithms GVSA, MVSA and DEVSA. Such

comparisons show that QIEVSA performs comparatively

better than GVSA, MVSA and DEVSA.

1.3 Organization of the paper

This paper is organized as follows: view selection using

QIEA is discussed in section 2 followed by an illustrative

example in section 3. Experimental results are given in

section 4. Section 5 presents the conclusion.

2. View selection using QIEA

Since the proposed view selection algorithm focuses on

HRUA, it considers a multidimensional lattice for view

selection. In a multidimensional lattice framework, the root

node represents the fact table while the intermediate nodes

represent all other possible combinations of the dimension

tables (views). Multidimensional lattice is discussed next.

2.1 Multidimensional lattice

An OLAP cube, shown in figure 1, can be represented as a

multidimensional lattice shown in figure 3. This lattice of

figure 3 comprises three dimensions, viz., Customer (C),

Product (P) and Time (T), and therefore the total number of

possible views is 8 (23). The possible views are represented

by nodes of the lattice with the view index in parenthesis

and the view size alongside. The dependences between the

CPT (0)

CP(1) PT(2)CT(3)

T(6)P(5)C(4)

NONE(7)

40

26 28 24

14

1

10 12

Figure 3. Three-dimensional lattice of views along with the size

of each view.
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views are represented using edges and each view is either

directly or indirectly dependent on the root view, which

represents the base fact table CPT. View NONE has no

dependent view. View CP is directly dependent on view

CPT, whereas view C is indirectly dependent on view CPT.

Next, the QIEA that has been discretized and adapted for

view selection is discussed.

2.2 QIEA

Quantum computation is based on the physical principles of

quantum mechanics, like Q-bits, superposition, Q-gates and

quantum measurement, for solving problems in the context

of classical computing paradigms [68]. In quantum com-

puter systems, a single bit of information, i.e., a quantum

bit (Q-bit), may be in the ‘‘0’’ state or in the ‘‘1’’ state or in

any superposition of the ‘‘0’’ state and ‘‘1’’ state [67]. Its

state can be given as [67]

W[ ¼ aj j0[ þ bj1[

where |0[ and |1[ represent the values of classical bits 0

and 1, respectively, and a and b are complex numbers

satisfying:

aj j2þ bj j2¼ 1

| a |2 and |b|2 are the probability of the Q-bit being in ‘‘0’’

state and ‘‘1’’ state, respectively.

The state of the Q-bit can be changed using a quantum

gate (Q-gate) that is a reversible gate represented by a

unary operator ‘‘U’’; when it acts on the Q-bit it satisfies

the condition U?U=UU? [67]. Several Q-gates exist like

NOT gate, controlled NOT gate, rotation gate, etc.

[67, 75]. For a system with m Q-bits, there are 2m states.

Observing a quantum state collapses it to a single state

[67].

Quantum computers were formalized in the late 1980s

and active research was carried out in the 1990s, during

which research related to merging of quantum computing

and evolutionary computing started. Accordingly, several

algorithms exist that are broadly classified [68] as evolu-

tion-designed quantum algorithms [76–80], quantum evo-

lutionary algorithms [81–86] and QIEAs [67, 87–93]. This

paper focuses on the use of the QIEA to address the view

selection problem.

QIEA uses probabilities associated with each state to

describe the behaviour of the system. QIEA uses Q-bits,

Q-gates and the observation process. Q-bits represent

individuals, Q-gates operate on Q-bits to generate off-

springs and the observation process enables the quan-

tum particle to take state |0[ or state |1[. The

superposition state represented by Q-bits would collapse

to a single state during the observation process. QIEA

uses Q-bit representation, which is probabilistically a

linear superposition of states, to describe individuals of

the population. It uses Q-gate to generate individuals

with better solutions for the next generation. It can also

exploit the search space for a global solution having,

even, a single element. Several QIEA algorithms exist

and are broadly classified into three types, namely

binary observation QIEA (bQIEA) [67, 89, 90], real

observation QIEA (rQIEA) [54, 93] and QIEA-like

algorithms (iQIEA) [87, 88, 92]. In this paper, bQIEA

[67] has been used to address the view selection

problem.

An individual in bQIEA is represented as a string of Q-

bits as follows:

a1

b1

j
j
a2

b2

j
j
a3 j
b3 j

:
:
:
:
:
:
jam

jbm

� �

where |ai|
2 ? |bi|

2 = 1, i = 1, 2, …, m, where m is the number

of Q-bits representing an individual.

The algorithm bQIEA, as proposed in [67, 68], is given in

figure 4.

In Step-1, the generation number g is initialized to 1; a
and b values in quantum state Q(g) are initialized in a

manner such that |a|2?|b|2=1. As a result, each Q-bit

individual is a linear superposition of all possible states.

Next, in Step-2, a binary solution P(g) is obtained by

observing the quantum state Q(g). The resultant binary

string of length m is formed by selecting either 0 or 1 for

each bit based on the probability |a|2 or |b|2. In Step-3,

each binary solution in P(g) is evaluated based on the

problem-specific fitness function. The initial best solu-

tions in P(g) are selected and stored in B(g) and the best

solution of B(g) in b in Step-4. In Step-5, g is incre-

mented by 1. In Step-6, binary solutions in P(g) are

obtained by observing Q(g–1), as in Step-2. The solu-

tions in P(g) are evaluated using the problem-specific

fitness function in Step-7, as in Step-3. Thereafter, in

Step 8, Q-bit individuals in Q(g) are updated by applying

rotation Q-gate as follows [67]:

Gg�1ðhÞ ¼ cos hg�1 � sin hg�1

sin hg�1 cos hg�1

� �

where hg is an adjustable Q-gate rotation angle.

The Q-bit [ag, bg] is updated as follows [67]:

ag

bg

� �
¼ Gg�1ðhÞ ag�1

bg�1

� �

where hg�1 ¼ s ag�1; bg�1
� �

Dhg�1; sðag�1; bg�1Þ and

Dhg�1 are the sign and the magnitude of the rotation gate,

respectively. The afore-mentioned particular values are

taken from the look-up table [68] given in figure 5; x and

y are bits of p(g) and b, respectively.

In Step-9, the best solutions, from among B(g–1) and

P(g), are selected and stored in B(g) and b is updated with

the best solution from amongst solutions in B(g) and b. In

Step-10, the migration condition is checked. If it is found to
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be satisfied, the best solution b is migrated to B(g) or some

of the best solutions in B(g) are migrated to other solutions

in B(g). Next, the termination condition is checked in Step-

11. If the termination condition is not satisfied, then Step-5

to Step-11 are repeated until the termination condition is

satisfied.

The afore-mentioned algorithm bQIEA has been adapted

to solve the view selection problem. Accordingly, a

QIEVSA has been proposed that selects the Top-K views

from a multidimensional lattice using bQIEA. QIEVSA is

discussed next.

2.3 QIEVSA

QIEVSA [94] selects Top-K views from a multidimensional

lattice using bQIEA. QIEVSA takes the d-dimensional

lattice of views, number of views to be selected K and the

pre-specified number of generations G for which QIEVSA

runs as input, and produces the Top-K views TKV as the

output. QIEVSA comprises the following steps.

Step-1: Initialization

Initialize the generation g = 0. Generate a random popu-

lation QTKV(g) of N Top-K views with quantum chromosome

length Kd, where each quantum gene is represented by d

quantum bits (Q-bits) and d is the dimension of the lattice.

QTKV gð Þ ¼ qtkv
g
1; qtkv

g
2; . . .; qtkv

g
N

� �
where

Method
Begin

Step-1: g 0
Initialize Q(g)

Step-2: Make P(g) by observing the states of Q(g)
Step-3: Evaluate P(g)
Step-4: Store the best solutions among P(g) into B(g) and the best solution among B(g) into b
Step-5: g g +1
Step-6: Make P(g) by observing the states of Q(g–1)
Step-7: Evaluate P(g)
Step-8: Update Q(g) using Q-gates

Step-9: Store the best solutions among P(g) and B(g–1) into B(g) and store the best 
solution amongst b and solutions in B(g) into b

Step-10: IF (migration condition)
Migrate b or bj' to B(g) globally or locally, respectively

END IF
Step-11: IF (Terminating condition NOT satisfied)

GO TO Step-5
End

Figure 4. Algorithm bQIEA [67, 68].

x y f(x) ≤ f(y) 1g−θΔ
),(s 1g1g −− βα

01g1g ≥−− βα 01g1g <−− βα
0 0 false 0 ±1 ±1
0 0 true 0 ±1 ±1
0 1 false 0.01π 1 −1
0 1 true 0 ±1 ±1
1 0 false 0.01π −1 1
1 0 true 0 ±1 ±1
1 1 false 0 ±1 ±1
1 1 true 0 ±1 ±1

Figure 5. Look-up table [68].

qtkv
g
i ¼ av

g
i11 av

g
i12 . . . av

g
i1d

bv
g
i11 bv

g
i12 . . . bv

g
i1d

av
g
i21 av

g
i22 . . . av

g
i2d

bv
g
i21 bv

g
i22 . . . bv

g
i2d

���� . . . . . .
. . . . . .

���� av
g
iK1 av

g
iK2 . . . av

g
iKd

bv
g
iK1 bv

g
iK2 . . . bv

g
iKd

����
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av
g
ijl

��� ���2þ bv
g
ijl

��� ���2¼ 1

8i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;K; l ¼ 1; 2; . . .; d:

Initially, at g = 0, all possible states are superimposed

with the same probability, i.e.

av0
ijl ¼

1ffiffiffi
2

p and bv0
ijl ¼

1ffiffiffi
2

p

8i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;K; l ¼ 1; 2; . . .; d:

In this step of initialization of QTKV(g), each of the Q-bits

(av
g
ijl and bv

g
ijl) is initialized to (1/H2, 1/H2). Each Q-bit

Top-K views qtkv
g
i represents the linear superposition of all

the possible solutions with the same probability [67].

Step-2: Make PTKV(g) by observing QTKV(g)

Observe each Q-bit of QTKV(g) to arrive at PTKV(g) where

PTKV gð Þ ¼ ptkv
g
1; ptkv

g
2; . . .; ptkv

g
N

� �

pv
g
ijl ¼

0; random 0; 1½ Þ \ avijl

�� ��2
1; otherwise

�
:

Each binary solution ptkv
g
i is a binary string of length K,

which is formed by selecting either 0 or 1 for each bit with

the probability avijl

�� ��2.

Step-3: Evaluate PTKV(g)

Each binary solution PTKV(g) is evaluated using the fit-

ness function TVEC. Each Top-K view ptkvi
g in PTKV(g) is

transformed into equivalent decimal representation dtkvi to

arrive at DPTKV(g), where

DPTKV gð Þ ¼ dptkv
g
1; dptkv

g
2; . . .; dptkv

g
N

� �
and

dptkv
g
i ¼ dpv

g
i1; dpv

g
i2; . . .; dpv

g
iK

� �
; i ¼ 1; 2; . . .N:

Compute TVEC of each view dptkvi
g in DPTKV(g) as

follows [64–66, 95–97]:

TVEC dptkv
g
ið Þ ¼

Xn

i¼1^SMVi
¼1

Size Við Þ

þ
Xn

i¼1^SMVi
¼0

SizeSMA Við Þ

where n is the total number of views in the lattice, SMVi is

status materialized of view Vi (SMVi = 1, if materialized,

SMVi = 0, if not materialized), Size(Vi) is the size of view Vi

and SizeSMA(Vi) is the size of smallest materialized

ancestor of view Vi

Step-4: Create BTKV(g)/DTKV(g) and BTKV/DTKV

In this step, the initial best Top-K views are selected,

from among the binary Top-K views in PTKV(g), and stored

into BTKV. Also, the best Top-K views among the equivalent

decimal representation DPTKV(g) of PTKV(g) are selected

and stored into DTKV.

Initially, at g = 0, store all N Top-K views in PTKV(g) and

in corresponding DPTKV(g) into BTKV(g) and DTKV(g),

respectively, where

BTKV gð Þ ¼ btkv
g
1; btkv

g
2; . . .; btkv

g
N

� �

DTKV gð Þ ¼ dtkv
g
1; dtkv

g
2; . . .; dtkv

g
N

� �

for i ¼ 1; 2; . . .;N

btkv
g
i ¼ bv

g
i1; bv

g
i2; . . .; bv

g
iK

� �
dtkv

g
i ¼ dv

g
i1; dv

g
i2; . . .; dv

g
iK

� �
and 8i ¼ 1; 2; . . .;N

btkv
g
i ¼ ptkv

g
i ; dtkv

g
i ¼ dptkv

g
i :

The best Top-K view in BTKV(g) and in the corresponding

DTKV(g) are stored into BTKV and DTKV, respectively.

Increment g by 1.

Step-5: Obtain PTKV(g) by observing QTKV(g–1)

Binary solutions in PTKV(g) are formed by observing the

states of QTKV(g-1), as carried out in Step-2.

Step-6: Evaluate PTKV(g)

Each binary solution PTKV(g) is evaluated using fitness

function TVEC, as evaluated in Step-3.

Step-7: Update QTKV(g–1) using Q-gates

Q-bit individuals in QTKV(g) are updated by applying

rotation Q-gate operator of QIEA [67] with the updated Q-

bit satisfying the normalization condition

ptkv
g
i ¼ pv

g
i11 pv

g
i12 � � � pv

g
i1d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pv
g

i1

j pv
g
i21 pv

g
i22 � � � pv

g
i2d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pv
g

i2

j . . . j pv
g
iK1 pv

g
iK2 � � � pv

g
iKd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pv
g
iK

0
BB@

1
CCA

8i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;K; l ¼ 1; 2; . . .; d:
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av
g
ijl

��� ���2þ bv
g
ijl

��� ���2¼ 1, where av
g
ijl and bv

g
ijl are the values of

the updated Q-bits.

QTKV(g) is updated using quantum rotation gate as Q-

gate. The lth Q-bit of the jth view of the ith Top-K view

qtkvi
g, i = 1, 2, …, N; j = 1, 2, …, K; l = 1, 2, . . ., d is

updated by applying the current Q-gate Gijl
g (h):

G
g�1
ijl ðhÞ ¼

cos hg�1
ijl � sin hg�1

ijl

sin hg�1
ijl cos hg�1

ijl

" #

where hg
ijl is an adjustable Q-gate rotation angle.

The Q-bit [av
g
ijl, bv

g
ijl] is updated as follows:

av
g
ijl

bv
g
ijl

� �
¼ G

g�1
ijl ðhÞ

av
g�1
ijl

bv
g�1
ijl

" #

where hg�1
ijl ¼ s av

g�1
ijl ; bv

g�1
ijl

� �
Dhg�1

ijl and sðav
g�1
ijl ; bv

g�1
ijl Þ

and Dhg�1
ijl are the sign and the magnitude of the rotation

gate, respectively. The values of sðav
g�1
ijl ; bv

g�1
ijl Þ and Dhg�1

ijl

are taken from the look-up table [93] given in figure 6;

x and b are bits of ptkvi
g and BTKV, respectively.

Step-8: Update BTKV(g)/DTKV(g) and BTKV/DTKV

In this step, BTKV(g) and DTKV(g) are generated and BTKV

and DTKV are updated.

The best N Top-K views among PTKV(g) and BTKV(g–1)

are stored into BTKV(g).

The best N Top-K views among DPTKV(g) and DTKV(g–1)

are stored into DTKV(g).

The best Top-K views in BTKV(g) and in the corresponding

DTKV(g) are stored into BTKV and DTKV, respectively.

Increment g by 1.

Step-9: Migration condition

In this step, the global migration condition is checked.

If it is satisfied, the best solution BTKV is migrated to

BTKV(g) globally. Otherwise, the best Top-K views in a

local group in BTKV(g) are migrated to others in the same

local group. Variation of probabilities of a Q-bit individ-

ual is induced during the migration process. The global

migration and the local migration are carried out after a

pre-specified number of generations GGM and GLM,

respectively.

IF global migration THEN

migrate BTKV to BTKV(g) globally

replace all the Top-K views in BTKV(g) by BTKV

ELSE

migrate BTKV to BTKV(g) locally

replacing the Top-K views in each of the pre-specified

number of local groups in B(g) by best Top-K views

amongst them in the respective groups.

Step-10: Termination condition

QIEVSA runs for a pre-specified number of generations

G, whereafter it produces the Top-K views DTKV as output.

IF (g B G) THEN

GO TO Step-5

ELSE

Return DTKV as the Top-K views.

Next, an example illustrating the use of QIEVSA to select

Top-K views from a multidimensional lattice is discussed.

3. An example

Consider the selection of Top-5 views from a three-di-

mensional lattice shown in figure 3 using QIEVSA.

Step-1: Initialization

Generation, g=0; quantum population size, N=10;

number of Q-bits in quantum gene, d=3. Since Top-5

views need to be selected, the quantum chromosome

length K=5. The quantum population of Top-K views at

g = 0, i.e., QT5V(0) = {qt5v1
0, qt5v2

0, …, qt5v10
0 } is pre-

sented in figure 7. Initially, avikl
0 and bvikl

0 are taken as 1/

H2 (0.7071).

Step-2: Make PT5V(0) by observing QT5V(0)

Quantum observed state PT5V(0) = {pt5v1
0, pt5v2

0, …,

pt5v10
0 } in binary form, i.e., Q-bit representation of initial

population QT5V(0) is observed. The observation of the first

Top-5 views qt5v1
0 in QT5V(0) to generate pt5v1

0 is shown in

figure 8.

In a similar manner, quantum observed state for other

Top-K views in QT5V(0) are computed to generate PT5V(0),

which is given in figure 9.

Step-3: Evaluate PT5V(0)

Each Top-5 views pt5vi
0 (i = 0, 1, …, 10) in PT5V(0) is

transformed into equivalent decimal representation, i.e.,

dt5vi
0 to generate DPT5V(0) = {dpt5v1

0, dpt5v1
0, …, dpt5v10

0 },

x b
TVEC(ptkv)

≤
TVEC(btkv)

1g
ijl

−θΔ
)v,v(s 1g

ijl
1g

ijl
−− βα

0vv 1g
ijl

1g
ijl ≥−− βα 0vv 1g

ijl
1g

ijl <−− βα

0 0 false 0 ±1 ±1
0 0 true 0 ±1 ±1
0 1 false 0.01π 1 −1
0 1 true 0 ±1 ±1
1 0 false 0.01π −1 1
1 0 true 0 ±1 ±1
1 1 false 0 ±1 ±1
1 1 true 0 ±1 ±1

Figure 6. Look-up table [68].
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where dpt5vi
0 = {dpvi1

0 , dpv1
0, …, dpv5

0}. DPT5V(0) is shown

in figure 10. TVEC of each view dpt5vi
0 in DPT5V(0) is

computed. TVEC computation of dpt5v1
0 comprising views

CT, CP, P, T and None is shown in figure 11. In a similar

manner, TVEC of other dpt5vi
0 in DPT5V(0) are computed

and are shown in figure 12.

Step-4: Create BT5V(0) and BT5V

PT5V(0) and DPT5V(0) are stored into BT5V(0) and

DT5V(0), respectively. BT5V(0) and DT5V(0) are shown in

figures 13 and 14, respectively.

The best Top-5 views in BT5V(0) and DT5V(0) are stored

into BT5V and DT5V, respectively. They are shown in fig-

ure 15. Next, g is incremented by 1, i.e., g = 1?1 = 2.

Step-5: Make PT5V(1) by observing QT5V(0)

Quantum observed state PT5V(1) = {pt5v1
1, pt5v2

1, …,

pt5v10
1 } in binary form is generated. The observation of the

first Top-5 views qt5v1
0 in QT5V(0) to generate pt5v1

1 is

shown in figure 16.

In a similar manner, quantum observed states for other

Top-K views in QT5V(0) are computed to generate PT5V(1),

which is given in figure 17.

Step-6: Evaluate PT5V(1)

Each Top-5 views pt5vi
0 (i = 0, 1, …, 10) in PT5V(1) is

transformed into equivalent decimal representation, i.e.,

dt5vi
0, to generate DPT5V(1) = {dpt5v1

1, dpt5v1
1, …, dpt5v10

1 },

where dpt5vi
1 = {dpvi1

1 , dpv1
1, …, dpv5

1}. DPT5V(1) is shown

in figure 18. TVEC of each view dpt5vi
1 in DPTKV(1) is

computed and are shown in figure 19.

Step-7: Update QT5V(0) using Q-gates

Update Q-bits (avikl
0 and bvikl

0 ) of each Top-5 views in

QT5V(0) using corresponding Top-5 views in PT5V(1) and

best Top-5 views BT5V. Updation of Q-bit (av1kl
0 and bv1kl

0 )

of the first individual qt5v1
0 of QTKV(0) using pt5v1

1, in

PT5V(1), and BT5V, shown in figure 20, is given below:

Computation of h0111 for the first bit

Bit x = 1, bit b = 1, TVEC(pt5v1
1) = 187 and TVEC(BT5V)

= 181. Since TVEC(pt5v1
1) B TVEC(BT5V) is false, using the

look-up table, sðav0
111; bv0

111Þ = 1 and Dh0
111 = 0.

QT5V(0)
αvi11

0 αvi12
0 αvi13

0 αvi21
0 αvi22

0 αvi23
0 αvi31

0 αvi32
0 αvi33

0 αvi41
0 αvi42

0 αvi43
0 αvi51

0 αvi52
0 αvi53

0

βvi11
0 βvi12

0 βvi13
0 βvi21

0 βvi22
0 βvi23

0 βvi31
0 βvi32

0 βvi33
0 βvi41

0 βvi42
0 βvi43

0 βvi51
0 βvi52

0 βvi53
0

qt5v1
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v2
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v3
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v4
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v5
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v6
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v7
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v8
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v9
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v10
0 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

Figure 7. QT5V(0).

Random var. 0
1 jlvα 2 0

1 jlpv 05 ivpt
0.40175587 0.49999997 0

0110.51350707 0.49999997 1
0.6879447 0.49999997 1
0.4345283 0.49999997 0

0010.34838796 0.49999997 0
0.7124095 0.49999997 1
0.7756701 0.49999997 1

1010.30042487 0.49999997 0
0.9100001 0.49999997 1
0.78266287 0.49999997 1

1100.9099875 0.49999997 1
0.000876069 0.49999997 0
0.58374248 0.49999997 1

1110.56351848 0.49999997 1
0.69518647 0.49999997 1

Figure 8. pt5v1
0 of qt5v1

0 in QT5V(0).
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h0
111 ¼ sðav0

111; bv0
111ÞDh

0
111 ¼ 1 � 0 ¼ 0:

Computation of h0112 for the second bit
Bit x = 1, bit b = 1, TVEC(pt5v1

1) = 187 and TVEC(BT5V)

= 181. Since TVEC(pt5v1
1) B TVEC(BT5V) is false, using the

look-up table, sðav0
112; bv0

112Þ= 1 and Dh0
112 = 0.

h0
112 ¼ sðav0

112; bv0
112ÞDh

0
112 ¼ 1 � 0 ¼ 0:

Computation of h0113 for the third bit
Bit x = 0, bit b = 1, TVEC(pt5v1

1) = 187 and TVEC(BT5V)

= 181. Since TVEC(pt5v1
1) B TVEC(BT5V) is false, using the

look-up table, sðav0
113; bv0

113Þ = 1 and Dh0
113 = 0.0314.

h0
113 ¼ sðav0

113; bv0
113ÞDh

0
113 ¼ 1 � 0:0314 ¼ 0:0314:

In a similar manner, h0
1kl for the other quantum bits of the

first individual qt5v1
0 of QT5V(0) is computed and is shown

in figure 21.

PT5V (0) 0
1ipv 0

2ipv 0
3ipv 0

4ipv 0
5ipv

pt5v1
0 011 001 101 110 111

pt5v2
0 001 011 110 111 101

pt5v3
0 001 110 100 101 000

pt5v4
0 011 110 001 101 111

pt5v5
0 110 111 011 101 010

pt5v6
0 100 111 101 110 011

pt5v7
0 101 100 001 011 111

pt5v8
0 001 011 010 101 111

pt5v9
0 111 010 100 101 011

pt5v10
0 101 110 100 001 111

Figure 9. PT5V(0).

PT5V (0) DT5V (0) 0
1idpv 0

2idpv 0
3idpv 0

4idpv 0
5idpv

pt5v1
0 dpt5v1

0 3 1 5 6 7
pt5v2

0 dpt5v2
0 1 3 6 7 5

pt5v3
0 dpt5v3

0 1 6 4 5 7
pt5v4

0 dpt5v4
0 3 6 1 5 7

pt5v5
0 dpt5v5

0 6 7 3 5 2
pt5v6

0 dpt5v6
0 4 7 5 6 3

pt5v7
0 dpt5v7

0 5 4 1 3 7
pt5v8

0 dpt5v8
0 1 3 2 5 7

pt5v9
0 dpt5v9

0 7 2 4 5 3
pt5v10

0 dpt5v10
0 5 6 4 1 7

Figure 10. DPT5V(0).

( ) ( ) ( ) ( ) ( ) ( ) ((

( ) ,12111214262840

5
8

11

0
1

=+++++=

+++++=∑
=∧=

None))SizeTSizePSizeCPSizeCTSizeCPTSizevdptSize
iVSMi

( ) ( ) ( )( ) ( ) ,6626405
8

01

0
1 =+=+=∑

=∧=

CSizeSMAPTSizeSMAvdptSizeSMA
iVSMi

( ) ( ) .1876612155
8

01

0
1

8

11

0
1 =+=+= ∑∑

=∧==∧= VV SMiSMi
vdptSizeSMAvdptSizeTVEC

Figure 11. TVEC computation if views CT, CP, P, T and None are selected for materialization.

PT5V (0) DT5V (0) TVEC
pt5v1

0 dpt5v1
0 187

pt5v2
0 dpt5v2

0 187
pt5v3

0 dpt5v3
0 183

pt5v4
0 dpt5v4

0 187
pt5v5

0 dpt5v5
0 187

pt5v6
0 dpt5v6

0 185
pt5v7

0 dpt5v7
0 187

pt5v8
0 dpt5v8

0 183
pt5v9

0 dpt5v9
0 181

pt5v10
0 dpt5v10

0 183

Figure 12. TVEC of dpt5vi
0 in DPT5V(0).

BT5V (0) 0
1ibv 0

2ibv 0
3ibv 0

4ibv 0
5ibv

bt5v1
0 011 001 101 110 111

bt5v2
0 001 011 110 111 101

bt5v3
0 001 110 100 101 000

bt5v4
0 011 110 001 101 111

bt5v5
0 110 111 011 101 010

bt5v6
0 100 111 101 110 011

bt5v7
0 101 100 001 011 111

bt5v8
0 001 011 010 101 111

bt5v9
0 111 010 100 101 011

bt5v10
0 101 110 100 001 111

Figure 13. BT5V(0).

DT5V (0) 0
1idv 0

2idv 0
3idv 0

4idv 0
5idv

dt5v1
0 3 1 5 6 7

dt5v2
0 1 3 6 7 5

dt5v3
0 1 6 4 5 7

dt5v4
0 3 6 1 5 7

dt5v5
0 6 7 3 5 2

dt5v6
0 4 7 5 6 3

dt5v7
0 5 4 1 3 7

dt5v8
0 1 3 2 5 7

dt5v9
0 7 2 4 5 3

dt5v10
0 5 6 4 1 7

Figure 14. DT5V(0).
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Updation of av0
111 and bv0

111 of the first Q-bit
av1

111

bv1
111

� �
¼

cos 0 � sin 0

sin 0 cos 0

� �
� 0:70710677

0:70710677

� �
¼ 1 0

0 1

� �
�

0:70710677

0:70710677

� �
¼ 0:70710677

0:70710677

� �
.

Updation of av0
112 and bv0

112 of the second Q-bit

av1
112

bv1
112

� �
¼ cos 0 � sin 0

sin 0 cos 0

� �
� 0:70710677

0:70710677

� �

¼ 1 0

0 1

� �
� 0:70710677

0:70710677

� �
¼ 0:70710677

0:70710677

� �
:

Updation of av0
113 and bv0

113 of the third Q-bit

av1
113

bv1
113

� �
¼ cos 0:0314 � sin 0:0314

sin 0:0314 cos 0:0314

� �

� 0:70710677

0:70710677

� �

¼ 0:9995 �0:0314

0:0314 0:9995

� �
� 0:70710677

0:70710677

� �

¼ 0:6846

0:7290

� �
:

In a similar manner, Q-bits of each qt5vi
0 of QT5V(0) are

updated to generate QT5V(1), which is shown in figure 22.

Step-8: Update BT5V(1)/DT5V(1) and BT5V/DT5V

The 10 Top-5 views, from amongst PT5V(1) and BT5V(0),

are stored into BT5V(1). The 10 Top-5 views, from amongst

DPT5V(1) and DT5V(0), are stored into DT5V(1). BT5V(1) and

DT5V(1) are shown in figures 23 and 24, respectively. The

best Top-K views in BT5V(1), and in the corresponding

DT5V(1), are stored into BT5V and DT5V, respectively. The

updated BT5V and DT5V are shown in figure 25. This is

followed by incrementing g by 1.

Step-9: Perform local/global migration

Considering that local migration is performed in each

step, the resultant DT5V(1), after performing local migration

for local group size 2, is given in figure 26.

Top-5 views View-1 View-2 View-3 View-4 View-5 TVEC
BT5V 111 010 100 101 011 181
DT5V 7 2 4 5 3 181

Figure 15. BT5V and DT5V.

Random [0, 1) 1
1 jlα 1

1 jlpv 15 ivpt
0.5011488 0.49999997 1

1100.70176893 0.49999997 1
0.043875396 0.49999997 0
0.73296607 0.49999997 1

1010.1709851 0.49999997 0
0.93461823 0.49999997 1
0.9480489 0.49999997 1

1110.6981055 0.49999997 1
0.7665917 0.49999997 1
0.02548498 0.49999997 0

0110.51505903 0.49999997 1
0.64097357 0.49999997 1
0.4138329 0.49999997 0

0100.9327696 0.49999997 1
0.0682677 0.49999997 0

Figure 16. pt5v1
1 of qt5v1

0 in QT5V(0).

PTKV(1) 1
1ipv 1

2ipv 1
3ipv 1

4ipv 1
5ipv

pt5v1
1 110 101 111 011 010

pt5v2
1 001 011 110 101 111

pt5v3
1 111 011 110 001 101

pt5v4
1 101 110 010 111 001

pt5v5
1 001 111 100 110 101

pt5v6
1 110 010 011 111 101

pt5v7
1 001 011 110 010 100

pt5v8
1 010 101 001 111 110

pt5v9
1 001 100 111 101 110

pt5v10
1 111 001 011 101 010

Figure 17. PT5V(1).

PT5V (1) DT5V (1) 1
1idpv 1

2idpv 1
3idpv 1

4idpv 1
5idpv

pt5v1
1 dpt5v1

1 6 5 7 3 2
pt5v2

1 dpt5v2
1 1 3 6 5 7

pt5v3
1 dpt5v3

1 7 3 6 1 5
pt5v4

1 dpt5v4
1 5 6 2 7 1

pt5v5
1 dpt5v5

1 1 7 4 6 5
pt5v6

1 dpt5v6
1 6 2 3 7 5

pt5v7
1 dpt5v7

1 1 3 6 2 4
pt5v8

1 dpt5v8
1 2 5 1 7 6

pt5v9
1 dpt5v9

1 1 4 7 5 6
pt5v10

1 dpt5v10
1 7 1 3 5 2

Figure 18. DPT5V(1).

PT5V (1) DT5V (1) TVEC
pt5v1

1 dpt5v1
1 187

pt5v2
1 dpt5v2

1 187
pt5v3

1 dpt5v3
1 187

pt5v4
1 dpt5v4

1 183
pt5v5

1 dpt5v5
1 183

pt5v6
1 dpt5v6

1 187
pt5v7

1 dpt5v7
1 174

pt5v8
1 dpt5v8

1 183
pt5v9

1 dpt5v9
1 183

pt5v10
1 dpt5v10

1 183

Figure 19. TVEC of dpt5vi
1 in DPT5V(1).

pt5v1
1 110 101 111 000 010

BT5V 111 010 100 101 011

Figure 20. pt5v1
1 and BT5V.
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Step-5 to Step-9 are repeated for a pre-specified number

of generations G, whereafter the Top-5 views are produced

as output.

Next, experiment-based comparison of QIEVSA to the

evolutionary view selection algorithms DEVSA, MVSA,

GVSA and HRUA is discussed.

4. Experimental results

Algorithms QIEVSA, DEVSA, GVSA, MVSA and HRUA

were implemented using JDK 1.7 in a Windows-7 envi-

ronment on an Intel-based 2.13 GHz PC having 4 GB

RAM. First, the appropriate value of number of generations

Bit x b TVEC(pt5v1
1) TVEC(BT5V)

TVEC(pt5v1
1) 

≤
TVEC(BT5V)

0
1 jlθΔ Sign 0

1 jlθ

1 1 1 187 181 False 0 1 0
2 1 1 187 181 False 0 1 0
3 0 1 187 181 False 0.0314 1 0.0314
4 1 0 187 181 False 0.0314 –1 –0.0314
5 0 1 187 181 False 0.0314 1 0.0314
6 1 0 187 181 False 0.0314 –1 –0.0314
7 1 1 187 181 False 0 1 0
8 1 0 187 181 False 0.0314 –1 –0.0314
9 1 0 187 181 False 0.0314 –1 –0.0314
10 0 1 187 181 False 0.0314 1 0.0314
11 0 0 187 181 False 0 1 0
12 0 1 187 181 False 0.0314 1 0.0314
13 0 0 187 181 False 0 1 0
14 1 1 187 181 False 0 1 0
15 0 1 187 181 False 0.0314 1 0.0314

Figure 21. h0
1kl of quantum bits of qt5v1

0 in QT5V(0).

QT5V(1)
αvi11

1 αvi12
1 αvi13

1 αvi21
1 αvi22

1 αvi23
1 αvi31

1 αvi32
1 αvi33

1 αvi41
1 αvi42

1 αvi43
1 αvi51

1 αvi52
1 αvi53

1

βvi11
1 βvi12

1 βvi13
1 βvi21

1 βvi22
1 βvi23

1 βvi31
1 βvi32

1 βvi33
1 βvi41

1 βvi42
1 βvi43

1 βvi51
1 βvi52

1 βvi53
1

qt5v1
1 0.7071 0.7071 0.6846 0.7290 0.6846 0.7290 0.7071 0.7290 0.7290 0.6846 0.7071 0.6846 0.7071 0.7071 0.6846

0.7071 0.7071 0.7282 0.6839 0.7282 0.6839 0.7071 0.6839 0.6839 0.7282 0.7071 0.7282 0.7071 0.7071 0.7282

qt5v2
1 0.6846 0.6846 0.7282 0.6839 0.7282 0.7057 0.7071 0.7057 0.6839 0.7282 0.7071 0.7282 0.7057 0.7071 0.7057

0.7282 0.7282 0.7071 0.7071 0.7071 0.6846 0.7071 0.6846 0.7071 0.7071 0.7071 0.7071 0.7289 0.7071 0.7289

qt5v3
1 0.7282 0.7282 0.7071 0.7071 0.7071 0.7065 0.7071 0.7065 0.7071 0.7274 0.6600 0.7500 0.7290 0.7057 0.7289

0.7071 0.7071 0.7071 0.7071 0.7071 0.6846 0.7071 0.6846 0.7071 0.7296 0.7071 0.7071 0.6839 0.7289 0.7071

qt5v4
1 0.7071 0.6846 0.7071 0.7290 0.7071 0.6846 0.6846 0.7064 0.7071 0.7513 0.7290 0.7071 0.7288 0.7290 0.7071

0.7071 0.7282 0.7071 0.6839 0.7071 0.7071 0.7282 0.6846 0.7071 0.7071 0.6839 0.7071 0.7296 0.6839 0.7071

qt5v5
1 0.6846 0.7282 0.6846 0.6839 0.6846 0.7071 0.7282 0.6846 0.7071 0.7296 0.7057 0.6846 0.7065 0.7478 0.7487

0.7282 0.7071 0.7282 0.7071 0.7282 0.7071 0.7071 0.7071 0.7071 0.7071 0.6846 0.7282 0.6846 0.7302 0.7071

qt5v6
1 0.7282 0.7071 0.7057 0.7071 0.7282 0.7071 0.6846 0.7290 0.7290 0.7290 0.6833 0.7487 0.7064 0.6833 0.7261

0.7071 0.7071 0.7289 0.7071 0.7071 0.7071 0.7282 0.6839 0.6839 0.7071 0.6853 0.7071 0.7289 0.6853 0.7296

qt5v7
1 0.7071 0.7071 0.7289 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7289 0.6853 0.7296 0.6846 0.7705 0.7487

0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071

qt5v8
1 0.6846 0.7071 0.6846 0.7290 0.6846 0.7290 0.6846 0.7071 0.7290 0.7071 0.7290 0.7071 0.7290 0.7071 0.6846

0.7282 0.7071 0.7282 0.6839 0.7282 0.6839 0.7282 0.7071 0.6839 0.7071 0.6839 0.7071 0.6839 0.7071 0.7282

qt5v9
1 0.7057 0.6846 0.7282 0.7057 0.7057 0.6839 0.7487 0.7057 0.7057 0.7071 0.6839 0.7071 0.6600 0.6846 0.7261

0.7289 0.7282 0.7071 0.6846 0.7289 0.7071 0.7071 0.6846 0.6846 0.7071 0.7071 0.7071 0.7071 0.7282 0.7296

qt5v10
1 0.7064 0.7057 0.6846 0.6846 0.7064 0.7290 0.6846 0.7065 0.7065 0.7071 0.7071 0.6846 0.6846 0.7290 0.6846

0.7289 0.7289 0.7282 0.7071 0.7289 0.6839 0.7282 0.6846 0.6846 0.7071 0.7071 0.7282 0.7282 0.6839 0.7282

Figure 22. QT5V(1).
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after which local migration GLM and global migration GGM

are to be performed, for which QIEVSA is able to select

views having lower TVEC, is determined. The mean value

of TVEC of Top-10 views over four simulation runs after

each generation up to 500 generations for various combi-

nations of GLM and GGM was used for plotting graphs [98].

These graphs showing the TVEC of the Top-10 views for

(GLM, GGM) = {(1, 50), (1, 100), (2, 50), (2, 100), (4, 50),

BT5V(1) 1
1ibv 1

2ibv 1
3ibv 1

4ibv 1
5ibv

bt5v1
1 001 011 110 010 100

bt5v2
1 111 010 100 101 011

bt5v3
1 101 110 010 111 001

bt5v4
1 001 111 100 110 101

bt5v5
1 010 101 001 111 110

bt5v6
1 001 100 111 101 110

bt5v7
1 111 001 011 101 010

bt5v8
1 001 110 100 101 000

bt5v9
1 001 011 010 101 111

bt5v10
1 101 110 100 001 111

Figure 23. BT5V(1).

DTKV(1) 1
1idv 1

2idv 1
3idv 1

4idv 1
5idv TVEC

dt5v1
1 1 3 6 2 4 174

dt5v2
1 5 6 2 7 1 183

dt5v3
1 7 2 4 5 3 181

dt5v4
1 1 7 4 6 5 183

dt5v5
1 2 5 1 7 6 183

dt5v6
1 1 4 7 5 6 183

dt5v7
1 7 1 3 5 2 183

dt5v8
1 1 6 4 5 7 183

dt5v9
1 1 3 2 5 7 183

dt5v10
1 5 6 4 1 7 183

Figure 24. DT5V(1).

Top-5 views View-1 View-2 View-3 View-4 View-5 TVEC
BT5V 001 011 110 010 100 174
DT5V 1 3 6 2 4 174

Figure 25. BT5V and DT5V.

DTKV (1) 1
1idv 1

2idv 1
3idv 1

4idv 1
5idv

dt5v1
1 1 3 6 2 4

dt5v1
1 1 3 6 2 4

dt5v3
1 7 2 4 5 3

dt5v3
1 7 2 4 5 3

dt5v5
1 2 5 1 7 6

dt5v5
1 2 5 1 7 6

dt5v7
1 7 1 3 5 2

dt5v7
1 7 1 3 5 2

dt5v10
1 5 6 4 1 7

dt5v10
1 5 6 4 1 7

Figure 26. DT5V(1) after local migration.

QIEVSA
(5 Dimensions, Top-10 Views)

1750
1770
1790
1810
1830
1850
1870
1890
1910
1930

1 50 100 150 200 250 300 350 400 450 500

Generations

CEVT

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 27. QIEVSA - TVEC Vs. Generations - Top-10 Views - 5

Dimensions.

QIEVSA
(6 Dimensions, Top-10 Views)

6200

6300

6400

6500

6600

6700

6800

6900

7000

1 50 100 150 200 250 300 350 400 450 500

Generations

TV
EC

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 28. QIEVSA-TVEC vs. generations – Top-10 views – 6

dimensions.

QIEVSA
(7 Dimensions, Top-10 Views)

16700

16900

17100

17300

17500

17700

17900

18100

18300

18500

1 50 100 150 200 250 300 350 400 450 500

Generations

TV
EC

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 29. QIEVSA-TVEC vs. generations – Top-10 views – 7

dimensions.
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(4, 100)} for dimensions 5, 6, 7, 8, 9 and 10 are shown in

figures 27, 28, 29, 30, 31 and 32, respectively. From each

of these graphs, it can be inferred that the Top-10 views

selected by QIEVSA have a lower TVEC for GLM = 2 and

GGM = 50. Further, minTVEC (minimum value of TVEC),

maxTVEC (maximum value of TVEC), meanTVEC (mean

value of TVEC) and the stdTVEC (standard deviation of

QIEVSA
(8 Dimensions, Top-10 Views)

47000
48000
49000
50000
51000
52000
53000
54000
55000
56000
57000

1 50 100 150 200 250 300 350 400 450 500

Generations

TV
EC

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 30. QIEVSA-TVEC vs. generations – Top-10 views – 8

dimensions.

QIEVSA
(9 Dimensions, Top-10 Views)

124000

126000

128000

130000

132000

134000

136000

138000

140000

142000

1 50 100 150 200 250 300 350 400 450 500

Generations

TV
EC

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 31. QIEVSA-TVEC vs. generations – Top-10 views – 9

dimensions.

QIEVSA
(10 Dimensions, Top-10 Views)

330000

335000

340000

345000

350000

355000

360000

365000

1 50 100 150 200 250 300 350 400 450 500

Generations

TV
EC

(1, 50)
(1, 100)
(2, 50)
(2, 100)
(4, 50)
(4, 100)

Figure 32. QIEVSA-TVEC vs. generations – Top-10 views – 10

dimensions.

Dimension = 5 
(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 

(1, 50) 1755 1802 1777.25 20.9687 
(1, 100) 1780 1824 1801.50 17.0953 
(2, 50) 1752 1794 1773.25 15.8646 

(2, 100) 1759 1801 1779.25 18.8994 
(4, 50) 1768 1823 1796.75 24.0767 

(4, 100) 1784 1835 1810.50 20.7665 
Dimension = 6 

(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 
(1, 50) 6303 6369 6336.25 30.3757 

(1, 100) 6345 6408 6376.50 27.3724 
(2, 50) 6281 6334 6306.25 21.2294 

(2, 100) 6312 6390 6352.25 33.7667 
(4, 50) 6341 6404 6374.50 26.6505 

(4, 100) 6349 6424 6381.25 30.1859 
Dimension = 7 

(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 
(1, 50) 16875 17087 16965.25 83.6313 

(1, 100) 16979 17165 17071.50 85.8298 
(2, 50) 16813 16956 16868.25 57.1856 

(2, 100) 16924 17089 17004.25 75.1844 
(4, 50) 16937 17081 17013.75 60.4126 

(4, 100) 17059 17227 17157.50 69.5899 
Dimension = 8 

(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 
(1, 50) 49415 49665 49551.50 106.3332 

(1, 100) 50601 50899 50746.75 127.5233 
(2, 50) 48561 48763 48669.75 85.0922 

(2, 100) 50285 50517 50398.75 108.5504 
(4, 50) 50455 50644 50531.25 106.2835 

(4, 100) 50651 50915 50785.25 112.3975 
Dimension = 9 

(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 
(1, 50) 128311 128787 128559.50 201.8831 

(1, 100) 131230 131787 131539.50 228.3533 
(2, 50) 126241 126613 126417.25 171.2547 

(2, 100) 129311 129749 129512.75 211.1378 
(4, 50) 130811 131273 131024.25 204.6306 

(4, 100) 131379 131941 131682.25 225.5076 
Dimension = 10 

(GLM, GGM) minTVEC maxTVEC meanTVEC stdTVEC 
(1, 50) 336255 337557 336860.75 574.3424 

(1, 100) 340445 341787 341094.50 593.7935 
(2, 50) 332181 333141 332745.75 422.6851 

(2, 100) 338715 339654 339088.75 524.4666 
(4, 50) 339141 340165 339621.25 522.8061 

(4, 100) 340611 341981 341328.25 556.3926 
 
Figure 33. QIEVSA-minTVEC, maxTVEC, meanTVEC, stdTVEC

– Top-10 views.
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QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(5 Dimensions)

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 34. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 5 dimensions.

QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(6 Dimensions)

5000

6000

7000

8000

9000

10000

11000

12000

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 35. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 6 dimensions.

QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(7 Dimensions)

15000

17000

19000

21000

23000

25000

27000

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 36. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 7 dimensions.

QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(8 Dimensions)

40000

45000

50000

55000

60000

65000

70000

75000

80000

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 37. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 8 dimensions.

QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(9 Dimensions)

120000

130000

140000

150000

160000

170000

180000

190000

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 38. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 9 dimensions.

QIEVSA Vs. DEVSA Vs. MVSA Vs. GVSA Vs. HRUA
(10 Dimensions)

320000

340000

360000

380000

400000

420000

440000

460000

5 6 7 8 9 10

Top-K Views

TV
EC

HRUA
GVSA
MVSA
DEVSA
QIEVSA

Figure 39. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA-

TVEC vs. Top-K views – 10 dimensions.
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TVEC) over four simulation runs for selecting Top-10

views after 500 generations are computed for dimensions

5–10.They are given in a table in figure 33. From the

table also, it can be observed that QIEVSA performs best for

GLM = 2 and GGM = 50. These values of GLM and GGM for

QIEVSA were used for further comparisons to DEVSA,

GVSA, MVSA and HRUA.

Next, TVECs of the Top-K (K = 5, 6, 7, 8, 9, 10) views

selected using HRUA, GVSA, MVSA, DEVSA and QIEVSA

for dimensions 5, 6, 7, 8, 9 and 10 are plotted and are

shown in figures 34, 35, 36, 37, 38 and 39, respectively.

The comparisons were based on the values GVSA (cross-

over probability Pc = 0.6, mutation probability Pm = 0.05)

observed in [64], MVSA (crossover probability Pc = 0.8,

mutation probability Pm = 0.05) observed in [65], DEVSA

(crossover rate CR = 0.6, scaling factor F = 0.1) observed

in [66] and QIEVSA (GLM = 2, GGM = 50) observed from

figure 33. The mean of the TVEC values, for each of the

five algorithms over four simulation runs, was taken for

plotting graphs. It can be inferred from each of these graphs

that the Top-K views selected using QIEVSA, in compar-

ison with those selected using DEVSA, MVSA, GVSA and

HRUA, have a lower TVEC. Further, it can be observed

from figure 40 that the difference in the TVEC value

increases with increase in the dimensions and the value of

K. Furthermore, the performance of DEVSA is the next best

followed by MVSA and GVSA. Views selected using

HRUA, in comparison with others, have a higher TVEC.

5. Conclusions

In this paper, a QIEA has been suitably adapted and dis-

cretized to address the view selection problem in a multi-

dimensional lattice framework. Accordingly, view selection

algorithm QIEVSA that selects the Top-K views from a

multidimensional lattice has been proposed. The Q-bits,

Q-gates and the observation process in QIEA have been

suitably adapted and discretized in QIEVSA to generate a

population of Top-K views for the subsequent generation.

QIEVSA, at first, randomly selects a population of Q-bit

Top-K views. Binary sets of Top-K views are generated by

observing the quantum state of the Top-K views in the

population. TVEC of these views is then computed,

whereafter the best set of Top-K views are updated.

Thereafter, the Q-bit Top-K views are updated by applying

the rotation Q-gate operator. QIEVSA terminates after

running for a pre-specified number of generations, where-

upon the Top-K views having minimum TVEC are pro-

duced as output. Further, experimental comparison of

QIEVSA, with other evolutionary view selection algorithms

based on multidimensional lattice framework like DEVSA,

MVSA, GVSA and HRUA, shows that QIEVSA is able to

select Top-K views at a comparatively lesser TVEC for the

observed values of GLM and GGM. This performance

Dimension = 5
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 3082 2287 2203 2182 2140
Top-6 3064 2270 2147 2081 2045
Top-7 3024 2249 2044 1985 1948
Top-8 2984 2208 1960 1905 1864
Top-9 2964 2190 1890 1831 1795
Top-10 2944 2182 1850 1766 1726

Dimension = 6
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 10972 7603 7293 7098 6998
Top-6 10908 7597 7244 6991 6791
Top-7 10905 7574 6985 6768 6568
Top-8 10832 7540 6775 6519 6278
Top-9 10737 7543 6765 6485 6206
Top-10 10688 7526 6751 6394 5984

Dimension = 7
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 24964 20344 18787 18406 17996
Top-6 24904 19907 18104 17694 17389
Top-7 24552 19898 17978 17508 17046
Top-8 24476 19879 17475 17105 16587
Top-9 24462 19868 17464 16835 16229
Top-10 24384 19786 17453 16710 15898

Dimension = 8
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 74993 56620 55016 54206 52798
Top-6 74742 56468 54814 53981 51871
Top-7 74525 56240 54682 53268 50969
Top-8 74491 56228 53980 52851 49882
Top-9 74489 56168 52837 51405 48887
Top-10 73984 56159 52589 50573 47926

Dimension = 9
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 179577 153975 144570 142507 139432
Top-6 178662 153765 143259 140767 137143
Top-7 178652 153764 142481 139413 134856
Top-8 178478 153738 141554 137030 131455
Top-9 177950 153682 138212 133219 127219
Top-10 174592 153369 137612 128985 122985

Dimension = 10
Views HRUA GVSA MVSA DEVSA QIEVSA
Top-5 439504 388733 375200 362483 351456
Top-6 438066 388359 368866 358228 348696
Top-7 436078 388250 368736 354751 345574
Top-8 435098 387970 367671 354120 341691
Top-9 433758 387798 366483 353032 337457
Top-10 430336 387737 365948 346765 331289

Figure 40. QIEVSA vs. DEVSA vs. MVSA vs. GVSA vs. HRUA

(TVEC of Top-K views for 5–10 dimensions).
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improves for higher dimensions. Further, QIEVSA is able

select views for higher dimensional data sets, as, in

QIEVSA, population of the Top-K views is randomly gen-

erated and their TVEC is computed from the lattice. This is

unlike the case in HRUA, where HRUA needs to compute

the Top-K views from an exponentially large search space

of possible views and for higher dimensional data sets, it

becomes almost infeasible to select views for materializa-

tion using HRUA. Thus, it can be reasonably inferred that

QIEVSA is able to select reasonably good quality views, for

higher dimensional data sets, that are capable of reducing

the response time of analytical queries, which thereby

would lead to efficient decision making. As future work,

QIEVSA would be compared to existing swarm-based view

selection algorithms [99–107].
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