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Abstract. This work develops a new monolithic strategy for magnetohydrodynamics based on a continuous

velocity–pressure formulation. The magnetic field is interpolated in the same way as the velocity field, and the

entire formulation is within a nodal finite-element framework. The velocity and pressure interpolations are

chosen so that they satisfy the Babuska–Brezzi (BB) conditions. In most of the existing formulations, a stabi-

lized formulation is used that requires a stabilization term, and some associated mesh-dependent parameters that

need to be adjusted. In contrast, no such parameters need to be adjusted in the current formulation, making it

more user-friendly and robust. Both transient and steady-state formulations are developed for two- and three-

dimensional geometries. An exact linearization of the monolithic strategy ensures that rapid (quadratic) con-

vergence is achieved within each time (or load) step, while the stable nature of the interpolations used ensures

that no instabilities arise in the solution. An existing analytical solution is corrected. The coarse mesh accuracy

is shown to be better compared with other existing strategies in several benchmark problems, showing that the

developed formulation is both robust and efficient.

Keywords. Incompressible MHD; monolithic; inf-sup stable.

1. Introduction

Magneto-hydrodynamics (MHD) is the study of flows of a

conducting fluid in the presence of an electromagnetic field.

Mathematically, MHD phenomena can be modelled by

coupling the Navier–Stokes equations with the Maxwell

equations of electrodynamics. Earlier attempts at numerical

simulations of MHD flow [1–4] focused on rectangular

geometries and used the finite-difference method. Some of

them [1, 2] were not capable of capturing the boundary

layer effect. A finite-element formulation for steady

incompressible MHD flow under constant external mag-

netic field was presented in [5]. A finite-volume method

was used to solve MHD problems in [6, 7]. In other works

[8, 9], inductionless MHD phenomena have been modelled,

where, instead of the Maxwell equations, only Ohm’s law is

used to incorporate the coupling; the magnetic induction

effect cannot be modelled using this formulation.

In order to solve the coupled MHD problem, two

approaches have been followed, viz., the segregated and the

monolithic approaches. In the monolithic approach, both

the fluid flow and the magnetic field variables are solved for

simultaneously, while in the segregated approach, the

Navier–Stokes equations and the Maxwell equations are

solved sequentially, with the fluid flow variables obtained

by solving the Navier–Stokes equations passed on to the

Maxwell equations to obtain the magnetic field variables,

which in turn are passed back to the Navier–Stokes equa-

tions in order to solve for the fluid flow field variables, and

so on. The monolithic approach converges faster, since,

unlike the segregated approach, both the fluid flow and

magnetic field variables are allowed to vary simultaneously

within the context of, say, a Newton–Raphson strategy.

Finite-element formulations for solving the flow field in

an incompressible fluid fall under two categories, viz.,

stable and stabilized. A stable formulation uses interpola-

tions for pressure and velocity that satisfy the Babuska–

Brezzi (BB) condition [10]. An example of a stable for-

mulation is ‘Taylor–Hood’ elements, where the pressure

interpolation functions are one order lower compared with

those for the velocity. In contrast, in stabilized formula-

tions, a stabilizing term is added to the variational formu-

lation so as to circumvent the BB condition, and allow for

equal-order interpolations for the velocity and pressure.

Finite-element-based strategies for solving incompress-

ible liquid metal MHD flows have been presented in [11–23].

In [19–21, 23], edge elements have been used for discretizing

the magnetic field, while nodal elements are used for mod-

elling the fluid velocity and pressure. Most of the formula-

tions use stabilized formulations [11–18] in order to

circumvent the BB condition, and follow the segregated

approach [11–14, 16]. Although stabilized formulations
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allow the use of equal-order interpolations for the velocity

and pressure, a mesh-dependent parameter needs to be set. In

contrast, with a stable formulation (which is what we use in

this work), there are no parameters that need to be adjusted. In

[22, 23], higher order polynomial shape functions have been

used to model the magnetostriction effect in MHD. In [22], a

formulation in terms of the magnetic potential and a dis-

continuous pressure interpolation has been used, while in

[23], a stress tensor approach has been followed in order to

model the magnetostriction effect.

In the current work, we present two- and three-dimen-

sional monolithic strategies for transient and steady-state

problems that use a continuous pressure–velocity formula-

tion (which has been shown to have better stability prop-

erties compared with a discontinuous pressure–velocity

formulation in [24]) for the fluid flow variables, and an

interpolation for the magnetic field that is of the same order

as that of the velocity. Exact linearization of the variational

formulation ensures a quadratic rate of convergence of the

monolithic scheme. Comparing against analytical solutions,

we show that very good coarse mesh accuracy is obtained

with the proposed formulation. Because of the monolithic

nature, the proposed method is efficient as well. We also

propose a correction to an existing analytical solution.

2. Mathematical formulation

2.1 Governing differential equations for MHD

The strong form of the Maxwell equations is

oB

ot
þ $�E ¼ 0; ð1aÞ

$ � B ¼ 0; ð1bÞ

oD

ot
� $�H ¼ �j; ð1cÞ

$ � D ¼ qc; ð1dÞ

where E and H are the electric and magnetic fields,

respectively, D is the electric displacement (electric flux), B
is the magnetic induction (magnetic flux), qc is the charge

density and j is the current density. These governing

equations are supplemented by the constitutive relations

D ¼ �E; ð2aÞ

B ¼ lH; ð2bÞ

where � and l are the electric permittivity and magnetic

permeability, respectively. The relative permeability is

defined as lr ¼ l=l0, where l0 is the permeability of

vacuum. Substituting the constitutive relations into

Eqs. (1a) and (1c), and assuming that � and l are inde-

pendent of time, we get

oH

ot
þ 1

l
$�E ¼ 0; ð3Þ

�
oE

ot
� $�H ¼ �j: ð4Þ

From Eqs. (1d), (2a) and (4), we get the compatibility

condition

oqc

ot
þ $ � j ¼ 0: ð5Þ

Under the magnetohydrodynamic assumption [12, 25], the

charge relaxation time is much shorter than the transit time

of electromagnetic phenomena. Hence, we assume oE=ot ¼
0 in Eq. (4), and oqc=ot ¼ 0 in Eq. (5). Thus, the Maxwell

equations reduce to

l
oH

ot
þ $�E ¼ 0; ð6aÞ

$ � ðlHÞ ¼ 0; ð6bÞ

$�H ¼ j; ð6cÞ

$ � j ¼ 0; ð6dÞ

where due to flow of the conducting fluid we have

j ¼ r Eþ u� lHð Þ: ð7Þ

In this equation, u and r denote the fluid velocity and the

conductivity of the fluid, respectively. Using Eqs. (6) and

(7), we obtain the governing differential equation for H as

$� $�Hð Þ þ rl
oH

ot
¼ rl$� u�Hð Þ on X; ð8Þ

where X represents the domain. On the other hand, the

magnetic field exerts a body force lj�H on the fluid.

Therefore, assuming an incompressible, Newtonian fluid,

the governing equations for the fluid are

$ � u ¼ 0 on X; ð9aÞ

q
ou

ot
þ ð$uÞu

� �
¼ $ � sþ qbþ lð$�HÞ�H on X;

ð9bÞ

s ¼ �pI þ 2lvD on X; ð9cÞ

D ¼ 1

2
ð$uÞ þ ð$uÞT
� �

on X; ð9dÞ

t ¼ sn on C; ð9eÞ

t ¼ �t on Ct; ð9fÞ

u ¼ �u on Cu; ð9gÞ
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uð0Þ ¼ u0 on X; ð9hÞ

where q is the fluid density, m is the kinematic viscosity,

lv ¼ qm is the fluid dynamic viscosity, u is the velocity, p is

the pressure, s is the Cauchy stress tensor, D is the rate of

deformation, b is the body force per unit mass, t is the

surface traction on the boundary C, n is the outward unit

normal to C, �t is the prescribed traction on Ct and �u is the

prescribed velocity on Cu with C � Ct [ Cu.

Summarizing, based on Eqs. (8) and (9), the coupled

differential equations for magnetohydrodynamics can be

written as

$ � u ¼ 0 on X; ð10aÞ

q
ou

ot
þ qð$uÞu ¼ $ � sþ qbþ lð$�HÞ�H on X;

ð10bÞ

$ � ðlHÞ ¼ 0; ð10cÞ

$� $�Hð Þ þ rl
oH

ot
¼ rl$� u�Hð Þ on X: ð10dÞ

2.2 Variational formulation

Denoting the variations of u and p by ud and pd, respec-

tively, we can write variational statements corresponding to

Eqs. (10a) and (10b) as

Z
X

pd$ � u dX ¼ 0 8pd; ð11aÞ

Z
X
quT

d
ou

ot
dXþ

Z
X
quT

d ð$uÞu dX�
Z
X
ð$ � udÞp dX

þ
Z
X
½DcðudÞ�TCcDc dX ¼

Z
X
quT

db dX

þ
Z
X
luT

d ½ð$�HÞ�H� dXþ
Z
Ct

uT
d
�t dC 8ud;

ð11bÞ

where Cc is material constitutive tensor for the viscous

stress, and Dc is rate of deformation tensor, both expressed

in ‘engineering’ form as

Dc ¼

Dxx

Dyy

Dzz

2Dxy

2Dyz

2Dxz

2
666666664

3
777777775
; Cc ¼

2lv 0 0 0 0 0

0 2lv 0 0 0 0

0 0 2lv 0 0 0

0 0 0 lv 0 0

0 0 0 0 lv 0

0 0 0 0 0 lv

2
666666664

3
777777775
:

Note that the only nonlinear term in Eq. (11) is the $uð Þu
term.

Introducing a penalty term similar to the formulation in

[26, 27] and carrying out a suitable integration by parts, the

variational statement corresponding to Eq. (10d) can be

written as

Z
X
rlHd �

oH

ot
dXþ

Z
X
$�Hdð Þ � $�Hð Þ dX

þ
Z
X
$ �Hdð Þ $ �Hð Þ dX�

Z
X
rl $�Hdð Þ � u�Hð Þ dX

¼
Z
C
rl Hd � nð Þ � u�Hð Þ dC

�
Z
C
Hd � nð Þ � $�Hð Þ dC 8Hd;

where Hd represents the variation of H. Note that the

penalty term satisfies Eq. (10c), which thus does not need to

be considered explicitly.

Using Eqs. (6c) and (7), we can rewrite the second

boundary term as �
R
C r Hd � nð Þ � E. This boundary term

is zero if either H� n is specified or the surface is perfectly

conducting ðE� n ¼ 0Þ. Thus, under these conditions, this

equation reduces to

Z
X
rlHd �

oH

ot
dXþ

Z
X
$�Hdð Þ � $�Hð Þ dX

þ
Z
X
$ �Hdð Þ $ �Hð Þ dX�

Z
X
rl $�Hdð Þ � u�Hð Þ dX

¼
Z
C
rl Hd � nð Þ � u�Hð Þ dC 8Hd:

ð12Þ

We denote the field variables at times tn and tnþ1 by

superscripts n and n þ 1, respectively, and the field vari-

ables at the previous and current iterations at the current

time step tnþ1 by superscripts k and k þ 1 (in which case the

superscript n þ 1 is suppressed). Let tnþ1
D denote the dif-

ference tnþ1 � tn. Using the generalized trapezoidal rule for

the time discretization of u and H, we have

unþ1 ¼ un þ ð1 � aÞ _un þ a _unþ1
� �

tnþ1
D ;

Hnþ1 ¼ Hn þ ð1 � aÞ _Hn þ a _H
nþ1

h i
tnþ1
D :

We now linearize the variational statements given by

Eqs. (11) and (12) using the following incremental

relations:

ukþ1 ¼ uk þ uD;

pkþ1 ¼ pk þ pD;

Hkþ1 ¼ Hk þHD:

In modelling electromagnetic problems using nodal finite

elements, one major difficulty that is encountered is the

occurrence of spurious modes. A penalty term is generally

added to suppress the spurious modes. Although this
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strategy works for convex domains, it fails to model sharp

corners and edges. In [28], we have developed a strategy for

circumventing this problem, whereby we use a thin layer of

elements with zero penalty surrounding the surfaces with

sharp edges, while in the rest of the domain, a nonzero

penalty is used. Based on a large number of benchmark

problems, we have shown in [28] that this strategy works

successfully.

2.3 Finite-element formulation

Let the magnetic, velocity and pressure fields, and their

variations (denoted by subscript d) and increments (denoted

by subscript D) be interpolated as

H ¼ NĤ; u ¼ Nû; p ¼ Npp̂;

Hd ¼ NĤd; ud ¼ Nûd; pd ¼ Npp̂d;

HD ¼ NĤD; uD ¼ NûD; pD ¼ Npp̂D:

The shape functions N for u and H are the standard Lagrange

shape functions, while the pressure field interpolation Np is

chosen as in [24] to be continuous and one order lower

(‘Taylor–Hood element’), so that the mixed finite-element

strategy satisfies the BB (or inf-sup) condition [10]. In this

work, we use Q9/Q4/Q9 (biquadratic/bilinear/biquadratic) and

B27/B8/B27 (triquadratic/trilinear/triquadratic) elements for

two- and three-dimensional problems.

Using these interpolation functions, we have

Dc uD
kþ1

� �
¼ Bûkþ1

D ;

$uD
kþ1

� �
uk ¼ RBNLû

kþ1
D ;

$ � uDkþ1 ¼ Bpû
kþ1
D ;

$�HD
kþ1 ¼ BHĤ

kþ1

D ;

$ �HD
kþ1 ¼ BpĤ

kþ1

D ;

where

B ¼

N1;x 0 0 N2;x 0 0 : : :

0 N1;y 0 0 N2;y 0 : : :

0 0 N1;z 0 0 N2;z : : :

N1;y N1;x 0 N2;y N2;x 0 : : :

0 N1;z N1;y 0 N2;z N2;y : : :

N1;z 0 N1;x N2;z 0 N2;x : : :

2
666666664

3
777777775
;

ð13aÞ

Bp ¼ N1;x N1;y N1;z N2;x N2;y N2;z : : :½ �;
ð13bÞ

R ¼
uk

x uk
y uk

z 0 0 0 0 0 0

0 0 0 uk
x uk

y uk
z 0 0 0

0 0 0 0 0 0 uk
x uk

y uk
z

2
664

3
775; ð13cÞ

BNL ¼

N1;x 0 0 N2;x 0 0 : : :

N1;y 0 0 N2;y 0 0 : : :

N1;z 0 0 N2;z 0 0 : : :

0 N1;x 0 0 N2;x 0 : : :

0 N1;y 0 0 N2;y 0 : : :

0 N1;z 0 0 N2;z 0 : : :

0 0 N1;x 0 0 N2;x : : :

0 0 N1;y 0 0 N2;y : : :

0 0 N1;z 0 0 N2;z : : :

2
66666666666666664

3
77777777777777775

;

ð13dÞ

BH ¼
0 �N1;z N1;y 0 �N2;z N2;y : : :

N1;z 0 �N1;x N2;z 0 �N2;x : : :

�N1;y N1;x 0 �N2;y N2;x 0 : : :

2
64

3
75:

ð13eÞ

After carrying out a linearization of the variational state-

ments, the discretizations of the various cross-product terms

that occur in this formulation are as follows:

HD
kþ1 � uk ¼ �uk

matNĤ
kþ1

D ;

uD
kþ1 �Hk ¼ �Hk

matNûkþ1
D ;

uk �Hk ¼ �Hk
matu

k;

Hd � n ¼ �nmatNĤd;

Gk ¼ $�Hk;

ð$�HkÞ�Hk ¼ �Hk
matG

k;

ud �ð$�HkÞ ¼ �Gk
matNûd;

where

uk
mat ¼

0 �uk
3 uk

2

uk
3 0 �uk

1

�uk
2 uk

1 0

2
64

3
75; Hk

mat ¼
0 �Hk

3 Hk
2

Hk
3 0 �Hk

1

�Hk
2 Hk

1 0

2
64

3
75;

Gk
mat ¼

0 �Gk
3 Gk

2

Gk
3 0 �Gk

1

�Gk
2 Gk

1 0

2
64

3
75; nmat ¼

0 �n3 n2

n3 0 �n1

�n2 n1 0

2
64

3
75:

Substituting these relations into the linearized form of the

variational formulation given by Eqs. (11) and (12), we get

the discrete form of the equations as

Muu 0 0

0 0 0

0 0 MHH

2
64

3
75þ atnþ1

D

Kuu Kup KuH

Kpu 0 0

KHu 0 KHH

2
64

3
75

0
B@

1
CA

ûkþ1
D

� �nþ1

p̂kþ1
D

� �nþ1

Ĥ
kþ1

D

� 	nþ1

2
6664

3
7775 ¼

Fu

Fp

FH

2
64

3
75;

ð14Þ
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where

Muu ¼
Z
X
qNTN dX;

MHH ¼
Z
X
rlNTN dX;

Kuu ¼
Z
X
qNTð$ukÞN dXþ

Z
X
qNTRBNL dX

þ
Z
X
BTCcB dX;

Kup ¼ �
Z
X
BT

pNp dX;

KuH ¼
Z
X
lNTHk

matBH dX�
Z
X
lNTGk

matN dX;

Kpu ¼
Z
X
NT

pBp dX;

KHu ¼
Z
X
lrBT

HH
k
matN dX�

Z
C
lrNTnT

matH
k
matN dC;

KHH ¼
Z
X
BT

HBH dXþ
Z
X
BT

pBp dX�
Z
X
lrBT

Hu
k
matN dX

þ
Z
C
lrNTnT

matu
k
matN dC;

Fu ¼ atnþ1
D

Z
X
qNTbnþ1 dXþ

Z
Ct

NT�tnþ1
dC�

Z
X
BTsk dX




�
Z
X
qNT ð$ukÞuk

� �
dX�

Z
X
lNTHk

matð$�HkÞdX

�

þ
Z
X
qNT un � uk þ ð1 � aÞtnþ1

D _un
� �

dX;

Fp ¼ �atnþ1
D

Z
X
NT

p ð$ � ukÞdX;

FH ¼ atnþ1
D

Z
C
lrNTnT

matH
k
matu

k dC�
Z
X
rlBT

HH
k
matu

k dX




�
Z
X
BT

Hð$�HkÞ dX�
Z
X
BT

p ð$ �HkÞdX

�

þ
Z
X
rlNT Hn �Hk þ ð1 � aÞtnþ1

D
_Hn

� �
dX:

We use a direct sparse matrix solver [29, 30] for solving the

system of equations given by Eq. (14).

2.4 Steady-state formulation

Under steady-state conditions, the governing differential

equations (10) simplify to

$� $�Hð Þ ¼ rl$� u�Hð Þ on X; ð15aÞ

$ � u ¼ 0 on X; ð15bÞ

qð$uÞu ¼ $ � sþ qbþ lð$�HÞ�H on X: ð15cÞ

In place of Eq. (14), we now get

Kuu Kup KuH

Kpu 0 0

KHu 0 KHH

2
64

3
75

ûkþ1
D

p̂kþ1
D

Ĥ
kþ1

D

2
64

3
75 ¼

Fu

Fp

FH

2
64

3
75; ð16Þ

where

Kuu ¼
Z
X
qNTð$ukÞN dXþ

Z
X
qNTRBNL dX

þ
Z
X
BTCcB dX;

Kup ¼ �
Z
X
BT

pNp dX;

KuH ¼
Z
X
lNTHk

matBH dX�
Z
X
lNTGk

matN dX;

Kpu ¼
Z
X
NT

pBp dX;

KHu ¼
Z
X
lrBT

HH
k
matN dX;

KHH ¼
Z
X
BT

HBH dXþ
Z
X
BT

pBp dX�
Z
X
lrBT

Hu
k
matN dX;

Fu ¼
Z
X
qNTb dXþ

Z
Ct

NT�t dC�
Z
X
qNT ð$ukÞuk

� �
dX

�
Z
X
BTsk dX�

Z
X
lNTHk

matð$�HkÞ dX;

Fp ¼ �
Z
X
NT

p ð$ � ukÞ dX;

FH ¼ �
Z
X
rlBT

HH
k
matu

k dX�
Z
X
BT

Hð$�HkÞ dX

�
Z
X
BT

p ð$ �HkÞ dX:

These equations can be used to solve for the steady-state

solution (in case it exists).

2.5 Two-dimensional formulation

For two-dimensional flows, we have u ¼ ðux; uyÞ and

H ¼ ðHx;HyÞ. Only the z-component of $�H given by

oHy=ox � oHx=oy is nonzero. In place of Eq. (13), we

have

B ¼
N1;x 0 N2;x 0 : : :

0 N1;y 0 N2;y : : :

N1;y N1;x N2;y N2;x : : :

2
64

3
75; ð17aÞ

Bp ¼ N1;x N1;y N2;x N2;y : : :½ �; ð17bÞ

R ¼
uk

x uk
y 0 0

0 0 uk
x uk

y

" #
; ð17cÞ
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BNL ¼

N1;x 0 N2;x 0 : : :

N1;y 0 N2;y 0 : : :

0 N1;x 0 N2;x : : :

0 N1;y 0 N2;y : : :

2
6664

3
7775; ð17dÞ

BH ¼ �N1;y N1;x �N2;y N2;x : : :½ �: ð17eÞ

The following replacements need to be carried out in the

three-dimensional formulation to obtain the two-dimen-

sional one:

HD
kþ1 � uk ! � uk

x uk
y

� �
SĤ

kþ1

D ;

uD
kþ1 �Hk ! � Hk

x Hk
y

� �
Sûkþ1

D ;

uk �Hk ! uk
x uk

y

� � Hk
y

�Hk
x

" #
;

ð$�HkÞ�Hk ! �ð$�HkÞz

Hk
y

�Hk
x

" #
;

ud �ð$�HkÞ ! ð$�HkÞzSûd;

where

S ¼
0 N1 0 N2 : : :

�N1 0 �N2 0 : : :

� �
:

3. Numerical examples

We now demonstrate the good performance of the mono-

lithic strategy on a number of problems. We compare the

performance of the proposed method with either analytical

solutions or results obtained using other numerical strate-

gies, e.g., ones that use a stabilized formulation.

3.1 Hartman–Poiseuille flow

A conducting fluid flows between two parallel plates

located at y ¼ �h under the influence of a pressure gradient

�qG and a magnetic field H ¼ ðB0=lÞey. The analytical

solution is given by [31]

ux ¼ V 1 � coshðHa gÞ
coshðHaÞ

� 

;

uy ¼ 0; uz ¼ 0;

Hx ¼
B0Rem sinhðHa gÞ
lHa coshðHaÞ � 1 þ E

B0V

� 

B0Remg

l
;

Hy ¼
B0

l
; Hz ¼ 0;

p ¼ �qGx � lH2
x

2
;

ð18Þ

where

Rem ¼ lrVh; Ha ¼
ffiffiffiffiffi
r
lv

r
B0h; g ¼ y

h
;

and

V ¼ qGHa

rB2
0 tanhðHaÞ ; E ¼ qG

rB0

1 � Ha

tanhðHaÞ

� 

;

ðfor insulating wallsÞ

V ¼ qG

rB2
0

; E ¼ 0 ðfor perfectly conducting wallsÞ:

We use the same parameters as in [13], namely, r ¼ 7:14�
105 ðXmÞ�1

, lr ¼ 9:2878, lv ¼ 1:5 � 10�4 kg=ðmsÞ,
qG ¼ 4:85 � 10�5 Pa=m, h ¼ 0:5 m, B0 ¼ 1:4494 �
10�4 Tesla (corresponding to Ha ¼ 5). The domain is

½0; 1�m � ½�0:5; 0:5�m. We impose u ¼ 0 and Hx ¼ 0 on

the surfaces y ¼ �0:5, while on the surfaces x ¼ 0; 1, we

impose the traction (which in this case turns out to be the

same as the pressure times the normal) obtained from the

analytical solution, and Hy ¼ lB0. The pressure value at the

origin is prescribed to be zero (datum value). We use the

Q9/Q4/Q9 element for meshing; the mesh specifications for

different Hartman numbers are given in table 1. Figure 1

(compare with figures 9 and 10 of [13]) shows the excellent

match of the numerical and analytical results. For all cases,

convergence was achieved in just 2 iterations. Nizar [12]

has solved the same problem with a mesh of 1600 nodes.

Shadid et al [14] use a 200 � 200 element mesh for

Ha ¼ 20, while in the present formulation, only a 99-node

mesh suffices to get an almost perfect match with the

analytical solution.

3.2 Hartman–Poiseuille flow with external

induced current

In the Hartman–Poiseuille flow, if the duct wall has

thickness t and length L, has finite conductivity rp and

carries an external current I, then the solution is the same as

that given by Eq. (18) except that now [31]

E ¼ Ha

CHa þ tanhðHaÞ
�qG

rB0

1 � tanhðHaÞ
Ha

� �
þ I

2rLh

� 

;

V ¼ Ha

CHa þ tanhðHaÞ
qGð1 þ CÞ

rB2
0

� I

2rB0Lh

� 

;

Table 1. Mesh specifications for the Hartman–Poiseuille problem.

Ha No. of elements No. of nodes No. of degrees of freedom

1 1 � 2 15 31

2 1 � 4 27 67

5 1 � 8 51 139

10 1 � 8 51 139

20 1 � 16 99 283
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where C ¼ rpt=ðrhÞ. For I\0 the system can be used as

an electromagnetic pump whose discharge is greater than

I ¼ 0. For 0\I\Icr, it can be operated as an electrical

generator where Icr ¼ ð1 þ CÞ2hLqG=B0. For I [ Icr, the

Lorentz force opposes the pressure gradient, so that if it

is strong enough, it can even reverse the direction of

flow.

We have used the same material properties as in the

insulated boundary problem. The other properties are

h ¼ 0:5 m, B0 ¼ 2:8988 � 10�4 Tesla (corresponding to

Ha ¼ 10), L ¼ 1 m and C ¼ 0:5. For these parameters

Icr ¼ 0:251. We have used a 1 � 8 (51 nodes) mesh of

Q9/Q4/Q9 elements for all the cases, and again

convergence is obtained with two iterations for each

case. Figure 2 shows the almost perfect match between

the numerical and analytical values for different I

values. The discharge with I\0 is more than that

with I ¼ 0. For I ¼ 0:5[ Icr, the direction of flow

reverses.

3.3 Hartman–Couette flow

The flow, instead of being driven by a pressure gradient as

in the previous example, is driven by a prescribed velocity

ux ¼ u0 on the top surface and a magnetic field

H ¼ ðB0=lÞey. The bottom and top surfaces are located at

y ¼ ð0; hÞ.

The analytical solution is given by [31]

ux ¼
u0 sinhðHa gÞ

sinhðHaÞ þ E0

B0

sinhðHa gÞð1 � coshðHaÞÞ
sinhðHaÞ




þ coshðHa gÞ � 1g;
uy ¼ 0;

uz ¼ 0;

Hx ¼ �B0Rem coshðHa gÞ
lHa sinhðHaÞ

� rE0h

Ha

coshðHa gÞð1 � coshðHaÞÞ
sinhðHaÞ þ sinhðHa gÞ


 �
;

Hy ¼
B0

l
;

Hz ¼ 0;

p ¼ l
2

H2
x jg¼0 � H2

x

h i
;

ð19Þ

where

Rem ¼ lru0h;

Ha ¼
ffiffiffiffiffi
r
qm

r
B0h;

g ¼ y

h
;

and

(a) (b)

Figure 1. Variation of (a) velocity ux and (b) magnetic field B�
x ¼ HxB0=ðqGhÞ as a function of y for the Hartman–Poiseuille flow with

insulating boundary.
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E0 ¼ �B0u0

2
; ðfor insulating wallsÞ;

E0 ¼ 0; ðfor perfectly conducting wallsÞ:

The material properties are r ¼ 2 ðXmÞ�1
, lr ¼ 3:3156 �

106 and lv ¼ 15 kg=ms. We have chosen B0 ¼ 27:3886 and

54.7722 Tesla (corresponding to Ha ¼ 10 and 20), and

h ¼ 1 m. The no-slip condition is imposed on the top and

bottom surfaces. The traction is prescribed on the surfaces

x ¼ 0; 1, and the pressure at the origin is prescribed to zero

to fix the datum value. The tangential H field is prescribed

on all the boundaries.

(a) (b)

Figure 2. Variation of (a) velocity ux and (b) magnetic field B�
x ¼ HxB0=ðqGhÞ as a function of y for the Hartman–Poiseuille flow with

external induced current.

(a) (b)

Figure 3. Variation of (a) velocity and (b) magnetic field as a function of y for the Hartman–Couette flow with insulating boundary.
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We have used a 1 � 8 mesh of Q9/Q4/Q9 elements (51

nodes and 139 degrees of freedom (dofs)) for all the cases

considered. In each case, convergence is achieved in 4

iterations. Figures 3 and 4 show the almost perfect match

between the numerical and analytical results for both types

of boundary conditions.

3.4 Flux expulsion problem

An infinitely long cylinder of radius r0 rotates with a

constant angular velocity x0 in a conducting medium of

magnetic permeability l and conductivity r, in a uniform

magnetic field ðB0; 0; 0Þ, and if the flow velocity is zero

outside the cylinder, then the analytical solution is given by

[32], for r 	 r0:

ux ¼�x0y;

uy ¼x0x;

Hx ¼ Im
B0Deih

l
qsinh

2
J0ðqrÞ� J2ðqrÞ½ �þ icoshJ1ðqrÞ

r

� 
� �
;

Hy ¼ Im
B0Deih

l
i sinhJ1ðqrÞ

r
� qcosh

2
J0ðqrÞ� J2ðqrÞ½ �

� 
� �
;

whereas for r[ r0

ux ¼ 0;

uy ¼ 0;

Hx ¼ Im
B0eih

l
1 � C

r2

� �
sin hþ i cos h

r

C

r
þ r

� �� 
� �
;

Hy ¼ Im
Beih

l
i sin h

r

C

r
þ r

� �
� cos h 1 � C

r2

� �� 
� �
;

and uz ¼ p ¼ Hz ¼ 0; 8r. Here, ‘Im’ denotes the imaginary

part of the argument, and

C ¼ r0 2J1ðqr0Þ � qr0J0ðqr0Þ½ �
qJ0ðqr0Þ

;

D ¼ 2

qJ0ðqr0Þ
;

q ¼ ð1 � iÞk0ffiffiffi
2

p ;

k0 ¼
ffiffiffiffiffiffiffiffiffi
Rem

p

r0

;

Rem ¼ lrx0r2
0 :

(a) (b)

Figure 4. Variation of (a) velocity and (b) magnetic field as a function of y for the Hartman–Couette flow with conducting boundary.
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−0.6
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0
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0.4

0.6

0.8

1

Y

X

Figure 5. Mesh for the flux expulsion problem.
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The domain used is ½�2; 2�m � ½�1; 1�m. The values of

the other parameters are r0 ¼ 0:2 m, r ¼ 4 ðXmÞ�1
,

l ¼ 0:25 N=A
2
, B0 ¼ 1 Tesla and Rem ¼ 96. The velocity

and pressure are prescribed at all the nodes, while on the

outer boundary, the tangential H field is prescribed. The

used mesh of Q9/Q4/Q9 elements is shown in figure 5 (448

elements, 1777 nodes). The solution converges within 2

iterations. In [14], the same problem is solved using 20000

unstructured Q4 elements. Figure 6 shows the close match

with the analytical magnetic field, both inside and outside

the cylinder.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

y

B
x

Analytical
FEM

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

y
B

y

Analytical
FEM

(b)

Figure 6. Variation of the magnetic field along the y-axis for the flux expulsion problem.
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0
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(a)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

x 10
−6

0

0.5

1

1.5

2

2.5

Bx

y

Analytical
t = 0.02 sec
t = 0.04 sec
t = 0.06 sec
t = 0.08 sec

(b)

Figure 7. Variation of the velocity and magnetic field along y for Rayleigh flow at different times.
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3.5 Rayleigh flow

Consider a semi-infinite domain of a conducting fluid at

rest, which is set in motion at t ¼ 0 by a constant velocity U

applied to the bottom surface, and a constant applied

magnetic field H ¼ B0ey. A diffusive wave front propagates

in the direction normal to the plate. Ahead of the wavefront

the fluid remains at rest, while behind the wavefront, the

fluid has a nonzero velocity ux and induced magnetic field

Hx. An analytical solution can be derived under the

restriction m ¼ 1=ðlrÞ. Denoting the error function by erf,

the analytical expressions for the various field variables at

time t are given by [31]

ux ¼
U

4
2 � erfðkþÞ þ erfðk�Þ½ � þ e�A0y=m 1 � erfðk�Þ½ �

n

þ eA0y=m 1 � erfðkþÞ½ �g;
uy ¼ 0;

uz ¼ 0;

Hx ¼
U

ffiffiffi
q

p

4
ffiffiffi
l

p erfðk�Þ � erfðkþÞ½ � þ e�A0y=m 1 � erfðk�Þ½ �
n

� eA0y=m 1 � erfðkþÞ½ �g;

Hy ¼
B0

l
;

Hz ¼ 0;

p ¼ � lH2
x

2
;

where

k� ¼ y � A0t

2
ffiffiffiffi
mt

p ;

A0 ¼ B0ffiffiffiffiffiffi
ql

p :

We have used the following values: q ¼ 4 � 10�5 kg=m3,

r ¼ 7:9577 � 105 ðXmÞ�1
, lr ¼ 1, m ¼ 1 m2=s, U ¼

1 m=s and B0 ¼ 1:4494 � 10�4 Tesla. The domain is the

rectangle (0,1) m� (0,4) m. The same problem has also

been attempted in [14].

We have used a 1 � 24 (147 nodes and 424 dofs) mesh of

9-node quadrilateral elements, while in [14], a mesh of

50 � 250 (12101 nodes) linear elements has been used. A

time step of 0.001 s and a ¼ 0:5 are used. The strategy

converges within a maximum of 4 iterations at each time

step. Figure 7 shows the almost exact match with the

analytical solution (compare against figure 8 of [14]).

3.6 2D lid-driven cavity problem in the presence

of a magnetic field

The problem domain is a square with dimension 1 m. The

top surface starts moving at time t ¼ 0 with velocity 1 m/s.

(a)

(b)

(c)

Figure 8. Variation of different fields for the 2D lid-driven

cavity flow.
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No slip boundary conditions are applied to the other three

surfaces. A uniform magnetic field H ¼ 2 ey A/m is applied

throughout the domain at all times. Initially, Hx is set to

zero. For the top and bottom surfaces Hx ¼ 0 for all times.

The conducting fluid inside the cavity has density

1000 kg=m
3
, while the other properties are chosen so that

Re ¼ 1000, Rem ¼ 1 and Ha ¼ 20.

Coarse (60 � 60) and fine (120 � 120) meshes of 9-node

quadrilateral elements are used to mesh the geometry. For

the steady-state analysis, 10 load steps are used, with

convergence achieved within each load step within 4 iter-

ations. For the transient analysis, we have used a ¼ 0:5 and

a time step of 0.5 s, with convergence achieved at each time

step within a maximum of 5 iterations. Figure 8 shows the

evolution of the velocity profiles at various times for both

levels of meshing. The convergence with respect to mesh

refinement at all times is also evident from the plot. For this

loading, a steady-state solution exists and is reached at

sufficiently large times while performing the transient

analysis. Figure 9 shows the velocity contours at different

times. In order to demonstrate the quadratic convergence of

our scheme, figure 10 shows the normalized error norm

jjFjji=jjFjj0 as a function of the iteration number at dif-

ferent time steps.
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Figure 9. Velocity contours for the 2D lid-driven cavity flow problem.
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3.7 Hartman–Poiseuille flow through a duct

with a rectangular cross-section

A conducting fluid of density q, kinematic viscosity m and

conductivity r flows through a duct of rectangular cross-

section (see figure 11). A pressure gradient �qG is applied

along the z-direction, and the applied magnetic field is

H ¼ ðB0=lÞey. The surfaces x ¼ �b and y ¼ �a are

referred to as side and Hartman wall, respectively. An

analytical solution has been presented in [9, 33]. However,

this analytical solution fails to satisfy the governing dif-

ferential equation at x ¼ �b since the solution corre-

sponding to a zero ‘separation-of-variables’ constant was

inadvertently omitted. The corrected solution is given by

ux ¼ 0; uy ¼ 0; uz ¼
1

lv

VqGa2;

Hx ¼ 0; Hy ¼
B0

l
; Hz ¼

ffiffiffiffiffi
r
lv

r
HqGa2;

p ¼ �qGz �
lH2

z

2
;

where, with n ¼ x=a, g ¼ y=b and l ¼ b=a,

V ¼ 1

2
ðl2 � n2Þ �

X1
j¼1

cos
ajn
l

� 


c1 coshðr2jgÞ þ c2 coshðr1jgÞ
� �

;

H ¼
X1
j¼1

cos
ajn
l

� 

c1 sinhðr2jgÞ þ c2 sinhðr1jgÞ
� �

;

aj ¼
ð2j � 1Þp

2
;

r1j ¼
1

2
ðHa � sjÞ;

r2j ¼
1

2
ðHa þ sjÞ;

sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ha2 þ ð1 � 2jÞ2p2

l2

s
;

Ha ¼
ffiffiffiffiffi
r
lv

r
B0a:

The constants c1 and c2 depend on the boundary conditions

imposed on the Hartman and side walls. The following two

cases are considered.

Case

1

Both Hartman and side walls are insulating

c1 ¼ kj sinhðr1jÞ
sinhðsjÞ

; c2 ¼ � kj sinhðr2jÞ
sinhðsjÞ

;

Case

2

Conducting Hartman wall and insulating side walls

c1 ¼ � kj

2ð1 þ pjr2jÞ coshðr2jÞ
; c2 ¼ � kjr2j

sj coshðr1jÞ
;

where

kj ¼
16ð�1Þj

l2

ð2j � 1Þ3p3
;

pj ¼
2Hal2

ð2j � 1Þ2p2
:

The parameters that we have used are a ¼ 0:2 m,

b ¼ 0:3 m, qG ¼ 20 Pa=m, r ¼ 100 ðXmÞ�1
,

lv ¼ 1 kg m�1s�1, q ¼ 1 kg=m
3
, l ¼ 1 N=A

2
, B0 ¼ 5 and

10 Tesla (corresponding to Ha ¼ 10 and Ha ¼ 20). For the

simulation, we have considered the case where the side and

Hartman walls are insulating. Taking into account the

symmetry about the y-axis, we have modelled half the

domain (0,0.3) m�(-0.2,0.2) m. Symmetry boundary

conditions (normal u and normal H are zero) are prescribed

on the boundary x ¼ 0. No slip boundary conditions are

prescribed for the velocity, and the tangential components

of H are prescribed to zero on the other three boundaries;

27-node hexahedral meshes of 5 ðxÞ � 10 ðyÞ � 1 ðzÞ and

1 2 3 4
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N
o
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t = 10 sec

Figure 10. Convergence of the solution with iterations.

Figure 11. Hartman–Poiseuille flow through a rectangular duct.
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8 ðxÞ � 16 ðyÞ � 1 ðzÞ elements for Ha ¼ 10 and 20,

respectively, are used. We have used 10 load steps, and in

each load step, convergence is achieved in a maximum of 3

iterations. Figure 12 shows the almost perfect agreement

with the analytical solution for all the field variables.

3.8 3D lid-driven cavity problem in presence

of magnetic field

Consider a cube of dimension 1 m filled with a conducting

fluid of density 1000 kg=m
3
. The other properties are such

that Re ¼ 1000, Rem ¼ 1 and Ha ¼ 30. A uniform mag-

netic field H ¼ 2ey A/m is applied. All other components of

H and the velocity vector are initially zero. At t ¼ 0, the

y ¼ 1 plane of the cavity is set in motion with velocity

ux ¼ 1 m=s. The tangential magnetic fields are prescribed at

the walls, i.e., for x ¼ 0; 1 m planes, Hy ¼ 2, Hz ¼ 0, for

y ¼ 0; 1 m planes, Hx ¼ Hz ¼ 0 and for z ¼ 0; 1 m planes,

Hx ¼ 0, Hy ¼ 2. Because of symmetry considerations, we

(a) (b)

(c) (d)

Figure 12. Variation of different fields for the 3D Hartman–Poiseuille flow.

Table 2. Mesh specifications for the 3D lid-driven cavity

problem.

Mesh Nb Nx (¼ Ny) Nz

Coarse 5 8 3

Fine 8 10 3
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have modelled half the domain given by

ð0; 1Þm � ð0; 1Þm � ð0; 0:5Þm. The boundary conditions

uz ¼ 0 and Hz ¼ 0 are prescribed on the symmetry face.

A graded mesh of 27-node hexahedral elements (with a

finer mesh near the walls) is used to model this problem.

Table 2 presents the mesh specifications for the coarse and

fine meshes with Nb denoting the number of elements in the

0.1 m region from each of the 5 boundaries (other than the

symmetry boundary), Nx and Ny denoting the number of

elements along the x- and y-directions, respectively, for the

intermediate 0.8 m region, and Nz denoting the number of

elements in the top 0.4 m region along the z-direction.

Figure 13 shows the x–y and x–z views of the coarse mesh.

The time step is taken to be 0.5 s. Convergence is

achieved within a maximum of 5 iterations in each time

step. The steady-state analysis is performed using 10 load

steps, and convergence is achieved in a maximum of 4

iterations at each load step. For Re ¼ 1000 and Ha ¼ 20,

figure 14 presents the evolution of different field variables

along x ¼ 0:5 and y ¼ 0:5 on the mid z-plane as a function

of time. Convergence of the solution with respect to mesh

refinement is evident from the plot. At higher times (not

Figure 13. Mesh for the 3D lid-driven cavity problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Variation of the different fields with time on the z ¼ 0:5 m plane in the 3D lid-driven cavity problem (Re ¼ 1000, Ha ¼ 20).
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shown in the plot), all field variables converge to the

steady-state solution.

4. Conclusion

In this work, a monolithic strategy for magnetohydrody-

namics based on a continuous pressure interpolation (which

is known to be BB stable) has been presented. Both fully

transient and steady-state formulations for two- and three-

dimensional problems have been developed. The exact

linearization used in the monolithic strategy ensures rapid

convergence within each time (or load) step, while the BB-

stable nature of the interpolations used ensures that no

instabilities arise in the solution. An existing analytical

solution has been corrected, and a new analytical solution

for wedge-type geometries has been presented. A variety of

steady-state and transient problems have been solved and

compared in many cases against analytical solutions or

against existing numerical solutions. The developed strat-

egy is shown to yield extremely good coarse-mesh accuracy

and is, thus, both robust and efficient.

Nomenclature
a parameter in the generalized trapezoidal rule

b body force per unit mass

B magnetic induction

C material constitutive tensor

D electric displacement

Dc rate of deformation tensor

E electric field

� electric permittivity

�0; �r � of vacuum, relative �
C boundary

Ha Hartman number

H magnetic field

j current density

l magnetic permeability

l0, lr l of vacuum, relative l
lm fluid dynamic viscosity

n unit normal vector

m kinematic viscosity

X domain

p fluid pressure

Re Reynolds number

Rem magnetic Reynolds number

q fluid density

qc charge density

r conductivity

t time

t traction vector acting on the surface

tD time step in the transient strategy

s Cauchy stress tensor

u fluid velocity

_\ [ Derivative of \ [ with respect to time
^\ [ Discretized nodal values of \ [

\ [ d Variation of \ [
\ [ D Increment of \ [
\ [ n \ [ at time tn

\ [ k \ [ at kth iteration at time tnþ1
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