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Abstract. In this numerical study, hydrodynamically developed but thermally developing forced convection

in a microtube subjected to a step change in the wall heat flux is analysed using a finite-volume method. The slip

velocity and temperature jump conditions at the wall and the axial conduction in the fluid are included in the

analysis. The combined effects of the Peclet number and the Knudsen number on the local Nusselt numbers as

well as on the wall and bulk temperatures are determined in the continuum and slip flow regimes (0 B Kn B 0.1).

In the entrance region, large reductions are observed in the Nusselt number with decreasing Peclet number or

increasing Knudsen number. The results also show that the thermal length increases with decreasing Peclet

number.
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1. Introduction

In the recent years, a great deal of research attention has

been paid to the area of microchannel flow and heat transfer

due to developments in the electronic industry, microfab-

rication technologies, biomedical engineering, etc. In gen-

eral, there is also a shift in the focus of published articles,

from descriptions of the manufacturing technologies to

discussions of the physical mechanisms of flow and heat

transfer [1].

It is now well known that microscale fluid flow and heat

transfer phenomena differ dramatically from those at

macroscale. At macroscale, classical conservation equa-

tions are successfully coupled with the corresponding wall

boundary conditions, usual no-slip for the hydrodynamic

boundary condition and no-temperature-jump for the ther-

mal boundary condition. These two boundary conditions

are valid only if the fluid flow adjacent to the surface is in

thermal equilibrium. However, they are not valid for rar-

efied gas flow at microscale [1]. For this case, the gas no

longer reaches the velocity or the temperature of the sur-

face, and therefore a slip condition for the velocity and a

jump condition for the temperature should be adopted (the

slip flow regime). The velocity slip and temperature jump

are the main effects of rarefaction.

Axial conduction is an important and critical effect that

should be taken into consideration at microscale. In existing

literature, a criterion based on the Peclet number (Pe) is

often used to decide whether the axial conduction in the

fluid is included in the analysis or not. The axial conduction

is usually considered as the dominant transport mechanism

for low values of the Peclet numbers (Pe \ 100). For

macrochannels, this effect becomes critical especially for

low-Pr fluids such as liquid metals [2]. However, for

microchannels, since the characteristic lengths are very

small, they lead to much lower Pe values even for gas

flows.

The thermal entry region heat transfer problem that takes

axial heat conduction into account, known as the extended

Graetz problem, has been extensively studied in the liter-

ature for macrochannels. Hennecke [2] numerically anal-

ysed the hydrodynamically developed but thermally

developing forced convection in a tube subjected to step

change in wall heat flux. He disclosed that the temperature

profile at the inlet of the heated region deviated consider-

ably from a uniform value and received radial profile at low

Peclet numbers. Hsu [3] studied the thermal entry region

heat transfer problem in laminar flow through concentric

annuli subjected to a step jump in the wall heat flux. His

results indicated that disregarding the effect of axial con-

duction could lead to wrong results in the estimation of heat

transfer coefficients, especially for small Peclet numbers.

For the same boundary condition, Hsu [4] extended that

analysis for pipe and parallel-plate channel flows. Jones [5]

theoretically studied laminar flow inside a circular pipe

with a step change in the wall temperature using the dou-

ble-sided Laplace transform. He obtained that the incoming

fluid from the adiabatic region was significantly pre-heated

and, hence, the assumption of constant temperature at the

inlet of heated region was not valid for low values of the

Peclet number. Verhof and Fisher [6] numerically solved

the extended-Graetz problem of laminar flow of heat
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transfer in a pipe with prescribed constant wall heat flux

and temperature conditions by taking the effect of axial

conduction into consideration. They solved the energy

equation using a finite-difference technique. Papoutsakis

et al [7] analytically studied the extended Graetz problem

based on a self adjoint formalism obtained by decomposing

the energy equation into a pair of first-order partial differ-

ential equations. Vick et al [8] employed finite integral

transform technique to solve the thermal entrance region

heat transfer problem with axial conduction. Ebadian and

Zhang [9] analysed the effect of axial conduction on heat

transfer characteristics of laminar gas flow in a circular pipe

subjected to a step change in wall temperature. In another

study, Ebadian and Zhang [10] extended their analysis by

taking the effect of internal heat generation into consider-

ation for the same problem. The thermal entrance length

was found to be delayed to pipe exit with an increase in

Peclet number. Bilir [11] numerically investigated the

conjugate heat transfer problem for laminar pipe flow,

taking wall and fluid axial conduction into consideration.

He reported that the effect of wall conduction on heat

transfer increased with increasing wall thickness while it

decreased with decreasing Peclet number. The extended

Graetz problem with piecewise constant temperature for

pipe and channel flows is analytically studied by Lahjomri

and Oubarra [12] and Weigand and Lauffer [13] over a

wide range of Peclet number.

Although the extended Graetz problem has been exten-

sively studied for macrochannels, few studies have been

carried out for microchannels. Jeong and Jeong [14] ana-

lytically studied the effects of axial conduction and viscous

dissipation in parallel-plate microchannel flow both for

uniform wall temperature and uniform heat flux boundary

conditions. In the presence of axial conduction, the local

Nusselt number was found to decrease with a decrease in

the Peclet number in the entrance region. Myong et al [15]

analysed the convective heat transfer of rarefied gas flow in

a micro-tube by taking the axial conduction effect into

consideration. Slip corrections were made by employing a

new Langmuir model based on the concept of absorption of

gases on to solids as well as the conventional Maxwell

model. Their results show that both models predicted the

same reduction in heat transfer with increasing rarefaction,

expect that the value of the energy accommodation was

much smaller than that of the momentum accommodation.

Dutta et al [16] obtained analytical solutions for tempera-

ture distributions and heat transfer characteristic of mixed

electro-osmotic and pressure-driven flow in two-dimen-

sional microchannels. Their results showed that the tem-

perature profile in the fully developed region was

independent of Peclet number. Cetin et al [17] analytically

solved the extended Graetz problem inside a microtube

including rarefaction, viscous dissipation and axial con-

duction effects in the analysis. The semi-infinite half of the

tube wall was kept adiabatic while the other half was kept

at a uniform wall temperature. The fully developed Nusselt

number and thermal entrance length were found to increase

with decreasing Peclet number. In another study, Cetin et al

[18] extended their solution for the constant heat flux

boundary condition. In their analysis, the effect of axial

conduction was ignored in the adiabatic region. Aziz and

Niedbalski [19] compared the first- and second-order slip

flow model predictions for the thermal development of

dilute gas flow in a microtube with axial conduction and

viscous dissipation. The conventional slug flow problem in

parallel-plate microchannel was analytically studied by

Mecili and Mezaache [20] for constant wall temperature

and constant heat flux boundary conditions, taking into

consideration slip characteristics and axial conduction

effect. Cole et al [21] analytically investigated the conju-

gate heat transfer problem in a parallel-plate microchannel

in the slip flow regime. The effect of axial conduction both

in the gas and wall is included in their analysis. In a very

recent study, the combined effects of axial conduction,

viscous dissipation and pressure work for a gaseous slip

flow in a micropipe and a parallel-plate microchannel were

studied by Haddout and Lahjomri [22]. The channel wall

had a small part located at the centre, being kept at high

temperature while the rest at lower temperature. In the

presence of axial conduction, the local Nusselt number was

found to increase with a decrease in the length of heated

section. Balaj et al [23] numerically investigated the con-

vective heat transfer of argon gas through a

micro/nanochannel in both slip and transition flow regimes

using the direct simulation of Monte Carlo (DSMC)

method. They stated that the Nusselt number decreased

with increasing Knudsen number in the transition flow

regime and approached a constant value at high Knudsen

numbers. In another study, Balaj et al [24] studied the

effect of shear work on convective heat transfer in a

microplane duct with constant heat flux imposed. For the

wall cooling case, they observed some singularities in the

local Nusselt number and discussed them in terms of energy

balance.

Our group has contributed to the microscale heat and

fluid flow phenomena literature with some articles

[25–29], focusing our interest on the slip flow regime. All

these articles have neglected the effect of axial conduc-

tion. In our very recent study [30], we included this

effect for the problem of laminar forced slip flow in a

microduct with a sinusoidally varying heat flux in an

axial direction.

The cited literature review shows that the extended-

Graetz problem inside a microtube under constant heat flux

boundary condition has not been completely solved yet.

The aim of this study is to numerically investigate the

laminar convective heat transfer in the thermal entrance

region of a microtube subjected to a step change in wall

heat flux. The combined effects of the Knudsen number and

the Peclet number on the axial wall and bulk temperature

profiles and, in the following, on the Nusselt number, are

determined and discussed.
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2. Problem description and analysis

2.1 Governing equations and boundary conditions

Consider a laminar flow of rarefied gas in a microtube that

is fully developed hydrodynamically but thermally devel-

oping. The fluid enters the tube with a uniform temperature,

Te. The upstream region of the tube (–L B x \ 0) is

externally well insulated, and the downstream region of the

tube (0 B x B L) is subjected to a uniform axial and cir-

cumferential heat flux (figure 1). Thermophysical proper-

ties of the fluid are assumed to be constant, and the axial

heat conduction in the wall is considered to be negligible.

For the continuum and slip flow regimes (0 B Kn B

0.1), under the afore-mentioned assumptions, the energy

equation of a steady flow of an incompressible fluid and

appropriate boundary conditions can be written as

follows:

u
o T

o x
¼ t

Pr

1

r

o

o r
r
oT

or

� �
þ o2 T

o x2

� �
ð1Þ

x ¼ �L; 0� r � ro; T ¼ Te ð2aÞ

x ¼ L; 0� r � ro; oT=ox ¼ 0 ð2bÞ

r ¼ 0; �L� x� L; oT=or ¼ 0 ð2cÞ

r ¼ ro; �L� x\0; oT=or ¼ 0

r ¼ ro; 0� x� L; oT=or ¼ q00
w=k

ð2dÞ

Introducing the dimensionless variables

U ¼ u

um

; h ¼ T � Te

q00
wD=k

; R ¼ r

D
; X ¼ x=D

Re Pr
;

L� ¼ L=D

Re Pr
; Re ¼ umD

m
; Pe ¼ Re Pr

ð3Þ

the energy equation and boundary conditions become

U
oh
oX

¼ 1

R

o

oR
R

oh
oR

� �
þ 1

Pe2
o2h
oX2

ð4Þ

X ¼ �L�; 0�R� 0:5; h ¼ 0 ð5aÞ

X ¼ L�; 0�R� 0:5; oh=oX ¼ 0 ð5bÞ

R ¼ 0; �L� �X � L�; oh=oR ¼ 0 ð5cÞ

R ¼ 0:5; �L� �X\0; oh=oR ¼ 0

R ¼ 0:5; 0�X � L�; oh=oR ¼ 1
ð5dÞ

In the analysis, the usual continuum approach is inte-

grated with the two main characteristics of the microscale

phenomena: the velocity slip and the temperature jump.

The first-order velocity slip boundary condition is given by

[25] the relation

us ¼ � 2� F

F
k
ou

or

����
r¼r0

ð6Þ

where k(= KnD) is the molecular mean free path, and F is the

tangential momentum accommodation coefficient, which

has a value near unity for most engineering surfaces [25].

Considering the slip flow condition at the wall, the fully

developed velocity profile is obtained as follows [25]:

U ¼ 2ð1� 4R2 þ 4KnÞ
ð1þ 8KnÞ ð7Þ

where Kn is the Knudsen number, which equals k=D.

The first-order temperature jump boundary condition at

the wall is given by a similar expression:

Ts � Tw ¼ � 2� Ft

Ft

2c
cþ 1

k
Pr

oT

or

����
r¼r0

ð8Þ

where Ts is the temperature of the gas at the wall, Tw is the

wall temperature and Ft is the thermal accommodation

coefficient, which depends on the gas and surface material.

Particularly for air, it assumes typical values near unity

[25]. For the rest of the analysis, F and Ft will be assumed

to be 1. Introducing the dimensionless variables defined in

Eq. (3), the temperature jump in the dimensionless form is

written as follows:

hs�w ¼ Ts � Tw

q00
wD=k

¼ � 2c
cþ 1

Kn

Pr

oh
oR

����
R¼0:5

: ð9Þ

The fluid bulk temperature can be determined as follows:

Tb ¼

Rro

0

uT2prdr

Rro

0

u2prdr

: ð10Þ

In terms of the dimensionless variables, the fluid bulk

temperature becomes

hb ¼ Tb � Te

q00wD

k

¼

R0:5
0

UhRdR

R0:5
0

URdR

¼ 8

Z0:5

0

UhRdR: ð11Þ

In the heated region, the local Nusselt number based on

the difference between the wall and fluid bulk temperature

is obtained using Newton’s cooling law as follows:Figure 1. Schematic of the problem.
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Nu ¼ hD

k
¼

oT
or

��
r ¼ ro

D

Tw � Tb

: ð12Þ

In terms of dimensionless variables defined in Eq. (3),

Eq. (12) becomes

Nu ¼ oh=oRjR¼0:5

hw � hb

¼ 1

hw � hb

: ð13Þ

The first term in the denominator of Eq. (13) indicates

the dimensionless wall temperature, hw, which can be

written as follows:

hw ¼ hs � hs�w ¼ ðTs � TeÞ
q00

wD=k
� ðTs � TwÞ

q00
wD=k

: ð14Þ

Here, hs and hs�w are the dimensionless fluid temperature

at the wall and the temperature jump between the wall and

fluid, respectively. Substituting Eq. (11) in Eq. (14) then

gives

hw ¼ ðTw � TeÞ
q00

wD=k
¼ hjR¼0:5þ

2c
cþ 1

Kn

Pr

oh
oR

����
R¼0:5

: ð15Þ

Using Eqs. (11) and (15), the dimensionless temperature

difference between the wall and fluid bulk temperature can

be rearranged as follows:

hw � hb ¼ ðTw � TbÞ
q00

wD=k

¼ hjR¼0:5þ
2c

cþ 1

Kn

Pr

oh
oR

����
R¼0:5

�8

Z0:5

0

UhRdR: ð16Þ

Substituting Eq. (16) in Eq. (13), the local Nusselt

number can written as follows:

Nu ¼ 1

hw � hb

¼ 1

hjR¼0:5þ
2c
cþ1

Kn
Pr

oh
oR

��
R¼0:5

�8
R0:5
0

UhRdR

:

ð17Þ

2.2 Solution methodology, grid generation

and code validation

The energy equation is discretized by the control volume

discretization method in junction with the convection–dif-

fusion formulation, as described by Patankar [31]. The set

of discretized equations are solved by use of well-known

ADI iterative solution procedure. The details of the solution

procedure can be found in reference [24]. A uniform grid

structure is used in the axial (x) and radial directions (r). To

ensure that the solutions are grid-independent, several

simulations are performed. Figure 2 shows the downstream

variation of local Nusselt number for the tested grid con-

figurations. It is evident from figure 2 that the relative

percentage change in Nusselt number between the grid

sizes of 20009100 and 30009100 is less than 1%. There-

fore, all parametric runs are made with the 20009100 grid.

3. Results and discussion

In this study, combined effects of the axial conduction and

rarefaction on convective heat transfer for laminar flow

inside a microtube are investigated. The upstream region of

the tube (–L\ x\ 0) is externally well insulated while its

downstream part (x C 0) is subjected to a uniform axial and

circumferential heat flux. The Prandtl number is assumed to

be 0.71. At first, we validated our analysis by comparing

some limiting results to those available in the existing lit-

erature, mainly by those of Hennecke [2] and Cetin et al

[18] for the macroscale and microscale cases, respectively.

As can be seen from figure 3, our results obtained for dif-

ferent values of Peclet and Knudsen numbers agreed very

well with those for the macroscale case (figure 3a) and

those for the microscale case without axial conduction

effect (figure 3b).

To understand the physical phenomena of axial con-

duction and rarefaction better, axial variations of the

dimensionless wall and bulk fluid temperatures are illus-

trated in figure 4. Note that Kn = 0 represents the macro-

scale case while Kn[ 0 holds for the microscale case and

Pe = 500 represents the case with no axial conduction. For

the macroscale case, it can be clearly seen from figure 4

that the axial temperatures considerably tend to deviate

from the inlet temperature in the upstream region (X\0) as

the Peclet number becomes smaller. This behaviour can be

explained by heat diffused backwards that is generated by

axial conduction in the fluid. For lower values of Pe, due to

the low velocities in the fluid, a certain amount of heat

Figure 2. Grid independence test: The downstream variation of

local Nu for Kn = 0.00 and Pe = 20.
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supplied from the heated wall can be easily diffused to the

upstream region and, therefore, the magnitude and the

extent of axial conduction increase in the upstream region,

while the opposite is true for higher values of Pe.

According to the degree of this reverse heat, a certain radial

temperature profile is developed before the fluid reaches

X = 0. For the case of Pe = 500, in which the effect of axial

conduction is negligible, the wall and the bulk fluid tem-

peratures get equal values and maintain their flat patterns

until X = 0, in the upstream region of the tube. Similar

trends were also observed by Hennecke [2].

For a low value of the Peclet number (Pe = 5), the

downstream variations of dimensionless wall fluid bulk

temperatures for different values of Knudsen numbers are

depicted in figure 5. An increase in Knudsen number results

in a decrease in the wall temperature in the upstream region

(X\0) while it increases it in the downstream region (X[
0). Actually, this is an expected result when Eqs.(7) and (9)

are closely examined. In the upstream region, the gas at the

wall is in thermal equilibrium with the wall since no tem-

perature jump occurs. In the presence of velocity slip at the

wall, the velocity gradient decreases with increasing

Knudsen number, which implies that high velocities occur

near the wall region. As described later, these high veloc-

ities rapidly transfer the reverse heat to the upstream region,

and therefore, the wall temperature gets lower values when

compared with the macroscale case (Kn = 0). However, in

the upstream region, temperature jump becomes dominant

with increasing Knudsen number and leads to higher wall

temperatures. From figure 5, it can be also seen that the

dimensionless fluid bulk temperature is independent of

Knudsen number in the two regions.

The combined effect of rarefaction and axial conduction

on heat transfer can be seen in figure 6, which shows the

variation of local Nu number with Kn for different values of

Pe. Generally, the local Nu shows a decrease until a certain

Figure 3. The downstream variation of local Nu for various

values of Pe at Kn = 0.00 (a) and Kn at Pe = 500 (b).

Figure 4. The downstream variations of the dimensionless wall

and fluid bulk temperatures for various values of Pe.

Figure 5. The downstream variations of the dimensionless wall

and fluid bulk temperatures for various values of Kn.
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Figure 6. The downstream variation of local Nu for various values of Kn at Pe = 5 (a), Pe = 10 (b), Pe = 20)(c), Pe = 50 (d) and Pe =

500 (e).
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entrance length, which then receives its fully developed

value. For a fixed value of Pe, the local Nu decreases with

an increase in Kn. This can be explained by the opposing

effect of the temperature jump on heat transfer. As is shown

in figure 5, an increase in Kn increases the temperature

difference between the wall and the bulk, which weakens

the driving potential for the heat transfer from wall to fluid.

Therefore, for a given heat flux at the wall, an increase in

the temperature difference will decrease the local Nu.

Finally, figure 7 shows the influence of Pe on the local

Nu for various values of Kn. As a general behaviour, for all

values of Kn, the local Nu tends to decrease with a decrease

in Pe until a certain axial distance, and then changes its

behaviour in the opposite direction with decreasing Pe

before reaching its fully developed value. The decrease

with Pe near the entrance region is attributed to the aug-

mentation of axial conduction to the upstream region. This

causes higher temperature difference hw � hb at X = 0 than

that for higher values of Pe (see figure 4). After this loca-

tion (X[0), due to the convection-dominated flow at larger

values of Pe, the temperature difference between the wall

and bulk fluid increases monotonically and gets higher

values than those for lower values of Pe at a certain axial

distance. Due to this fact, the trend of local Nu is changed

in the opposite direction after this point before reaching its

fully developed value. Similar tendencies were observed by

Hsu [3] for conventional sizes of pipe and parallel-plate

channels flows. The axial conduction also affects the ther-

mal development length. As seen from figure 7, the thermal

development length increases with decreasing Pe.

Figure 7. The downstream variation of Nu for various values of Pe at Kn = 0.00 (a), Kn = 0.04 (b) and Kn = 0.10 (c).
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4. Conclusions

In this study, hydrodynamically developed, but thermally

developing forced convection in a microtube subjected to a

step change in wall heat flux has been analysed numeri-

cally. The slip velocity and temperature jump conditions at

the wall and the axial conduction in the fluid have been

included in the analysis. The combined effects of the Peclet

number and the Knudsen number on the local Nusselt

numbers as well as on the wall and bulk temperatures have

been studied in detail. Main findings of the present study

can be summarized as follows:

• Either for the macroscale case or for the microscale

case, the dimensionless wall and fluid bulk tempera-

tures increase with decreasing Pe.

• For the microscale case, the dimensionless wall

temperature decreases with increasing Kn in the

upstream region while it increases in the downstream

region. The dimensionless fluid bulk temperature is

independent of Kn.

• The local Nu get lower values for low values of Pe in

the entrance region than those for high values of Pe

due to the axial conduction (i.e., for Pe changing from

500 to 5, the local Nu number decreases at least 20% at

X = 0.001 for all values of Kn).

• For Pe [ 5, regardless of Kn, the effect of axial

conduction on local Nu is insignificant at X C 0.08.

• The fully developed Nu is independent of Pe and

decreases with increasing Kn due to higher slip

velocities and temperature jumps at the channel wall.

For a fixed value of Pe, the fully developed Nu are

4.363, 4.072, 3.748, 3.439, 3.155 and 2.904 for Kn =

0.00, 0.02, 0.04, 0.06, 0.08 and 0.10, respectively.

• A decrease in Pe increases the thermal development

length.

Nomenclature
D diameter of the microtube (m)

F tangential momentum accommodation coefficient

Ft thermal accommodation coefficient

k thermal conductivity (W/m K)

Kn Knudsen number

L half-length of the microtube (m)

L* dimensionless half-length of the microtube

Nu local Nusselt number

Pe Peclet number

Pr Prandtl number

q00
w wall heat flux (W/m2)

r radial coordinate (m)

R dimensionless radial coordinate

T temperature (K)

u velocity (m/s)

x axial direction (m)

X dimensionless axial coordinate

Greek symbols
c specific heat ratio

k molecular mean free path (m)

t kinematic viscosity (m2/s)

h dimensionless temperature, Eq. (3)

hb dimensionless fluid bulk temperature, Eq. (11)

hs�w dimensionless temperature jump between the fluid

and wall, Eq. (9)

hw dimensionless wall temperature, Eq. (14)

Subscripts
s fluid properties at the wall

w wall
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