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Abstract. The magnetohydrodynamic (MHD) flow of a third grade fluid through a rectangular channel,

considering the effect of aspect ratio, has been investigated. The flow considered is steady, laminar, incom-

pressible and hydro-dynamically fully developed. The equation, describing the flow, is a highly non-linear

partial differential equation (PDE) with remote possibility of having an exact solution and even numerical

solution also is very difficult to obtain. A combination of the homotopy perturbation method (HPM) and integral

method (IM) has been employed to solve the non-linear PDE which is scarce in open literature. The results of the

present study are compared with the results obtained by the least square method (LSM) of the MHD third grade

fluid flow through a rectangular channel, without the effect of aspect ratio and are found to be in close

agreement. The results indicate that the flow field is significantly affected by the aspect ratio which should be

considered for practical applications. In all the available literatures of the third grade fluid flow, the aspect ratio

effect is neglected and this simplifying assumption reduces the highly complicated non-linear PDE to a non-

linear ordinary differential equation (ODE). The novelty of the subject work lies in the inclusion of the effects of

aspect ratio in the governing equation describing the flow of a third grade fluid through a channel and solving

this by a combined analytical method (HPM and IM). Further, the effects of the Hartmann number and non-

Newtonian third grade fluid parameter on the flow filed are discussed.

Keywords. Third grade fluid; aspect ratio; homotopy perturbation method (HPM); integral method (IM);

Hartmann number; MHD flow.

1. Introduction

Pressure-driven flow of both Newtonian and non-Newto-

nian fluid through rectangular channels is of great prac-

tical importance due to its wide spread applications in

liquid metal flow, polymer melt flow, small size heat

exchangers and many more. In hydro-dynamically fully

developed condition, for Newtonian fluid, the solution of

the governing equation is too simple if the aspect ratio is

neglected. However, if the aspect ratio is considered, then

the governing equation is a linear 2nd order partial dif-

ferential equation (PDE) which can be solved analytically.

In [1], the authors studied the flow of Newtonian fluid

through a rectangular channel considering the effect of

aspect ratio by employing integral methods and put for-

ward some approximate solutions, which are easier to use

for obtaining the temperature by solving the energy

equation. It is well known that many of the fluids used in

the industry do not follow the Newtonian fluid model and

depending on their rheological behavior, several non-

Newtonian fluid models such as power fluid model, Cas-

son fluid model, Ellis fluid model, third grade fluid, Sisko

model, etc. have been proposed. Flow and heat transfer of

various non-Newtonian fluids through rectangular channel

have been studied by numerous researchers. Flow and heat

transfer of a power law fluid flowing through parallel

plates, considering the effect of viscous dissipation, has

been investigated in [2]. Exact analytical solutions for the

velocity and temperature have been provided and the

effects of non-Newtonian index and Brinkman number on

velocity, temperature and Nusselt number have been dis-

cussed. Couette flow, Poiseuille flow and combined Cou-

ette-Poiseuille flow through parallel plates with constant

wall temperature condition has been studied in [3]. Ana-

lytical solutions for the velocity and temperature have

been obtained by employing HPM. In [4], the exact ana-

lytical solution for the Poiseuille and Couette-Poiseuille

flow of a third grade fluid through parallel plate has been
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reported and the results were compared with the results

presented in [3].

MHD flow has drawn the attention of the researchers due to

its immense practical importance for various engineering and

medical applications. MHD is the study of the interaction

between the conducting fluid and the external magnetic field

imposed on it. The Lorentz force, stemming from the inter-

action of these two, is the key factor inMHDwhich serves as a

non-intrusive means for having a better control over the flow,

which helps in polymer melt flow, targeted drug delivery for

treatment of the tumors, in small scale heat exchangers and

many more. Over the last decade, electromagnetohydrody-

namic (EMHD) flowhas been an active area of research due to

its wide spread applications in the field of micro fluidics.

Naturally,MHDandEMHDflowand heat transfer of different

Newtonian and non-Newtonian fluids have been investigated

by numerous researchers. Mixed convection flow of a second

grade visco-elastic fluid past a wedge with porous suction and

injection has been investigated in [5]. The authors of [6]

investigated MHD flow and heat transfer in a visco-elastic

fluid over a stretching sheet considering the effect of radiation.

In [7], MHD flow and heat transfer in a power law fluid in a

stretching sheet has been studied. EMHD flow and heat

transfer in a third grade fluid flowing through micro-parallel

plates, considering the effect of viscous dissipation, is studied

by the authors of [8]. The non-linear momentum and energy

conservation equations have been solved by the traditional

perturbation method and spectral method and the effects of

various parameters on the velocity, temperature and Nusselt

number have been reported.

The aforementioned discussion clearly indicates that non-

Newtonian third grade fluid has been widely explored by the

researchers as variouspolymers, liquidmetals, suspensions are

observed to follow this model. Though many research works

have been carried out on flow and heat transfer of third grade

fluids through parallel plates (equivalent to flow through a

channel for very small aspect ratio), flow through a rectangular

channel, considering the aspect ratio effect, has never been

included in the study. But the aspect ratio effect is a very

important factor which significantly affects the flow and thus

heat transfer characteristics. In the present study,MHDflowof

a third grade fluid through a rectangular channel has been

investigated, considering the effect of the aspect ratio, which

has never been included in the previous studies. The partial

differential equation describing the flow phenomena is highly

non-linear. For solving the equations, a combination of HPM

and IM has been employed. HPM is an analytical technique,

introduced by He, which is a coupling of the homotopy theory

and the traditional perturbation method and some important

studies byHecan be found in [9, 10].HPMdoesnot require the

presence of any small or large parameter in the problem and

can take the full advantages of the traditional perturbation

method. These advantages of the HPM have attracted

numerous researchers who have applied this in various prob-

lems of engineering and industrial applications. Some

important studies by the researchers can be found in [11–14].

Integral method is another powerful technique which has been

employed by the authors [1]. The present study provides a

solution for the highly nonlinear PDE highlighting the influ-

ence of the aspect ratio on the velocity. The results are com-

pared with the LSM results for corresponding flow of a third

gradefluidwithout the effect of aspect ratio and are found to be

in close agreement. Further, the effects of the third grade fluid

parameter and Hartmann number on the velocity and flow rate

have been discussed.

2. Problem formulation

The flow of a third grade fluid through a rectangular channel,

under the influence of magnetic field has been pictorially

sketched in figure 1. The flow is steady, laminar, incom-

pressible and hydro-dynamically fully developed. The

coordinates are selected as shown in figure 1. The effect of

the imposed magnetic field has been shown by the vector B.

For steady, incompressible flow, the mass conservation

equation is given as follows:

r:V� ¼ 0 ð1Þ

where,V* is the velocity vector. The Lorentz force, generated

as a result of the interaction between the conducting fluid (an

overall neutral fluid where the electrons are responsible for

the current) and themagnetic field, will contribute to the body

force vector in the momentum conservation equation; how-

ever, it is to be noted that this force can not cause the fluid

flow by itself, but it will affect the flow characteristics sig-

nificantly. This force, stemming from the interaction of the

magnetic field and the moving conducting fluid, acts in the

opposite direction of flow and can play a role of non-intrusive

means to have a control over the flow.

Neglecting the force due to gravity, the momentum

conservation equation will be of the following form:

q
dV

dt

�
¼ r:sþ f ð2Þ

where, q is the density of the fluid, s is the stress tensor and
f is the body force per unit volume and t is the time. The

body force per unit volume is given as

f ¼ J � B ð3Þ

f is the body force here, comprising of Lorentz force. B and

Figure 1. MHD Flow of a third grade fluid through the

rectangular channel.
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J are the applied magnetic field and the current density

respectively. In the influence of magnetic field, the current

density is related to B as follows:

J ¼ rðV� � BÞ ð4Þ

where, r is the electrical conductivity of the fluid. The

stress tensor in the momentum conservation equation is

split into isotropic and deviatoric stress tensors, which for

Newtonian fluid provides a linear stress and strain-rate

relation. But in case of non-Newtonian fluids, depending on

the rheological behavior, the deviatoric part captures the

physics of the complex flow phenomena by incurring dif-

ferent forms of non-linearity into the governing equation.

For third grade fluid also, these complexities are captured in

the equation through the inclusion of the extra stress tensor

rendering a highly non-linear stress and strain-rate relation

as given below.

s ¼ �p�I þ lA1 þ a1A2 þ a2A
2
1 þ b1A3 þ b2ðA1A2

þ A2A1Þ þ b3ðtrA2
1ÞA1 ð5Þ

where, p* is the static pressure, l is the dynamic viscosity

the fluid, I is unit matrix, a1,a2, b1, b2, b3 are the material

constants of the third grade fluid and A1, A2, and A3 are

kinematic tensors expressed as follows:

A1 ¼ ðgradV�Þ þ ðgradV�ÞTranspose ð6Þ

An ¼
dAn�1

dt
þ An�1ðgradV�Þ þ ðgradV�ÞTranspose

An�1; n ¼ 1; 2; 3
ð7Þ

The equations given by Eqs. (1)–(5) have been used by

the authors of [8] to study the EMHD flow and heat transfer

of third grade fluid through parallel plates. According to the

assumption of hydro-dynamically fully developed flow

condition, only the axial velocity component u*(y*, z*) is

present and v* and w* are zero. Therefore, we seek a

solution of the form

V� ¼ ½u�ðy�; z�Þ; 0; 0� ð8Þ

Using Eq. (5), Eq. (6) and Eq. (7) we get the x*, y* and z*

momentum equations as follows:

l
o2u�

oy�2
þ o2u�

oz�2

� �
þ 2b2

o

oy�
ou�

oy�

� �3

þ ou�

oy�
ou�

oz�

� �2
" #

þ 2b2
o

oz�
ou�

oz�

� �3

þ ou�

oz�
ou�

oy�

� �2
" #

� rB2u� ¼ op�

ox�
ð9:1Þ

ð2a1 þ a2Þ
o

oy�
ou�

oy�

� �2

þð2a1 þ a2Þ
o

oz�
ou�

oy�
ou�

oz�

� �
¼ op�

oy�

ð9:2Þ

ð2a1 þ a2Þ
o

oz�
ou�

oz�

� �2

þð2a1 þ a2Þ
o

oy�
ou�

oy�
ou�

oz�

� �
¼ op�

oz�

ð9:3Þ

u* is a function of y*and z*. Therefore, from Eq. (9.2)

and Eq. (9.3), it can be concluded that the pressure may

be expressed as follows after carrying out the

integration:

p� ¼ Fðy�; z�Þ þ Gðx�Þ ð10Þ

The right hand side of Eq. (9.1), that is the pressure

gradient in the axial direction is a function of x* alone and

the left hand side of Eq. (9.1) is a function of y*, z*. This is

only possible when both the sides are separately equal to a

constant. Therefore we can write the x*momentum equation

as follows:

l
o2u�

oy�2
þ o2u�

oz�2

� �
þ 2b2

o

oy�
ou�

oy�

� �3

þ ou�

oy�
ou�

oz�

� �2
" #

þ 2b2
o

oz�
ou�

oz�

� �3

þ ou�

oz�
ou�

oy�

� �2
" #

� rB2u� ¼ op�

ox�
¼ C

ð11Þ

where, C is a constant.

Following non-dimensional variables and parameters are

introduced to convert Eq. (11) into its non-dimensional

form:

y ¼ y�

L1
; z ¼ z�

L2
; u ¼ u�

U
;U ¼ Q�

L1L2
;

Ha ¼
ffiffiffi
r
l

r
BL1;N ¼ C

lU
L21;As ¼

L1

L2
;A ¼ b2U

2

lL21

ð12Þ

where, y, z are the non-dimensional coordinates, Ha is

the Hartmann number, N is the non-dimensional pres-

sure gradient, As is the aspect ratio of the channel, A is

the third grade fluid parameter, U is the average

velocity through the channel, Q* is the dimensional flow

rate, L1 is the half depth and L2 is the half width of the

channel.

Utilizing the non-dimensional variables given in Eq. (12)

the non-dimensional form of the x* momentum equation

reduces to the following:

o2u

oy2
þ As2

o2u

oz2
þ 6A

ou

oy

� �2
o2u

oy2

� �

þ 2AAs4
o2u

oy2
ou

oz

� �2

þ8AAs2
ou

oy

ou

oz

o2u

oyoz

þ 6AAs4
ou

oz

� �2
o2u

oz2
þ 2AAs2

ou

oy

� �2
o2u

oz2
� Hað Þ2u

¼ N ð13Þ
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2.1 Boundary conditions

The non-dimensional boundary conditions to be satisfied by

the velocity are the no slip at the walls which are given as

follows:

u �1; zð Þ ¼ uð1; zÞ ¼ uðy;�1Þ ¼ uðy; 1Þ ¼ 0 ð14Þ

3. Solution

Equation (13) is a non-linear PDE and no established

method is available to solve this. A combination of HPM

and IM is proposed to solve the equation in this study. At

first, a homotopy has been constructed as follows:

o2u

oy2
þ As2

o2u

oz2
� Hað Þ2u� N

� �

þ q

2AAs4
o2u

oy2
ou

oz

� �2

þ8AAs2
ou

oy

ou

oz

o2u

oyoz

þ6AAs4
ou

oz

� �2
o2u

oz2
þ 2AAs2

ou

oy

� �2
o2u

oz2

0
BBB@

1
CCCA

¼ 0 ð15Þ

Here, q is an embedding parameter. q = 0 denotes a sim-

plified equation of Newtonian fluid flow problem under the

influence of magnetic field considering the effect of aspect

ratio. Whereas q = 1 gives the actual equation to be solved.

For solving Eq. (15), the velocity u is expandedwith respect to

the embedding parameter q up to 1st order as follows:

uðy; zÞ ¼ u0ðy; zÞ þ qu1ðy; zÞ þ . . . ð16Þ

where, u0 and u1 are the 0th order and the 1st order solu-

tions, respectively. It is important to mention here that the

series solution for velocity, given by Eq.(16), has been

truncated to 1st order term only, which means that the

results given is valid for weakly non-linear behavior of the

non-Newtonian third grade fluid.

Now substituting Eq. (16) in to Eq. (15) and collecting

the coefficients of q0 and q1 and equating these terms to

zero, 0th oder and 1st order equations are obtained. The 0th

order equation and boundary conditions are given below:

3.1 0th order equation

The 0th order equation is given as follows

o2u0

oy2
þ As2

o2u0

oz2
� ðHaÞ2u0 � N ¼ 0: ð17:1Þ

3.1a Boundary conditins: Boundary conditions are the no

slip at the walls given below as

u0 �1; zð Þ ¼ u0ð1; zÞ ¼ u0ðy;�1Þ ¼ u0ðy; 1Þ ¼ 0 ð17:2Þ

3.2 1st order equation

1st order equation is given as follows

o2u1

oy2
þ As2

o2u1

oz2
þ 6A

ou0

oy

� �2
o2u0

oy2

� �

þ 2AAs4
o2u0

oy2
ou0

oz

� �2

þ8AAs2
ou0

oy

ou0

oz

o2u0

oyoz

þ 6AAs4
ou0

oz

� �2
o2u0

oz2
þ 2AAs2

ou0

oy

� �2
o2u0

oz2

¼ 0 ð18:1Þ

3.2a Boundary conditions: Boundary conditions to be satis-

fied by the 1st order velocity are no slip at the walls given as

u1 �1; zð Þ ¼ u1ð1; zÞ ¼ u1ðy;�1Þ ¼ u1ðy; 1Þ ¼ 0 ð18:2Þ

3.3 Solution of the 0th order equation

Equation (17.1) is solved by IM for which the velocity field

is approximated by the following function [1]:

u0 ¼ ð1� y2Þð1� z2Þða0 þ a1y
2Þ ð19Þ

Equation (19) satisfies the boundary conditions given by

Eq. (17.2). In this context, it is important to note that the

chosen functional form for the 0th order velocity, given

by Eq. (19), satisfies the appropriate boundary condi-

tions, but the MHD term, present in the governing

equation, will affect the solution of velocity and will

lead to the exponential decay of velocity by introducing

the Hartmann number in the solution. This factor limits

the results of the present investigation to be valid for

small Hartmann numbers. The same is true about the

selection of the functional form for the solution of the

1st order velocity given by Eq. (23). Equation (19) is

substituted in Eq. (17.1) and integrated over the cross-

sectional area of the channel to get the integral equation

as follows:

Z1

0

Z1

0

o2u0

oy2
þ As2

o2u0

oz2
� ðHaÞ2u0

� �
dydz ¼

Z1

0

Z1

0

Ndydz

ð20Þ

Equation (20) provides one condition involving two

unknowns. The second equation is obtained from the fol-

lowing condition:

o2u0

oy2

����
����
y¼0;z¼0

þAs2
o2u0

oz2

����
����
y¼0:z¼0

�ðHaÞ2 u0j jy¼0¼ N ð21Þ

For application of the IM, the study by Kundu et al [1]

can be referred.

Solving Eq. (20) and Eq. (21) the unknown constants are

determined to be
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a1 ¼
N þ ðHaÞ2 þ 2þ 2As2

h i
2

ð22:2Þ

3.4 Solution of the 1st order equation

For solving the 1st order equation, the approximate function

is chosen which satisfies the boundary conditions given by

Eq. (18.2) and are given below:

u1 ¼ ð1� y2Þð1� z2Þðb0 þ b1y
2Þ ð23Þ

The two unknowns b0 and b1 of the velocity u1 is

obtained by solving the following two equations:

Z1

0

Z1

0

o2u1

oy2
þ As2

o2u1

oz2

� �
dydz

þ
Z1

0

Z1

0

6A
ou0

oy

� �2
o2u0

oy2

� � !
dydz

þ
Z1

0

Z1

0

2AAs4
o2u0

oy2
ou0

oz

� �2
 !

dydz

þ
Z1

0

Z1

0

8AAs2
ou0

oy

ou0

oz

o2u0

oyoz

� �
dydz

þ
Z1

0

Z1

0

6AAs4
o2u0

oz2
ou0

oz

� �2
 !

dydz

þ
Z1

0

Z1

0

o2u0

oz2
ou0

oy

� �2
 !

dydz ¼ 0

ð24Þ

o2u1

oy2
þ As2

o2u1

oz2

����
����
y¼0;z¼0

þ
6A

ou0

oy

� �2
o2u0

oy2

� �
þ 2AAs4

o2u0

oy2
ou0

oz

� �2

þ 8AAs2
ou0

oy

ou0

oz

o2u0

oyoz

���������

���������
y¼0;z¼0

þ 6AAs4
ou0

oz

� �2
o2u0

oz2
þ 2AAs2

ou0

oy

� �2
o2u0

oz2

�����
�����
y¼0;z¼0

¼ 0

ð25Þ

Solving Eq. (24) and Eq. (25) the values of unknowns are

obtained as follows:

b0 ¼
b1

1þ As2
ð26:1Þ

b1 ¼ � 1
16
3
� 4

15
As2

 !
I1 þ I2 þ I3 þ I4 þ I5ð Þ ð26:2Þ

I1 ¼
Z1

0

Z1

0

6A
ou0

oy

� �2
o2u0

oy2
dydz;

I2 ¼
Z1

0

Z1

0

2AAs4
ou0

oz

� �2
o2u0

oy2
dydz;

I3 ¼
Z1

0

Z1

0

8AAs2
ou0

oy

ou0

oz

o2u0

oyoz
dydz;

I4 ¼
Z1

0

Z1

0

6AAs4
ou0

oz

� �2
o2u0

oz2
dydz;

I5 ¼
Z1

0

Z1

0

2AAs2
o2u0

oz2
ou0

oy

� �2

dydz

ð26:3Þ

Solving for b0 and b1 we get the final solution for

u from Eq. (16) by substituting q = 1, given below

as:

uðy; zÞ ¼ ð1� y2Þð1� z2Þða0 þ a1y
2Þ þ ð1� y2Þ

ð1� z2Þðb0 þ b1y
2Þ

¼ ð1� y2Þð1� z2Þ a0 þ b0 þ ða1 þ b1Þy2
� � ð27Þ

For As = 0.2, N = - 1.2, Ha = 2 and A = 0.3 the

values are a0 = 0.2522, a1 = 0.1667, b0 = - 0.05565 and

b1 = - 0.05788.

The flow rate through the channel is given as

follows:

Q� ¼ 4

Z1

0

Z1

0

u�dy�dz� ð28Þ

The non-dimensional flow rate is expressed as:

a0 ¼
N

2 � 4
3
1þ As2ð Þ � 4

9
ðHaÞ2

n o
þ ðHaÞ2þ2þ2As2

2
� 12

9
� 4

15
As2 � ðHaÞ2 4

15

n oh i ð22:1Þ
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Q ¼ 4

Z1

0

Z1

0

udydz

¼ 4

Z1

0

Z1

0

ð1� y2Þð1� z2Þ a0 þ b0ð Þ þ ða1 þ b1Þy2
� �

dydz

¼ 16

9
a0 þ b0ð Þ þ a1 þ b1ð Þ 16

15

ð29Þ

Q ¼ Q�

Q0

;Q0 ¼ 4UL1L2 ð30Þ

where, Q is the non-dimensional flow rate, Q0 is the aver-

age flow rate.

The results of the present study are validated by com-

paring with the solution of MHD third grade fluid flow

solved by LSM without the effect of aspect ratio. LSM is a

very powerful semi-analytical method introduced by Ozisik

and later on has been applied for solving different problems

of engineering interest; some of which are cited in [15, 16].

Neglecting the aspect ratio, the governing equation

describing the fluid flow is obtained by substituting As = 0

in Eq. (18.1) which is given as follows:

d2u

dy2
þ 6A

d2u

dy2
du

dy

� �2

�ðHaÞ2u ¼ N ð31Þ

Boundary conditions are

uð�1Þ ¼ uð1Þ ¼ 0 ð32Þ

For solving Eq. (31), along with boundary conditions

given by Eq. (32), by LSM, an approximate solution for the

velocity of the following form is chosen:

u ¼ c1ð1� y2Þ þ c2ð1� y4Þ ð33Þ

where, c1 and c2 are the constants to be determined. The

base functions (1 - y2) and (1 - y4) are chosen such that

they satisfy the boundary conditions given by Eq. (32). If

Eq. (33) is substituted in Eq. (31), a residual R will be

generated. The notion of the LSM is to minimize the square

of the residuals over the entire domain. Substituting

Eq. (33) in Eq. (31) we get the residual R as follows:

RðyÞ ¼ �2c1 � 12c2y
2 þ 6Að�2c1 � 12c2y

2Þð4c21y2
þ 16c22y

6 þ 16c1c2y
6Þ

� ðHaÞ2 c1 1� y2
� 	

þ c2 1� y4
� 	� �

ð34Þ

The total residual square over the domain has to be

minimized with respect to the unknowns c1 and c2 to get the

equations as follows:

Z1

�1

2RðyÞ oRðyÞ
oc1

¼ 0;

Z1

�1

2RðyÞ oRðyÞ
oc2

¼ 0 ð35Þ

Solving Eq. (35) for two unknowns c1 and c2 for different

values of A, N and Ha velocity of the fluid can be obtained.

For example, when A = 0.3, Ha = 3 and N = - 3, the values

are c1 = 0.1799 and c2 = 0.1183.

Figure 2. (a) Comparison of the velocity profiles from the present study and the flow of a third grade fluid through channel without the

effect of aspect ratio when N = - 1.2, Ha = 2.5 and A = 0.3. (b) N = - 1.2, Ha = 2.5 and A = 0.4.
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4. Results and discussions

Before proceeding further with the discussion of the effects

of various parameters on the flow field, the results of the

present study have to be validated first. In this regard, it is

expected that the results of the present investigation, where

the axial velocity u is a function of both y and z, should be

compared with the results of the numerical or experimental

investigation on the same flow situation. But due to the lack

of availability of any result of these types in the literature,

error analysis by a comparison between the results of the

two methods is not possible and the validation is carried out

by an alternative option. For validation, MHD flow of a

third grade fluid through a channel neglecting the effect of

aspect ratio has been considered. Equation (31) describes

the MHD flow of a third grade fluid through a channel, very

large in the lateral direction rendering the aspect ratio to be

zero. Equation (31) is a highly non-linear ODE for which

exact solution is difficult to obtain. LSM has been applied

to get the solution for the velocity and the results are

compared with that of the present study. Though LSM is an

approximate semi-analytical method, it produces accurate

results for a wide class of non-linear equations especially

for ODEs. Therefore, for validation purpose, the results of

the LSM can be used as a reliable source. The results of the

present study are compared with the LSM results (without

the aspect ratio effect) by substituting the aspect ratio to be

zero in Eq. (18.1). Figure 2 shows the comparison of the

velocity profiles obtained by using combined HPM and IM

from the present study by considering As = 0 and the LSM

results. The maximum difference between the results occur

at y = 0.7 for both figures 2(a) and figure 2(b); the mag-

nitudes of the differences are 0.01384 and 0.01147. The

corresponding relative errors are 17.8% and 14.8%. For

figure 2(a), when y\ 0.46 and y [ 0.85, the difference

between the results is less than 0.01 and in between

0.47\ y\ 0.44, the difference gradually increases from

0.01 to a maximum value of 0.001384. For figure 2(b),

when y\ 0.58 and y[ 0.79, the difference between the

results is less than 0.01 and in between 0.59\y\0.78; the

magnitude of the difference increases from 0.01 to a

maximum value of 0.01184. If higher order terms are

considered, instead of truncating the series of velocity after

1st order terms, then the accuracy will be improved, but the

level of complexity will increase a lot. Considering this

factor, higher order terms have not been considered and

solution up to the 1st order term only has been presented.

Now, the physically permissible values of the different

parameters are to be fixed before discussion of their effects.

In [7], the maximum value of Hartmann number considered

is 3, which has also been followed in the present study. The

authors of [17] considered the Sisko fluid parameter max-

imum up to 0.8; the governing equation for third grade fluid

bears similarity in form with Sisko fluid for index three

which indicates similarity in their properties too. In the

present study third grade fluid parameter has been varied in

the range of 0.05–0.5. Aspect ratio has been varied in the

range of 0–1.

Velocity profiles at z = 0 plane for different aspect ratios

have been depicted in figure 3. It is evident from the fig-

ure that the velocity decreases with an increase in the aspect

ratio. Increase in the aspect ratio, offers more resistance

towards the flow due to the influence of the side walls of the

channel. For a channel which is very large in the lateral

direction, the effects of the side walls are very less. As the

aspect ratio increases, the presence of the solid surface

offers more flow resistance and reduces the velocity. The

central flat portion in the velocity profile is the result of the

opposing force of the magnetic field. As the opposing force

is directly proportional to the square of the velocity, its

magnitude is large near the central part compared to the

velocity near the walls. Therefore, near the central core, the

velocity is relatively smaller rendering the velocity profile

flatter near this region.

The effects of the Hartmann number Ha on the velocity

profiles are pictorially sketched in figure 4(a). It is evident

from the figure that Ha significantly affects the velocity.

For lower values of Ha velocity profile does not display any

flat region, but for higher values of Ha velocity profiles

become flatter which has already been explained. Fig-

ure 4(b) depicts the influence of non-Newtonian third grade

fluid parameter on the velocity. Increase in the third grade

fluid parameter A signifies an increase in the effective

viscosity which increases the flow resistance for the pres-

sure driven flow. Therefore, increase in A results in a

decrease in the velocity.

Figure 3. Velocity profiles in the z = 0 plane for different aspect

ratios when N = - 1.2, A = 0.3 and Ha = 3.
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Figure 5(a) shows the non-dimensional flow rate variation

withAs. The flow rate decreaseswith an increase in the aspect

ratio As. As discussed earlier, the velocity decreases with an

increase in As which results in a decrease in the flow rate.

Variation of the non-dimensional flow rate with A is pre-

sented in figure 5(b)which shows a decrease in flow ratewith

an increase in the third grade fluid parameter A. Increase in

A causes reduced velocity resulting in a lower flow rate.

Figures 6(a) and 6(b) present contour plots of the

velocity for different values of Ha. The contour plots

clearly display how the velocity is reduced for increase in

Ha. For both the figures, the central core velocity, indicated

Figure 4. (a) Velocity profiles at z = 0 plane for different Ha when As = 0.4, A = 0.3 and N = - 1.2. (b) Velocity profiles for

different A when As = 0.4, Ha = 3.

Figure 5. (a) Variation of the flow rate with aspect ratio for N = - 1.2, A = 0.3. (b) Variation of the flow rate with the third grade fluid

parameter when As = 0.3.
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by the red region, is higher compared to the region near the

walls, displayed in blue.

5. Conclusions

The present study highlights the effects of the aspect ratio

on the velocity for flow of a third grade fluid through a

rectangular channel under the influence of magnetic field.

The equation governing the flow is highly non-linear,

which is difficult to solve even numerically. A combination

of HPM and IM has been proposed to get analytical solu-

tion for the velocity field and the effects of the aspect ratio,

third grade fluid parameter and the magnetic field on the

velocity and flow are discussed. Following important con-

clusions are drawn from the study: A change in aspect ratio

from 0.2 to 1 causes a reduction in the central plane

velocity almost by 50%, which is quite significant. When

Ha = 2, the flow rate decreases by nearly 80% due to

increase in As from zero to unity. However, an increase in

Ha decreases the rate of flow reduction caused by an

increase in As. For Ha = 2, an increase in third grade fluid

parameter A from 0.1 to 0.5 results in the flow reduction by

nearly 35%. The increase in Ha, causes a decrease in the

rate of flow reduction.
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Notations
A third grade fluid parameter,

A1, A2, A3 kinematic tensors

a0, a1, b0,
b1

Constants

As aspect ratio of the channel,

B applied magnetic field

C constant

F,G functions

Ha Hartmann number,

J current density respectively

L1, L2 half depth and half width of the channel

respectively

N non-dimensional pressure gradient,

R Residual

U average velocity through the channel

V* velocity vector

c1, c2 constants

f body force per unit volume

p dimensional static pressure,

u dimensional axial velocity

v dimensionless coordinate in the axial

direction

y dimensionless coordinate in vertical direction

z dimensionless coordinate in the lateral

direction

q an embedding parameter

p* dimensional pressure

u* dimensional axial velocity

y * dimensional coordinate in the vertical

direction

z * dimensional coordinate in the lateral direction

q0, q1 embedding parameter

u0 0th order solution for the velocity

u1 1st order solution for the velocity

Greek Symbols
q density of the fluid,

s stress tensor

r electrical conductivity

Figure 6. (a) Contour plot of velocity when N = - 1.2, Ha = 2,

As = 0.5 and A = 0.3. (b) Contour plot of velocity when N = - 1.2,

Ha = 3, As = 0.5 and A = 0.3.

Sådhanå (2018) 43:106 Page 9 of 10 106



l dynamic viscosity the fluid,

a1, a2, b1, b2, b3 material constants of the third grade

fluid
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