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Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and

nano-scale rectangular beams is presented. To incorporate small size effects, the theory uses Eringen’s nonlocal

differential constitutive relations. The theory has only one fourth-order governing differential equation involving

a single unknown variable. The governing equation and the expressions for the bending moment and shear force

of the present theory are strikingly similar to those of nonlocal Euler-Bernoulli Beam Theory (EBT) formulated

based on Eringen’s nonlocal elasticity theory. The theory assumes that the axial and lateral displacements have

bending and shear components such that the bending components do not contribute towards shear force, and the

shear components do not contribute towards bending moment. Also, the chosen displacement functions of the

theory give rise to a realistic parabolic transverse shear stress distribution across the beam cross-section. Efficacy

of the proposed theory is demonstrated through bending of simply supported, cantilever and clamped-clamped

micro- and nano-scale beams of rectangular cross-section. The numerical results obtained by using the present

theory are compared with those predicted by other nonlocal first-order and higher-order shear deformation beam

theories. The results obtained are quite accurate.

Keywords. Single variable; micro- and nano-scale; rectangular beams; nonlocal elasticity; bending and shear

components.

1. Introduction

Due to increased applications of micro- and nano-scale

beam, plate and shell-type structures in micro- or nano-

electromechanical systems (MEMS/NEMS), the study of

micro- and nano-scale structures has attracted a widespread

interest in scientific community. Conducting experiments

on micro- and nano-scale structures is expensive and hard

to control. Hence, in literature a great deal of attention has

been devoted for developing theoretical models to charac-

terize the behavior of micro- and nano-scale structures.

Theoretically atomistic models are the most accurate, but

are computationally expensive and time consuming for

complex structures. Compared to the atomistic approach,

the models based upon continuum mechanics are widely

used due to their computational efficiency and simplicity.

However, it is worthwhile to note that, the models based on

classical continuum mechanics cannot capture small size

effects associated with micro- and nano-scale structures. To

overcome this drawback, it would be practicable to use

size-dependent continuum mechanics models such as

nonlocal elasticity theory [1–5], strain gradient theory [6],

couple stress theory [7, 8] and modified couple stress theory

[9]. Among these models, the nonlocal elasticity theory

initiated by Eringen and Edelen [1–5] is widely used by

researchers due to its simplistic nature.

Many well-known beam theories including those of

Euler-Bernoulli [10], Timoshenko [10], Reddy [10] and

Levinson [11, 12] have been extended for the case of

micro- and nano-scale beams using Eringen’s nonlocal

elasticity model. The important works available in the lit-

erature in this connection are: the nonlocal version of

Euler-Bernoulli Beam theory [13–16], Timoshenko Beam

Theory [17, 18] and other shear deformation beam theories

[19, 20]. In refs. [13, 14], the bending and free vibration

analyses of microtubules by using nonlocal Euler–Bernoulli

beam theory are presented. In ref. [15], the bending,

vibration and buckling study of nonlocal Euler-Bernoulli

beams with four classical boundary conditions is presented.

Next, in ref. [16], the analogy between nonlocal and local

Euler-Bernoulli nanobeams is discussed. However, it is

worth mentioning that, the Euler-Bernoulli beam theory is

suitable only for the analysis of slender beams as it neglects

the effects of shear deformation. Whereas, a single variable*For correspondence
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nonlocal beam theory proposed in this paper could incor-

porate the effects of shear deformation in its formulation.

Further, the governing equation and the expressions for the

bending moment and shear force of the beam theory pro-

posed here are strikingly similar to those of nonlocal Euler-

Bernoulli beam theory.

In a paper by Wang et al [17], the bending solutions of

micro- and nanobeams based on the Eringen nonlocal

theory and Timoshenko beam theory is presented. The

Eringen’s theory takes into account the small-scale effects

whereas the effects of transverse shear deformation are

accounted for in Timoshenko’s beam theory. In [18], the

free vibration analysis solutions for micro- and nanobeams

modeled after Eringen’s nonlocal theory and Timoshenko

beam theory is presented. The solutions based on nonlocal

Timoshenko beam theory account for a better representa-

tion of the bending and vibration behaviour of short,

stubby, micro- and nanobeams where the small-scale effect

and transverse shear deformation are significant. It is

important to note that, the beam theory presented in this

work can also incorporate the effects of shear deformation

in its formulation. Further, the bending solutions obtained

by using the present beam theory (based on classical elas-

ticity) [21] are more accurate than Timoshenko beam the-

ory results in comparison to two-dimensional theory of

elasticity solutions. In case of clamped ends, using present

theory one could define three different types of clamped

end boundary conditions, namely, Type 1, Type 2 and Type

3, as discussed under section: Boundary conditions of this

paper. Using these boundary conditions, one could obtain

three different solutions for the case of beams with clamped

ends. Further, the results obtained by using Type 1, Type 2

and Type 3 clamped end boundary conditions are more or

less same as those obtained by Elementary theory (Euler-

Bernoulli beam theory), First-order shear deformation the-

ory (Timoshenko beam theory) and Higher-order shear

deformation theory (Levinson beam theory), respectively.

Some of the important research papers available in the

literature on bending, buckling and vibration analyses of

micro- and nano-scale beams are: Papers by Reddy [19],

Aydogdu [20], Niu et al [22], Thai [23], Thai and Vo [24].

Further, free vibrations study of micro- and nano-scale

beams is also reported by Xu [25], Ruiz et al [26], Ke et al

[27], Chakraverty and Behera [28].

In [19, 20, 22], the results pertaining to bending, vibra-

tion and buckling analyses of nanobeams are obtained by

using the nonlocal version of Euler-Bernoulli, Timoshenko,

Reddy and Levinson beam theories. In ref. [23], the

bending, vibration and buckling analyses of nanobeams

have been carried out by using a two variable refined beam

theory. Further, in ref. [24], a nonlocal sinusoidal shear

deformation beam theory with application to bending,

buckling, and vibration study of nanobeams is presented.

The discussions pertaining to nonlocal Euler-Bernoulli and

Timoshenko beam theories have been already presented in

the preceding paragraphs. Reddy and Levinson nonlocal

beam theories are the higher-order shear deformation beam

theories with two unknown functions. The formulation of

beams using Reddy and Levinson theories result in two

coupled governing differential equations. Also, the beam

theories proposed in [23, 24] involve two coupled gov-

erning differential equations in terms of two unknown

functions. Alternatively, the beam theory presented in this

paper involves only one governing differential equation and

one unknown variable.

In [25–28], the free vibration study of nanobeams has

been carried out by using the nonlocal Euler-Bernoulli

beam theory. However, the formulation of vibration prob-

lems by using Euler-Bernoulli beam theory does not

include the effects of shear deformation. It is to be noted

that, the effects of shear is important not only in case of

study of thick beams, but in case of study of slender beams

vibrating at higher modes. Whereas, using the beam theory

presented in this paper one could incorporate the effects of

both shear deformation and rotary inertia in formulating the

beam vibration problems.

The objective of this work is to present a simple, yet

accurate nonlocal beam theory for the bending of micro-

and nano-scale rectangular beams based on Refined Plate

Theory (RPT) [29] and a single variable rectangular beam

theory based on classical elasticity [21]. The beam theory

proposed in [21] is based on classical continuum

mechanics and is suitable only for macro-scale beams.

Whereas, the nonlocal beam theory presented in this paper

is based on Eringen’s nonlocal elasticity theory. The small

size effects which need to be considered in case of micro-

and nano-scale beams are incorporated in the beam for-

mulation by using Eringen’s differential constitutive

relations.

Further, the nonlocal beam theory proposed here contains

only one fourth-order governing differential equation

involving a single variable. The efforts involved in

obtaining the solutions for beam problems using the present

theory are only marginally higher in comparison to that

involved in case of Euler-Bernoulli Beam theory [13–16].

Moreover, the governing equation and the expressions for

the bending moment and shear force of the present theory

are strikingly similar to those of nonlocal Euler-Bernoulli

Beam Theory (EBT). But, it needs to be noted that, the

formulation of present theory involves both the bending as

well as shear deformations, whereas, the formulation of

Euler-Bernoulli Beam Theory involves only the bending

deflection. The effects of shear deformation cannot be

ignored in case of short or thick beams.

2. Beam under consideration

Consider a beam of rectangular cross-section having length

L, width b and height h. The beam geometry is defined in

O-x-y-z Cartesian right-handed coordinate system as shown

in figure 1.
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The beam geometry occupies a region:

0� x� L;� b

2
� y� b

2
;� h

2
� z� h

2
ð1Þ

The beam is made of linearly elastic, homogeneous, iso-

tropic material. The material properties of the beam are:

Modulus of elasticity E, Modulus of rigidity G and Pois-

son’s ratio l. The E, G and l are related by E ¼ 2G 1 þ lð Þ.
In accordance with Eringen’s nonlocal elasticity theory

[1–5], the material properties important to incorporate

small scale effects into beam analysis are: Material constant

appropriate to each material e0 and internal characteristic

length a. A detailed discussion on Eringen’s nonlocal

elasticity approach is presented in the following section.

Beam can be subjected to any physically meaningful

boundary conditions at x = 0 and x = L. Beam would be

subjected to loads only in the transverse direction, i.e.,

along z-direction.

3. Eringen’s theory of nonlocal elasticity

According to Eringen’s theory of nonlocal elasticity [1–5],

the stress at a reference point X in the body depends not

only on the strain at X but also on strains at all other points

of the body. Accordingly, the nonlocal stress tensor rij Xð Þ
at a point X can be expressed as follows [4]:

rij Xð Þ ¼
Z

V

a X0 �Xj j; sð Þtij X0ð ÞdV X0ð Þ i; j ¼ x; y; zð Þ

ð2Þ

where integration is carried over volume V of the beam. In

Eq. (2), tij X
0ð Þ is the local stress tensor at any point X0 and,

the kernel function a X0 �Xj j; sð Þ represents the nonlocal

modulus which incorporates nonlocal effects into the con-

stitutive relations. X0 �Xj j is the Euclidean distance, and s
is a constant which depends on the internal and external

characteristic lengths and can be expressed as follows [4]:

s ¼ e0a

L
ð3Þ

In Eq. (3), e0 is a constant appropriate to each material, a is

an internal characteristic length (e.g., length of C-C bond,

lattice parameter, granular distance, etc.), and L is an

external characteristic length (e.g., crack length, wave-

length, sample size, etc.).

Next, in accordance with generalized Hooke’s law, the

local stress tensor tij X
0ð Þ at a point X0 can be related to

strain tensor ekl X
0ð Þ at that point as follows:

tij X
0ð Þ ¼ Dijklekl X

0ð Þ i; j; k; l ¼ x; y; zð Þ ð4Þ

where Dijkl is the elastic modulus tensor.

Generally, the solutions to nonlocal elasticity prob-

lems are difficult mathematically, due to involvement of

the integro-partial differential equations (e.g., Eq. (2)).

However, it has been shown that, the integro-partial

differential equations of the nonlocal elasticity theory

are reducible to partial differential equations for a

special class of physically admissible kernels [4].

Accordingly, constitutive equations of the nonlocal

elasticity theory can be expressed in the following dif-

ferential form:

1 � s2L2r2
� �

rij Xð Þ ¼ Dijklekl Xð Þ ð5Þ

Where r2 is the Laplacian operator.

Furthermore, it can be noted that, by setting s ! 0 in

Eq. (5), one would get the Hooke’s law of classical

elasticity.

4. Assumptions made in the theory

The assumptions made are as follows:

1. Beam is made of linearly elastic, homogeneous, isotropic

material.

2. Displacements along x, y and z-directions are u, v and

w, respectively. The displacements involved are very

small compared to beam thickness and, therefore,

strains involved are infinitesimal. Also, since no

loading is considered in y-direction, the displacement

v is ignored. Hence, to obtain non-zero strains, the

Figure 1. Geometry of a rectangular beam.
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following linear strain-displacement relations are

used:

ex ¼
ou

ox
ð6Þ

czx ¼
ou

oz
þ ow

ox
ð7Þ

3. In general, the normal stresses ry and rz can be ignored

as they are small in comparison to rx, i.e., ry � rx and

rz � rx. Also, the shear stresses sxy and syz can be

ignored. Therefore, based on the Eringen’s nonlocal

elasticity theory [1–5] and referring to the Eq. (5), the

differential constitutive relation between bending stress

rx and bending strain ex can be written as:

rx � e0að Þ2d
2rx
dx2

¼ Eex ð8Þ

Similarly too, the differential constitutive relation

between transverse shear stress szx and transverse shear

strain czx can be written as:

szx � e0að Þ2d
2szx
dx2

¼ Gczx ð9Þ

4. The lateral displacement w consists of two components:

Bending component wb and shear component ws. Both

the components are functions of x only. Accordingly, by

referring to [29–33], the expression for lateral displace-

ment w could be written as follows:

w ¼ wb xð Þ þ ws xð Þ ð10Þ

5. The axial displacement u consists of bending compo-

nent ub and shear component us. The ub and us are

functions of x and z only. Therefore, the expression for

lateral displacement u could be written as follows

[29–33]:

u ¼ ub x; zð Þ þ us x; zð Þ ð11Þ

a. The bending component ub could be considered as

analogous to the axial displacement of Euler-

Bernoulli beam theory. Hence, the expression for ub
could be written as follows [29–33]:

ub ¼ �z
dwb

dx
ð12Þ

The displacement components ub and wb together do

not contribute towards transverse shear strain czx and,

therefore, to transverse shear stress szx.
b. The shear component us of axial displacement u is

such that [29–33]:

• it gives rise, in conjunction with ws, to transverse

shear strain czx in such a way that the transverse

shear stress szx varies parabolically across the

thickness of the beam in such a manner that

transverse shear stress szx is zero at z ¼ �h=2 and

at z = h/2, and

• its contribution towards normal strain �x is such

that, in the bending moment Mx there is no

contribution form the component us.

6. Body forces are assumed to be zero. But, if the body

forces are significant, then the body forces can be taken

into account while prescribing the lateral load on the

beam.

5. Expressions for displacements of the present
nonlocal beam theory

The expressions for displacements of the present nonlocal

beam theory are obtained by suitably adapting the dis-

placement field of a two variable Refined Plate Theory

(RPT) reported in ref. [29]. Referring to the assumptions of

RPT and the assumptions of the present beam theory dis-

cussed in the preceding section, the axial and lateral dis-

placements are assumed to be consist of bending and shear

components. Accordingly, the displacement field of RPT

[29] for the case of beams can be written as follows:

u ¼ ub x; zð Þ þ us x; zð Þ

¼ �z
dwb

dx
þ h

1

4

z

h

� �
� 5

3

z

h

� �3
� �

dws

dx

ð13Þ

w ¼ wb xð Þ þ ws xð Þ ð14Þ

It can be noted that, the expressions for displacements u and

w given by Eqs. (13) and (14), respectively, contain two

unknowns, i.e., the bending component wb and the shear

component ws. However, with some efforts, it is possible to

express the shear component ws in terms of the bending

component wb. The further discussions presented this sec-

tion will communicate the steps involved in writing the

shear component ws in terms of the bending component wb.

Using the Eq. (13) in Eq. (6), one obtains the expression

for normal strain �x as follows:

�x ¼ �z
d2wb

dx2
þ h

1

4

z

h

� �
� 5

3

z

h

� �3
� �

d2ws

dx2
ð15Þ

Next, by using the Eqs. (13) and (14) in Eq. (7), one obtains

the expression for shear strain czx as follows:

czx ¼
5

4
� 5

z

h

� �2
� �

dws

dx
ð16Þ

Referring to Eq. (16), it can be noted that, the displacement

components ub and wb together do not contribute towards

the transverse shear strain czx.
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The differential constitutive relation between the bending

stressrx and the bending strain �x is given by Eq. (8). Now, using

the differential constitutive relation given by Eq. (8), one can

obtain the expression for bending moment Mx as follows:

For the case of beams, the bending moment Mx can be

defined as:

Mx ¼
Z

A

rxzdA ð17Þ

where integration is carried over cross-sectional area A of

the beam.

Multiplying by z on both sides of Eq. (8) and integrating,

one can write Eq. (8) in the following form:

Z

A

rxzdA� e0að Þ2

Z

A

z
d2rx
dx2

dA ¼
Z

A

EzexdA ð18Þ

Now, using the definition of bending moment Mx given by

Eq. (17) and the expression for ex given by Eq. (15) in

Eq. (18), one obtains

Mx � e0að Þ2d
2Mx

dx2
¼ �EI

d2wb

dx2
ð19Þ

Where I ¼ bh3=12 is the moment of inertia of the consid-

ered beam of rectangular cross-section.

In case of beams, the relationship between the bending

moment Mx and the applied transverse distributed load q(x)

can be written as follows:

d2Mx

dx2
¼ �q xð Þ ð20Þ

Using Eq. (20) in Eq. (19), one obtains

Mx ¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ ð21Þ

Referring to Eq. (21), one can note that, the contribution of

shear component us towards normal strain �x is such that, in

the bending moment Mx there is no contribution form the

component us.

The differential constitutive relation between the trans-

verse shear stress szx and the transverse shear strain czx is

stated by Eq. (9). Now, using the differential constitutive

relation given by Eq. (9), one can obtain the expression for

shear force Vx as follows:

For the case of beams, the shear force Vx can be defined

as:

Vx ¼
Z

A

szxdA ð22Þ

where integration is carried over cross-sectional area A of

the beam. Integrating Eq. (9) over cross-section of the

beam, Eq. (9) can be written in the following form:

Z

A

szxdA� e0að Þ2

Z

A

d2szx
dx2

dA ¼
Z

A

GczxdA ð23Þ

Now, using the definition of shear force given by Eq. (22)

and the expression for czx given by Eq. (16) in Eq. (23), one

obtains

Vx � e0að Þ2d
2Vx

dx2
¼ 5Ebh

12 1 þ lð Þ
dws

dx
ð24Þ

Where I = bh3/12 is the moment of inertia of the consid-

ered beam of rectangular cross-section.

In case of beams, the relationship between the shear

force Vx and the applied transverse distributed load can be

written as:

d2Vx

dx2
¼ � dq xð Þ

dx
ð25Þ

Using Eq. (25) in Eq. (24), one obtains

Vx ¼
5Ebh

12 1 þ lð Þ
dws

dx
� e0að Þ2dq xð Þ

dx
ð26Þ

Referring to Eq. (26), one can note that, in the shear force

Vx there is no contribution from the displacement compo-

nents ub and wb.

In case of beams, the gross equilibrium equations in

terms of the bending moment, shear force and the applied

transverse distributed load can be written as:

dMx

dx
� Vx ¼ 0 ð27Þ

dVx

dx
þ q xð Þ ¼ 0 ð28Þ

Now, substituting for Mx and Vx from Eqs. (21) and (26),

respectively, in Eq. (27), one can conclude that,

ws ¼ � h2 1 þ lð Þ
5

d2wb

dx2
ð29Þ

It can be noted that, Eq. (29) establishes the relationship

between the shear component ws and the bending compo-

nent wb of lateral displacement w.

Now, substituting for ws from Eq. (29) in Eqs. (13) and

(14), respectively, one obtains the expressions for axial

displacement u and lateral displacement w in terms of

bending component wb as follows:

u ¼ �z
dwb

dx
� h3 1 þ lð Þ

5

1

4

z

h

� �
� 5

3

z

h

� �3
� �

d3wb

dx3
ð30Þ

w ¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2
ð31Þ

Equations (30) and (31) would be considered as the dis-

placement field expressions of the present beam theory. It is
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important to note that, the expressions for axial displace-

ment u and the lateral displacement w given by Eqs. (30) and

(31), respectively, contain only one unknown variable, i.e.,

the bending component wb of the lateral displacement w.

6. Expressions for strains, stresses, bending
moment and shear force of the present nonlocal
beam theory

6.1 Expressions for strains

Using the Eq. (30) in Eq. (6), one can write the expression

for normal strain �x as follows:

�x ¼ �z
d2wb

dx2
� h3 1 þ lð Þ

5

1

4

z

h

� �
� 5

3

z

h

� �3
� �

d4wb

dx4
ð32Þ

Next, by using Eqs. (30) and (31) in Eq. (7), one obtains the

expression for shear strain czx as cfollows:

czx ¼ �h2 1 þ lð Þ 1

4
� z

h

� �2
� �

d3wb

dx3
ð33Þ

6.2 Expression for bending moment

Using the Eq. (21), the expression for bending moment Mx

can be written as:

Mx ¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ ð34Þ

6.3 Expression for shear force

Next, using Eq. (29) in Eq. (26), one can write the

expression for shear force Vx as follows:

Vx ¼ �EI
d3wb

dx3
� e0að Þ2dq xð Þ

dx
ð35Þ

7. Governing differential equation of the present
nonlocal theory for rectangular beams

In this section, the governing differential equation of the

present beam theory will now be derived.

Next, substituting for Mx and Vx from Eqs. (34) and (35),

respectively, in Eq. (27), one can note that the gross equi-

librium Eq. (27) is satisfied identically.

Finally, substituting for Vx from Eq. (35) in Eq. (28), one

obtains

EI
d4wb

dx4
þ e0að Þ2d

2q xð Þ
dx2

¼ q xð Þ ð36Þ

Equation (36) would be considered as the governing dif-

ferential equation of the present nonlocal theory for rect-

angular beams. It can be seen that, the governing Eq. (36)

contains only one unknown variable, i.e., the bending

component wb of lateral displacement. Using the governing

Eq. (36), one could obtain the solution for bending com-

ponent wb. Next, using the Eq. (31), one could obtain the

solution for lateral displacement w.

Also, it is worth mentioning that, the governing differ-

ential Eq. (36) is strikingly similar to that of nonlocal

version of EBT [34] based on Eringen’s nonlocal elasticity

theory. However, it is worthwhile to note the following

important differences between Present theory and EBT:

• The formulation of present theory involves both the

bending as well as shear deformation, whereas, the

formulation of EBT involves only bending deflection.

Thus, the formulation of thick or short beams using

EBT would result in the underestimation of deflec-

tions and overestimation of frequencies and buckling

loads.

• Using the present theory one could predict the

transverse shear strain (czx) and stress (szx) in a straight

forward manner using the constitutive relation between

the transverse shear stress and strain. Whereas, in case

of EBT, the transverse shear strain (czx) and stress (szx)
obtained by using the constitutive relation between the

transverse shear stress and strain is always zero. The

transverse shear stress (szx) in case of EBT can only be

obtained by using the theory of elasticity equilibrium

equations or by consideration of the equilibrium of the

forces acting on the beam.

• Also, one could observe the considerable differences

between the prescribed boundary conditions of the

present theory with respect to EBT. The boundary

conditions associated with the present theory have

been presented in the following section.

8. Boundary conditions

In this section, few commonly used boundary conditions in

case of beam analysis would be discussed. For the sake of

illustration, the boundary conditions for the beam end

x = 0 would be discussed. The boundary conditions at

beam end x = L could be prescribed in similar lines as

those prescribed in case of beam end x = 0.

8.1 Beam end is simply supported

If beam end x = 0 is simply supported, then the following

boundary conditions are used:

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð37Þ
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and

Mx½ �x¼0¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ
� �

x¼0

¼ 0 ð38Þ

8.2 Beam end is free

If beam end x = 0 is free, then the following boundary

conditions are used:

Mx½ �x¼0¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ
� �

x¼0

¼ 0 ð39Þ

and

Vx½ �x¼0¼ �EI
d3wb

dx3
� e0að Þ2dq xð Þ

dx

� �
x¼0

¼ 0 ð40Þ

8.3 Beam end is clamped

If beam end x = 0 is clamped, using present beam theory it

would be possible to prescribe three different types of

boundary conditions at the clamped end. Therefore,

henceforth in this paper, the three types of clamped end

boundary conditions discussed in this paper would be

identified as Type 1, Type 2 and Type 3, respectively. In all

three types, the deflection w at the clamped end is taken as

zero, whereas, the slope conditions would be different.

Also, it is worthwhile to note that, the Type 1 and Type 3

clamped end boundary conditions are prescribed analogous

to those prescribed by Timoshenko and Goodier [35].

Further, one could also find the Type 3 clamped end

boundary conditions in case of beam and plate theories

proposed by Levinson [11, 36].

8.3a Clamped end boundary condition: Type 1 In case of

Type 1 clamped end, the displacement and slope boundary

conditions are stated as follows:

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð41Þ

and

dw

dx

� �
x¼0

¼ dwb

dx
� h2 1 þ lð Þ

5

d3wb

dx3

� �
x¼0

¼ 0 ð42Þ

It may be noted that, the deflection curve w(x) represents

the deflection of elastic axis of the beam. The boundary

condition (42) signifies that in this type of clamped con-

dition, the rotation of elastic axis at clamped end is not

permitted.

8.3b Clamped end boundary condition: Type 2 In case of

Type 2 clamped end, the displacement and slope boundary

conditions are stated as follows:

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð43Þ

and

dwb

dx

� �
x¼0

¼ 0 ð44Þ

The slope boundary condition (44) signifies that in this type

of clamped end, the bending rotation is not allowed,

whereas, the shear rotation is allowed.

8.3c Clamped end boundary condition: Type 3 In case of

Type 3 clamped end, the displacement boundary condition

remains same as in the earlier cases, but now the slope

ou
oz

h i
z¼0

is taken as zero at the clamped edge. This slope,

using Eq. (30), can be expressed in terms of derivatives of

wb. As a result, in case of Type 3 clamped end, the

boundary conditions can be stated as follows:

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð45Þ

and

dwb

dx

� �
x¼0

¼ � h2 1 þ lð Þ
20

d3wb

dx3

� �
x¼0

ð46Þ

Using Eq. (33), Eq. (46) can also be written as follows:

dwb

dx

� �
x¼0

¼ 1

20 1
4
� z

h

� �2
h i czx

� 	
x¼0

ð47Þ

As can be seen from boundary condition (46), the rotation

of elastic axis of the beam is permitted at the Type 3

clamped end. Due to the rotation of elastic axis, the effect

of shear deflection at free end is significant as compared to

the effect of shear deflection obtained if the clamped con-

ditions were to be prescribed by Eq. (41) and Eq. (42),

wherein rotation of elastic axis at the clamped end was not

permitted. Therefore, henceforth in this paper, Eqs. (43)

and (44) or Eqs. (45) and (46) will be utilized for pre-

scribing clamped end boundary conditions.

Moreover, it is worth mentioning that, a detailed study on

shear force inconsistencies at the clamped ends/edges of

beams, plates and shells has been presented in a paper by

Groh and Weaver [37]. It has been reported that, in case of

a certain higher-order shear deformation beam and plate

theories, one would obtain zero shear forces at the clamped

ends/edges when constitutive equations of the correspond-

ing theories are used. However, it is well-known that, from

simple equilibrium considerations of the forces one would

get non-zero shear forces at the clamped ends/edges.

Whereas, in case of present theory, one could obtain correct

shear forces by using the clamped end boundary conditions

prescribed by Eqs. (43) and (44) or by Eqs. (45) and (46).
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9. Comments on the present nonlocal beam theory

The noteworthy features of the nonlocal beam theory pre-

sented here could be listed as follows:

1. The theory involves only one governing differential

equation (Eq. (36)) in terms of a single unknown

function (wb). Whereas, many other shear deformation

theories available in the literature, involves two or more

governing equations and unknown variables [19].

2. The present nonlocal beam theory is strikingly similar to

nonlocal version of EBT [34] in many aspects (e.g.,

governing differential equation and the expressions for

bending moment and shear force).

3. The displacement field of the theory gives rise to a

realistic parabolic variation of transverse shear stress

across the beam cross-section.

4. Theory proposed here is a displacement based theory. The

governing equation of the theory is obtained by utilizing

the gross equilibrium equations of beams in terms of

bending moment, shear force and the applied loading.

10. Illustrative examples: bending of micro-
and nano-scale rectangular beams

In this section, three illustrative examples of beam bending

using present nonlocal beam theory will now be presented.

The expressions for lateral deflections of simply supported,

cantilever and clamped-clamped micro- and nano-scale

rectangular beams are presented.

10.1 Simply supported beam carrying a uniformly

distributed load

Consider a rectangular beam of length L as shown in figure 1.

The beam is subjected to simply supported boundary condi-

tions at x = 0 and x = L. The beam carries a uniformly

distributed load of intensity q0 over the beam span L.

For the case of a beam simply supported at x = 0 and

x = L, the boundary conditions could be written as follows:

At x = 0,

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð48Þ

and

Mx½ �x¼0¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ
� �

x¼0

¼ 0 ð49Þ

At x = L,

w½ �x¼L¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼L

¼ 0 ð50Þ

and

Mx½ �x¼L¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ
� �

x¼L

¼ 0 ð51Þ

Using the governing Eq. (36) and the boundary conditions given

by Eqs. (48)–(51), one could obtain the solution for bending

component wb. The expression obtained for wb is as follows:

wb ¼
q0L

4

24EI

x

L

� �4

�2
x

L

� �3

þ x

L

� �

þ12
e0að Þ2

L2

x

L

� �
� x

L

� �2
� �

8>>><
>>>:

9>>>=
>>>;

ð52Þ

Next, using the obtained expression for wb in Eq. (31),

one would obtain the expression for lateral deflection w as

follows:

w ¼ q0L
4

24EI

x

L

� �4

�2
x

L

� �3

þ x

L

� �

þ 12 1 þ lð Þ
5

h

L


 �2
x

L

� �
� x

L

� �2
� �

þ12
e0að Þ2

L2

x

L

� �
� x

L

� �2

þ 2 1 þ lð Þ
5

h

L


 �2
" #

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð53Þ

Equation (53) is the expression for lateral deflection w ob-

tained using the present nonlocal beam theory for the case

of a simply supported beam carrying a uniformly dis-

tributed load of intensity q0. It can be seen that, in Eq. (53)

by ignoring the terms pertaining to micro-scale effects, one

could obtain the deflection expression for simply supported

beams derived using the classical elasticity theory [11, 21].

The expression for maximum lateral deflection, i.e., w at

x = L/2 can be written as:

w½ �x¼L
2
¼ q0L

4

24EI

5

16
þ 3 1 þ lð Þ

5

h

L


 �2

þ12
e0að Þ2

L2

1

4
þ 2 1 þ lð Þ

5

h

L


 �2
" #

8>>>><
>>>>:

9>>>>=
>>>>;
ð54Þ

10.2 Cantilever beam carrying a uniformly

distributed load

The geometry of cantilever beam under consideration is as

shown in figure 1. The beam is clamped at x = 0 and the

other end i.e., x = L is free. The beam carries a uniformly

distributed load of intensity q0.

As discussed under sub-section 8.3, using present theory

it would be possible to prescribe three types of boundary

conditions at the clamped ends, namely, Type 1, Type 2 and

Type 3. As Type 1 boundary conditions do not incorporate
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the effects of shear deformation into the deflections pre-

dicted, here, only Type 2 and Type 3 boundary conditions

would be used to obtain beam deflections. The steps

involved in obtaining the expression for lateral deflection w

using Type 3 clamped end boundary conditions will now be

discussed. The expression for lateral deflection w using

Type 2 boundary conditions could be obtained following a

similar pattern. For the case of a cantilever beam discussed

here, the boundary conditions to be used are:

At x = 0,

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð55Þ

and

dwb

dx
þ h2 1 þ lð Þ

20

d3wb

dx3

� �
x¼0

¼ 0 ð56Þ

At x = L,

Mx½ �x¼L¼ �EI
d2wb

dx2
� e0að Þ2

q xð Þ
� �

x¼L

¼ 0 ð57Þ

and

Vx½ �x¼L¼ �EI
d3wb

dx3
� e0að Þ2dq xð Þ

dx

� �
x¼L

¼ 0 ð58Þ

Using the governing Eq. (36) and the boundary conditions

prescribed by Eqs. (55)–(58), one could obtain the solution

for bending component wb. The expression for wb obtained

could be written as:

wb ¼
q0L

4

24EI

x

L

� �4

�4
x

L

� �3

þ6
x

L

� �2

þ 6 1 þ lð Þ
5

h

L


 �2

2 þ x

L

� �h i

� e0að Þ224

L2

1

2

x

L

� �2

þ 1 þ lð Þ
5

h

L


 �2
" #

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð59Þ

Now, using the solution for wb in Eq. (31), one would

obtain the expression for lateral deflection w as follows:

w ¼ q0L
4

24EI

x

L

� �4

�4
x

L

� �3

þ6
x

L

� �2

þ 6 1 þ lð Þ
5

h

L


 �2

5
x

L

� �
� 2

x

L

� �2
� �

8>>><
>>>:

9>>>=
>>>;

ð60Þ

Equation (60) is the expression for lateral deflection w ob-

tained using the present nonlocal theory for the case of a

cantilever beam carrying a uniformly distributed load of

intensity q0. One could obtain the beam deflection expres-

sion of classical elasticity theory [11, 29] by ignoring the

terms associated with small-scale effects in Eq. (60).

The expression for maximum lateral deflection, i.e., w at

x = L can be written as:

w½ �x¼L¼
q0L

4

24EI
3 þ 18 1 þ lð Þ

5

h

L


 �2

� e0að Þ212

L2

" #
ð61Þ

10.3 Clamped-clamped beam carrying a uniformly

distributed load

Consider a rectangular beam of length L as shown in fig-

ure 1. The beam is clamped at x = 0 and x = L. The beam

carries a uniformly distribute load of intensity q0 over the

beam span L.

The steps involved in obtaining the expression for

lateral deflection w using Type 3 clamped end boundary

conditions will now be discussed. The expression for

lateral deflection w using Type 2 boundary conditions

could be obtained following a similar pattern. For the

case of a beam clamped at x = 0 and x = L, the boundary

conditions to be used are:

At x = 0,

w½ �x¼0¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼0

¼ 0 ð62Þ

and

dwb

dx
þ h2 1 þ lð Þ

20

d3wb

dx3

� �
x¼0

¼ 0 ð63Þ

At x = L,

w½ �x¼L¼ wb �
h2 1 þ lð Þ

5

d2wb

dx2

� �
x¼L

¼ 0 ð64Þ

and

dwb

dx
þ h2 1 þ lð Þ

20

d3wb

dx3

� �
x¼L

¼ 0 ð65Þ

Using the governing Eq. (36) and the boundary conditions

prescribed by Eqs. (62)–(65), one could obtain the

expression for bending component wb as follows:

wb ¼
q0L

4

24EI

x

L

� �4

�2
x

L

� �3

þ x

L

� �2

þ 3 1 þ lð Þ
5

h

L


 �2
x

L

� �
� x

L

� �2
� �

þ 2 1 þ lð Þ
5

h

L


 �2

1 þ 3 1 þ lð Þ
5

h

L


 �2
" #

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
ð66Þ

Next, using the obtained solution for wb in Eq. (31), the

expression for lateral deflection w could be written as:
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w ¼ q0L
4

24EI

x

L

� �4

�2
x

L

� �3

þ x

L

� �2

þ3 1 þ lð Þ h

L


 �2
x

L

� �
� x

L

� �2
� �

8>>><
>>>:

9>>>=
>>>;

ð67Þ

Equation (67) is the expression for lateral deflection

w obtained using the present nonlocal beam theory for

the case of a clamped-clamped beam carrying a uni-

formly distributed load of intensity q0. It can be noted

that, there are no terms pertaining to micro-scale

effects are present in the Eq. (67). This observation is

also noted by Reddy and Pang [38] in case of analysis

of clamped-clamped beams carrying uniformly dis-

tributed loads based on Eringen’s nonlocal elasticity

theory.

The expression for maximum lateral deflection, i.e., w at

x = L/2 could be written as:

w½ �x¼L
2
¼ q0L

4

24EI

1

16
þ 3 1 þ lð Þ

4

h

L


 �2
" #

ð68Þ

11. Results and discussions

In this section, the lateral deflection parameter ( �w) obtained

for the case of simply supported, cantilever and clamped-

clamped beams have been presented in the form of plots.

The lateral deflection parameter ( �w) used herein is defined

as:

�w ¼ 100EI

q0L4
� w½ �max ð69Þ

The lateral deflection parameter ( �w) versus nonlocal

parameter (K) plots pertaining to the case of simply

supported, cantilever and clamped-clamped beams are

given in figures 2–4. In figures 2 through 4, the lateral

deflection parameters ( �w) have been plotted for the fol-

lowing cases:

h

L
¼ 0:1; 0:2 and K ¼ e0að Þ2¼ 0; 1; 2; 3; 4

The Poisson’s ratio (l) of the beam material is assumed to

be 0.3. The length of the beam under consideration is taken

as 10 nm.

Figures 2–4 also present the deflection results obtained

by other nonlocal beam theories based on Eringen’s non-

local elasticity theory. The deflections pertaining to Euler-

Bernoulli beam theory (EBT), Timoshenko beam theory

(TBT) and Reddy beam theory (RBT) plotted in figure 2

have been taken from a paper by Thai [23]. And, EBT and

TBT deflections plotted in figures 3 and 4 have been cal-

culated by present authors using the deflection expressions

provided in ref. [38].

11.1 Discussions on deflection results

With reference to the lateral deflection ( �w) results presented

in figures 2–4, the following points need to be noted:

1. Referring to plots pertaining to lateral deflection param-

eter ( �w) for the case of a simply supported beam carrying

a uniformly distributed load presented in figure 2, the

following points need to noted:

• The results obtained by using the present nonlocal

beam theory are more or less same as those

Figure 2. Plot of lateral deflection ( �w) versus nonlocal parameter

(K) for the case of a simply supported beam carrying a uniformly

distributed load.

Figure 3. Plot of lateral deflection ( �w) versus nonlocal parameter

(K) for the case of a cantilever beam carrying a uniformly

distributed load.
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predicted by nonlocal version of Timoshenko and

Reddy beam theories. Whereas, EBT underesti-

mates the beam deflections in comparison to

present, Timoshenko and Reddy beam theories.

Also, the error in predicted deflections will

increase as the h/L ratio increases. In case of

h/L = 0.1 and K = 4, the predicted error is

–2.33 % in comparison to present theory, whereas,

the predicted error is – 8.69 %, in case of

h/L = 0.2 and K = 4.

• Further, the efforts involved in obtaining the solu-

tions for beam problems by using the present theory

are only marginally higher in comparison to that

involved in case of Euler-Bernoulli Beam theory

[13–16].

2. Referring to plots pertaining to lateral deflection param-

eter ( �w) for the case of a cantilever beam carrying a

uniformly distributed load presented in figure 3, the

following points need to be noted:

• The present beam theory results are same as those of

TBT results when Type 2 clamped end boundary

conditions are used. Further, the present beam

theory results are marginally on higher side in

comparison to TBT results when Type 3 clamped end

boundary conditions are used.

• The EBT results are not satisfactory in comparison

to the present beam theory and TBT results. The EBT

underestimates the beam deflections. Also, the error

in predicted deflections will increase as the h/L ratio

increases. In case of Type 2 boundary conditions, for

h/L = 0.1 and K = 4, the predicted error is

– 1.22 % in comparison to present theory, whereas,

the predicted error is –4.72 %, in case of h/L = 0.2

and K = 4. And, in case of Type 2 boundary

conditions, for h/L = 0.1 and K = 4, the predicted

error is –1.82 % in comparison to present theory,

whereas, the predicted error is –6.91 %, in case of

h/L = 0.2 and K = 4.

3. Referring to plots pertaining to lateral deflection param-

eters ( �w) for the case of a clamped-clamped beam

carrying a uniformly distributed load presented in

figure 4, the following points need to be noted:

• The parameters associated with the small-scale

effects do not have any influence on the beam

deflections. The deflection results obtained are same

as those one could obtain in case of clamped-

clamped beam analysis using classical elasticity

theory.

• The present beam theory results are same as those of

TBT results when Type 2 clamped end boundary

conditions are used.

Also, it is worthwhile to note that, for the case of

clamped-clamped beams, the formulation of present

theory (in case of Type 3 clamped end boundary

conditions) based on classical elasticity theory

would predict deflections as same as those of two-

dimensional theory of elasticity solution [39] and

Levinson beam theory [12].

• EBT underestimates the deflections in comparison to

the deflections obtained in case of present beam

theory and TBT. Also, the error in predicted

deflections will increase as the h/L ratio increases.

In case of Type 2 boundary conditions, for h/L = 0.1

and K = 4, the predicted error is – 11.10 % in

comparison to present theory, whereas, the predicted

error is –33.30 %, in case of h/L = 0.2 and K = 4.

And, in case of Type 2 boundary conditions, for

h/L = 0.1 and K = 4, the predicted error is

–13.49 % in comparison to present theory, whereas,

the predicted error is –38.43 %, in case of h/L = 0.2

and K = 4.

12. Concluding remarks

In this paper, a single variable nonlocal theory for bending

of micro- and nano-scale rectangular beams has been pro-

posed. The noteworthy features of the theory presented here

are:

1. The theory involves only one governing differential

equation in terms of a single variable.

2. The governing differential equation and the expres-

sions for bending moment and shear force of the

present nonlocal beam theory are strikingly similar

to those of nonlocal version of Euler-Bernoulli

beam theory based on Eringen’s nonlocal elasticity

theory.

Figure 4. Plot of lateral deflection ( �w) versus nonlocal parameter

(K) for the case of a clamped-clamped beam carrying a uniformly

distributed load.
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3. The displacement field of the present theory gives rise to

a realistic parabolic distribution of transverse shear stress

across the beam cross-section.

4. The deflection results obtained for lateral deflection

parameters by using the present nonlocal beam theory

are quite accurate in comparison to the deflections

obtained by other nonlocal version of first-order and

higher-order beam theories.

In conclusion, a single variable shear deformable non-

local beam theory presented in this paper could be utilized

in an accurate, simplistic manner for the bending analysis

of micro- and nano-scale rectangular beams.

Nomenclature

A Cross-sectional area of beam

a Internal characteristic length

b Beam width

Dijkl Elastic modulus tensor

E Modulus of elasticity

e0 Material constant appropriate to each material

G Modulus of elasticity in shear

h Beam height

I Moment of inertia

i, j, k, l Suffixes (Represent rank of a tensor)

K Material parameter

L Beam length

Mx Moment due to bending stress rx
O-x-y-z Cartesian coordinate system

X;X0 Reference points

X0 �Xj j Euclidean distance

q0 Intensity of a uniformly distributed lateral

load

q(x) Intensity of a distributed lateral load

tij X
0ð Þ Local stress tensor at any point X0

u, v, w Displacements in x, y, and z-directions,

respectively

ub, wb Bending components of displacements u and

w, respectively

us, ws Shear components of displacements u and w,

respectively

V Volume of the beam under consideration

Vx Shear force due to shear stress szx
�w Non-dimensional maximum lateral deflection

x, y, z Cartesian coordinates

a Kernel function

czx Shear strain

�kl X
0ð Þ Strain tensor at any point X0

�x Normal strain

l Poisson’s ratio

czx Shear strain

rij Xð Þ Nonlocal stress tensor at a reference point X

rx, ry, rz Normal stresses

s Constant

sxy, syz, szx Shear stresses

r2 Laplacian operator
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