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Abstract. The present research work involves the implementation of Modified Chaotic Invasive Weed

Optimization (MCIWO) algorithm for optimizing the gains of torque based proportional integral and derivative

(PID) controller used to control the motors of the biped robot while walking on flat surface. While designing the

controller, the dynamics of the biped robot has been derived using the well-known Lagrange-Euler (L-E)

formulation. Subsequently, manual tuning procedure is employed to find the ranges of the gains of PID con-

troller used in the developed algorithm. Once it is optimized, the effectiveness of the proposed algorithm is then

compared with the Differential Evolution (DE) algorithm, in terms of variation of error, torque required, zero

moment point (ZMP) and dynamic balance margin (DBM) of the biped robot. It has been observed that the

MCIWO algorithm tuned PID controller is found to perform better than DE tuned controller. Further, the

optimal gait obtained through the developed algorithm is validated by executing it on the real robot. It has been

observed that the robot has successfully negotiated the flat terrain with the gaits obtained by the optimal PID

controller.

Keywords. Modified Chaotic Invasive Weed Optimization (MCIWO); PID controller; dynamic balance

margin; biped robot.

1. Introduction

Recently, the usage of biped robots are growing in various

applications such as industry, houses, offices and hospitals.

Based on the utility of the biped robots, most of the

research is focussed on the development of human friendly

features which are partially inspired by the growth in the

technology. The major challenge in the area of biped

robotics is to generate dynamically balanced gaits for the

robot in an unknown environment. Further, for the past few

decades, many researchers were working on the develop-

ment of various types of linear and non-linear controllers

that generate dynamically balanced walking gaits for the

biped robot. Up to now, most of the research is focused on

the generation of dynamically balanced gaits only in the

sagittal plane. In the present research work, the gait of the

biped robot is considered in both the sagittal and frontal

planes and designed a torque based PID controllers while

walking on the flat surface.

Some of the literature related to the generation of

dynamically balanced gaits of a biped robot is presented

below. A semi-inverse method was proposed by Juricic and

Vukobratovic [1] to determine the trunk motion of a biped

robot. In that work, initially the ZMP position was defined,

and then the trunk motion was calculated based on the

defined position of ZMP. In [2], Furusho and Masubuchi

introduced a new reduced order model based on the concept

of local feedback of the system to develop a stable loco-

motion. The said reduced order model was derived after

considering the effect of motion of the body and swing leg

of the biped robot. Further, Seo and Yoon [3] conducted

several simulations for the biped robot on various terrain

conditions and designed a robust dynamic gait based on the

concept of ZMP and DBM. Moreover, Lum et al [4]

developed computed torque control scheme and variable

structural control law to control a 5-DOF biped robot. The

performance of the developed method was tested on a real

robot and found that it could walk on a horizontal surface

and climb a stair case. For achieving dynamic walking,

Kim et al [5] used distributed control architecture to control

all the joints of the robot in a smooth way. The architecture

was reduced to limit the computation effect of the main

controller on the system. Further, a servo motor was used as

the sub-controller for the inertia sensor and a 3-axis for-

ce/torque sensor used in the sensory system. The results of

simulation was tested on KHR-2, a 41-DOF humanoid

robot. Pandu et al developed dynamically balanced gait

generation algorithm for a 7- DOF biped robot on different

terrains i.e., stair case [6] and slope surface [7] after using

the concept of zero moment point. In that work, the authors*For correspondence
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had not used any controller to control the robot, and the

degrees of freedom of the robot is limited. In [8], Her-

nandez et al designed a PD control algorithm with gravity

compensation on a 16- DOF biped robot for obtaining

desired trajectories, and to determine the torque required at

each joint. Later on, to generate smooth walking gaits of the

biped robot in both single and double support phase, Al-

Shuka et al [9] proposed an algorithm that induce smooth

transition from SSP to DSP and vice versa by using three

methods i.e., LIPM, LPM and COG. Further, they also

implemented different foot trajectories in DSP to improve

the stability of the biped robot. Katic and Vukobratovic

[10] developed an intelligent control technique after using

genetic algorithm (GA), neural network (NN) [11], fuzzy

logic controller (FLC) and their hybrid versions, such as

neuro genetic, neuro-fuzzy networks and fuzzy genetic

algorithms in the area of biped robotics.

In addition to the above methods, Patrizio [12] developed

an adaptive PD controller for controlling the robotic

manipulators. The controller was shown to be globally

convergent and the simulations were conducted on a 3-DOF

robot. From the results of simulation, it was observed that

the performance of the adaptive PD controller had hardly

influenced by the initial error, although the performance of

the PID control law deteriorated considerably as the error

was increased. A tuning procedure was proposed by Rafael

[13] to tune the controller of a robotic manipulator. They

utilized Lyapunov function together with the LaSalle

invariance principle to obtain the required tuning proce-

dure. For tuning the PID controller by using these

approaches, in depth knowledge over the inertia matrix and

gravitational torque vectors was required. Further, Khoury

et al [14] developed a fuzzy PID controller for a 5-DOF

robotic arm and the performance of their controller was

compared with the help of the computed torque control

method and direct adaptive control method. Moreover, to

tune the PID controller parameters of a 4-DOF spatial and

planar manipulators, Ravi and Pandu [15] utilized manual

tuning procedure. The performance of these controllers

were tested in computer simulations. Further, to control the

multiple inputs and outputs of a robotic arm, Hassan [16]

developed a self-organising fuzzy PID controller. It was

observed that the output trajectories of the SOF-PID con-

troller path was closer and smoother than the output tra-

jectories of the SOFC and PID controller. Later on, Aulia

et al [17] used Reinforcement learning (RL) algorithm with

Q-Learning approach to tune the PID control parameters of

the soccer robot. Finally, they compared the results of the

approach with Ziegler–Nichols tuning method. The

response of RL algorithm was 1.5 times faster than the

Ziegler– Nichols tuning method. Jeong et al [18] used a

non-parametric estimation method based on particle swarm

optimization (PSO) to search the parameters used in the

central pattern generator of the two legged robot. Moreover,

Helon et al [19] proposed a multi-objective genetic algo-

rithm (that is, NSGA-II) to tune the gains of the PID

controller of the robotic manipulator. It was observed that

the performance of the NSGA-II was good at reference

tracking and provides robust solutions for the robotic

manipulator. In [20], Mohd et al discussed the tuning of

PID controller parameters using differential evolution (DE)

and genetic algorithm (GA). The performance of these

algorithms were compared with the standard Ziegler-Ni-

chols method. Further, Ravi et al [21] developed a tuning

procedure for the PID controller of a 3-DOF planar robotic

manipulator after using GA and PSO algorithms. It was

observed that the PSO algorithm was seen to be performed

better than GA in terms of error in the joint angle and

torque required at various joints. Moreover, Geetha et al

[22] implemented a virtual feedback controller to control

the state variables of the continuously stirred tank chemical

reactor and used extended kalman filter in the feedback

mechanism. They used GA, PSO [23] and ACO algorithms

for determining the optimal PID parameters. It was found

that the PSO algorithm was seen to perform better than the

other methods. Joel et al [24] developed adaptive neural

network controller for tracking the trajectory of a 2-DOF

manipulator. The Lyapunov control function was used for

analysing the stability of the tracking error, and the PID

approach was used to determine the control law.

Further, Dusan et al [25] implemented some nature-in-

spired optimization algorithms, such as GA, PSO, Bat

Algorithm (BA) [26], Hybrid Bat Algorithm (HBA), DE and

Cuckoo Search (CS) algorithms to obtain the optimal

parameters for the PID controller. They applied these

algorithms for the online response of the PID controller by

applying sudden loads, and observed a quick response. In

[27], the authors had developed an optimal adaptive PID

controller based on fuzzy rules and introduced a sliding

mode controller to control the multi input and multi output

chaotic nonlinear systems. A multi objective GA was used

to optimize the parameters of the proposed controller. No

work is reported on the usage of invasive weed optimization

algorithm in the area of the proposed research. However,

this algorithm was used to optimize the gains of the PID

controller in other engineering applications. Navid and

Mohsen [28] used invasive weed optimization (IWO) and

Artificial Bee Colony (ABC) algorithms to tune the gains of

the PID controller for hydro-turbine generator. The results

of the simulation revealed that IWO algorithm had per-

formed better than the ABC algorithm at different load

conditions of the power system. Further, Abedinia et al [29]

used a modified version of IWO algorithm to tune the

parameters of fuzzy PID controller used in multi machine

power system. A Bacterial Foraging Optimization algorithm

(BFO) was also used by Latha and Rajinikanth [30] to tune

the parameters of PID controller used in a 2-DOF manipu-

lator. The robustness of the algorithm was tested by intro-

ducing uncertainty in the model parameters. In addition to

the above algorithms, Nikhileshwar and Amith [31] used

GA to tune the parameters of the PID controller that was in

the position control of a DC motor. Recently, another
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optimization algorithm called Antlion optimizer [32] was

also used to tune the gains of the PID controller used in

automobile cruise control system. Later on, Naidu and Ojha

[33] developed a hybrid version of IWO with quadratic

approximation, and compared with standard invasive weed

optimization algorithm. In [34], [35] the authors discussed

the applicability of invasive weed optimization algorithm in

electromagnetic applications. Further, various new opti-

mization algorithms such as chemical reaction optimization

[36] and fireworks optimization [37] algorithms were

developed by various authors to estimate the optimal

parameters related to different engineering problems.

Based on the above literature, it has been observed that

most of the researchers had used ZMP based PID controller

to control the motors of the biped robot while executing the

motion. It is important to mention that the ZMP based

governing is an indirect method of controlling the motors in

which the error signal between the obtained and reference

ZMP trajectory is used to design the gaits for various links

of the biped robot. During the said process, the controller

may suggest some dynamically balanced postures which

may not be kinematically feasible. Further, finding the most

appropriate gaits of the biped robot that fulfils the sequence

oriented criterion and repeatability conditions is challeng-

ing to achieve. Whereas torque-based PID controller con-

siders the error signal of each joint of the biped robot, and

try to design the gains of the controller by minimizing the

error between two consecutive gait angles of each joint of

the biped robot. With the best of the author’s knowledge, no

work is reported on the design of torque based PID con-

troller for the biped robot. Moreover, none of the researcher

had tried to implement the chaotic nature in IWO algorithm

that helps in distributing the seeds in a wider spread that

helps in enhancing the search space. In the present paper,

an attempt is made to develop an appropriate torque-based

PID controller for all the joints of the lower limbs of a

biped robot to achieve stable walk. Further, the gains of the

PID controllers are tuned with the help of a modified non-

traditional optimization algorithm i.e., MCIWO developed

in this research. Once the optimal PID controllers are

designed, the effectiveness of the algorithm is compared

with the existing DE tuned PID controller in terms of

dynamic balance margin of the biped robot. Further, the

gaits obtained using the best optimal PID controller are

tested on a real robot and found that the robot has suc-

cessfully performed its walk on flat terrain.

The rest of the paper is organised as follows. Section 2

explains the formulation of the problem that includes the

kinematics, dynamics and design of PID controller. Sec-

tion 3 discusses the formulation of the optimization prob-

lem. The description related to the non-traditional

optimization algorithms are given in section 4. The results

of simulation and experimentation are presented and dis-

cussed in section 5. Further, the conclusions of the said

work and scope for future work are provided in section 6

and 7, respectively.

2. Formulation of the problem

The problem solved in the present research may be detailed

as follows: A torque-based PID controller will be devel-

oped for the 18-DOF biped robot (figure 1) walking on the

flat surface after maintaining the balance of the robot in

both sagittal and frontal planes. The kinematics, dynamics

and design of the torque-based PID controller for the said

robot are explained below. The gains of the proposed PID

controller are optimized with the help of a non-traditional

optimization algorithm, MCIWO developed in this study.

2.1 Inverse kinematics of the biped robot

The concept of inverse kinematics is used to determine the

included angles made between the lower and upper limbs of

the swing leg of the biped robot. The mathematical

expressions used for obtaining the joint angles of swing leg

h4 and h3 in sagittal plane are given below.

h4 ¼ sin�1 H1l3 sinwþ L1 l4 þ l3 coswð Þ
l4 þ l3 coswð Þ2þ l3 sinwð Þ2

 !
ð1Þ

where H1 ¼ l4 cos h4 þ l3 cos h3; L1 ¼ l4 sin h4 þ l3 sin h3;
w ¼ h4 � h3 ¼ arc cosððH2

1 þ L21 � l24 � l23Þ=2l4l3Þ. Thus,

h3 can be obtained from the equationh3 ¼ h4 � w. Simi-

larly, the angles h9 and h10 are obtained by using the fol-

lowing mathematical expressions.

h10 ¼ sin�1 H2l9 sinwþ L2 l10 þ l9 coswð Þ
l10 þ l9 coswð Þ2þ l9 sinwð Þ2

 !
ð2Þ

where H2 ¼ l9 cos h9 þ l10 cos h10; L2 ¼ l9 sin h9 þ l10 sin h;
w ¼ h10 � h9 ¼ arc cosððH2

2 þ L22 � l210 � l29Þ=2l10l9Þ. Thus,
h9 can be obtained from the equationh9 ¼ h10 � w. The

angle at ankle with respect to vertical axis is assumed to be

equal to zero i.e., h6 = h12 = 0. The mathematical rela-

tionships used for determining the joint angles of both the

legs in frontal plane are given below.

h2 ¼ h8 ¼ tan�1 fw=H1ð Þ ð3Þ

h5 ¼ h11 ¼ tan�1 0:5 � fwð Þ=H2ð Þ ð4Þ

It is important to note that the joint angles in both the

sagittal and frontal planes of the robot are needed to follow

repeatability conditions for smooth transition from single

support phase to double support phase and vice versa.

2.2 Dynamic balance margin of the biped robot

While walking, the gait generated by the biped robot should

be dynamically balanced. For achieving dynamically bal-

anced gait, the zero moment point should lie inside the foot

support polygon. The foot-ground interaction model, in
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which the position of ZMP and forces acting on the foot of

the biped robot are shown in figure 2.

The location of ZMP in both the directions i.e., Xzmp and

Yzmp is calculated by using the following equations:

xZMP ¼
Pn

i¼1 Ii _xi � mi€xizi þ mixiðg� €ziÞð ÞPn
i¼1 mið€zi � gÞð Þ ð5Þ

yZMP ¼
Pn

i¼1 Ii _xi � mi€yizi þ miyiðg� €ziÞð ÞPn
i¼1 mið€zi � gÞð Þ ð6Þ

where _xi and Ii denotes the angular acceleration (rad/s2)

and mass moment of inertia (kg-m2) of the ith link, g and mi

represents the acceleration due to gravity (m/s2) and mass

(kg) of the link i, €zi and €xi indicates the acceleration of the

ith link moving in z and x directions (m/s2), (xi; yi; zi) sig-

nifies the coordinates of the ith lumped mass.

It is important to note that, the ZMP should always lie

inside the foot support polygon to ensure dynamically

balanced gaits of a biped robot. The DBM, which is used

to measure the amount of balance of the robot is defined

as the distance between the ends of the foot support

polygon to the point, where the ZMP is acting on the foot

at the foot ground interaction. The following expressions

are used to calculate the quantities xDBM and yDBM of the

biped robot.

xDBM ¼ fs

2
� xZMPj j

� �
ð7Þ

yDBM ¼ fw

2
� yZMPj j

� �
ð8Þ

wherefs and fw represent the length and width of the foot

support, respectively. It is important to note that in the

present research the orientation of the swing foot is parallel

to the ground.

2.3 Dynamics of the biped robot

The parameters, such as linear and angular velocity of the

joints are very important for the locomotion of the biped

robot. The Jacobian method is used to determine the linear

(JviÞand angular (JxiÞvelocity of the joints of the biped

robot.

Ji ¼
Jvi
Jxi

� �
¼ Zi�1 � On � Oi�1ð Þ

Zi�1

� �
ð9Þ

Once the angular velocity and angular acceleration are

evaluated, the dynamics of the biped robot is determined

with the help of Lagrange-Euler formulation, which is

given below.

(a) (b)

Figure 1. A schematic diagram showing the full body of biped robot: (a) stick diagram and (b) real robot.
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si;the ¼
Xn

j¼1
Mij qð Þ€qj þ

Xn

j¼1

Xn

k¼1
Cijk _qj _qk þ Gi

i; j; k ¼ 1; 2. . .n

ð10Þ

where sithe indicates the torque required at joint i (N-m),

qj; _qjand €qj represent the displacement, velocity (rad/sec)

and acceleration (rad/sec2) of the joint, respectively. While

controlling the joint, the acceleration of the link plays a

major role. Therefore, the expression in terms of acceler-

ation will be obtained by rearranging the terms of equation

(10), and is given below.

€qj ¼
Xn

j¼1
Mij qð Þ�1 �

Xn

j¼1

Xn

k¼1
Cijk _qj _qk � Gi

h i
þ

Xn

j¼1
Mij qð Þ�1�si;the

� �
i; j; k ¼ 1; 2. . .n

ð11Þ

now by considering the term
Xn

j¼1
Mij qð Þ�1�si;the ¼ ŝ

ð12Þ

the torque required can be obtained by using the equation

(13), which is given below.

si;the ¼
Xn

j¼1
Mij qð Þ � ŝ ð13Þ

2.4 Design of PID controller for biped robot

After solving the dynamics of the biped robot, the PID

controllers are employed to control the motors of all the

joints of the biped robot. The main aim of the PID con-

troller is to diminish the error between the actual process

variable to the reference of the system. The equation for the

joint based PID controller that is used in this study is given

below as in eq. (14).

sact ¼ KpeðtÞ þ Kd

deðtÞ
dt

þ Ki

Z
eðtÞdt ð14Þ

where eðtÞ represent the error in the displacement of joint

and Kp, Kd and Ki indicate proportional, derivative and

integral gains for the controller, respectively. The expanded

form of the above equation after including the meaning of

eðtÞ is given below.

e hið Þ ¼ hif � his ð15Þ

si;act ¼ Kpi hif � his
� 	

� Kdi his
:

þKii

Z
e hisð Þdt

i ¼ 1; 2; . . .n
ð16Þ

where si;act represent the actual torque supplied by the

controller to individual joints to move from an initial

angular position (hisÞ to final angular position (hif Þ. The
final control equation that represents the control action for

all joints is given below.

€qj ¼
Xn

j¼1
Mij qð Þ�1 �

Xn

j¼1

Xn

k¼1
Cijk _qj _qk � Gi

h i
þ Kpi hif � his

� 	
� Kdi

_his þ Kii

Z
e hisð Þdt ð17Þ

Further, the integral terms in the above equation need to

be substituted by its state variables, and is given below.

xi ¼
Z

e hisð Þdt ) _xi ¼ hif � his i ¼ 1; 2; . . .n ð18Þ

3. Formulation as an optimization problem

In the present study, the biped robot has to move on the flat

terrain with the help of dynamically balanced gaits obtained

from the torque-based controller, whose gains are opti-

mized with an objective to minimize the error in angular

Figure 2. Schematic diagram showing the foot-ground interaction model.
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displacement of the swing and stand legs. There are several

entities such as, links of the robot, orientation of the foot,

structure of the body, nature of the surface, walking with

single or double support phases and the nature of the gait in

both the sagittal as well as frontal planes, etc. influence the

balance of the biped robot in real time and unique when

compared with the other mobile robots. The improper

planning and lack of coordination among these entities lead

to decrease in the balance of the robot and the gait may fail

also. To maintain proper balance of the biped robot while

walking on flat terrain it is necessary to control the motors

mounted on the joints in an appropriate manner. Mini-

mization of error in angular displacement of the motors

mainly depend on various constraints related to the con-

troller. The major constraints include the proportional,

derivative and integral gains of the controllers that are used

to control the motors mounted on swing and stand legs. The

problem aims at evolving the gains of the controllers that

minimizes the error in angular displacement of both the

swing and stand leg. The various assumptions and notations

considered while developing the model are explained

below.

3.1 Assumptions

(1) The double support phase is instantaneous and is used

to exchange the leg support.

(2) The friction between the foot and ground is sufficient

enough for the robot to avoid slipping while walking on

the floor.

(3) Free movement for upper body of the biped robot is

considered for proper balancing of the biped robot.

3.2 Notations

In the present research, i and j are used as two sets/indices

that are used to represent number of joints in the swing and

stand leg, respectively. The parameters and decision vari-

ables used in this study are given in tables 1 and 2,

respectively.

3.3 Objective function

The overall objective of the present model is to minimize

the total error which comprises of error in angular dis-

placement of both the swing and stand legs and is formu-

lated [38 and 39] as follows:

Minimize total error = Error in angular displacement for

swing leg ? Error in angular displacement for stand leg

The description of the objective functions is given by

Equations (19) and (20), respectively.

Error in angular displacement for swing leg e1ð Þ
¼
X6

i¼1
ðhif � hisÞ ð19Þ

Error in angular displacement for stand leg e2ð Þ
¼
X12

j¼7
ðhjf � hjsÞ ð20Þ

Subject to constraints: The bounds on various design

variables related to the problem are given below.

Kpi;min �Kpi �Kpi;max

Kdi;min �Kdi �Kdi;max

Kii;min �Kii �Kii;max

i ¼ 1; 2; . . .6 ð21Þ

The constraints provided in Eq. (21) restricts the varia-

tion of proportional, derivative and integral gains, to min-

imize the error in the angular displacement of various joints

of the swing leg at various instances of time.

Kpj;min �Kpj �Kpj;max

Kdj;min �Kdj �Kdj;max

Kij;min �Kij �Kij;max

j ¼ 7; 8; . . .12 ð22Þ

Eq. (22) restricts the gains of the PID controller to

minimize the error in the angular displacement of various

joints of the stand leg at various instances of time. The

design of PID controller is a highly non-linear problem that

involves modelling the dynamic behaviour of the biped

robot. Therefore, the authors of the manuscript is decided to

use evolutionary algorithms to tackle the problem of tuning

the gains of the PID controller.

4. Proposed algorithms

To solve the aforementioned optimization problem related

to the tuning of the torque based PID controller, two non-

traditional optimization algorithms, namely modified

chaotic invasive weed optimization and differential evolu-

tion algorithms are used. The explanation related to the

Table 1. The parameters used in the problem.

e1 Error in angular displacement of the swing

e2 Error in angular displacement of the swing

is Initial joint angle of the swing leg

if Final joint angle of the swing leg

js Initial joint angle of the stand leg

jf Final joint angle of the stand leg

Table 2. The decision variables used in the problem.

Kpi Proportional gain for the ith joint of the swing leg

Kdi Derivative gain for the ith joint of the swing leg

Kii Integral gain for the ith joint of the swing leg

Kpj Proportional gain for the jth joint of the stand leg

Kdj Derivative gain for the jth joint of the stand leg

Kij Integral gain for the jth joint of the stand leg
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proposed algorithms are given in the subsequent sub-

sections.

4.1 Modified chaotic invasive weed optimization

algorithm

The Invasive weed optimization (IWO) algorithm is a

numerical stochastic optimization algorithm inspired from

the colonizing behavior of weeds introduced by Mehrabain

and Lucas [40] in 2006. The algorithm (figure 3) works

based on the following principle. The weeds invade the

unused resources in the cropping system (that is, field) by

means of dispersal and occupy the opportunity spaces

between the crops. The invaded weeds (that is, parents)

grow to flowering weeds after using the unused resources in

the crop and produce new seeds. These seeds are dispersed

randomly in a field and grow to a new flowering weed (that

Figure 3. Flow chart showing the operation of MCIWO algorithm.
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is, children). The step-by-step procedure used in the

implementation of MCIWO is given below.

• Choose the number of parameters of the problem and

assign the minimum and maximum values of each

parameter. A finite number of seeds are dispersed

randomly in an N-dimensional solution space and each

seed occupies a random position called initial solution.

• Based on the usage of unused resources in the field,

each initial seed grows to a flowering plant and

produce new seeds on the fitness value of each plant.

The number of seeds (S) produced by each plant in

reproduction process is calculated by using the equa-

tion (23). The goodness of this algorithm is that it

allows all generated weeds to contribute towards

reproduction process. This is advantageous under

certain situations, that the weed with worst fitness

value also gives some useful information to participate

through the evolutionary process.

S ¼ Floor Smin þ
f � fmin

fmax � fmin

� Smax

� �
ð23Þ

where Smin and Smax are the minimum and maximum

production by each plant, respectively and fmax and fmin
indicate the maximum and minimum fitness value in the

colony, respectively.

• The newly produced seeds are scattered randomly after

following normal distribution over the entire search

space. The mean of normal distribution is equal to the

position of the parent plants and the standard deviation

(SD) is determined by following the below expression.

rGen ¼
Genmax � Genð Þ

Genmaxð Þn
n

� rinitial � rfinal
� 	

þ rfinal ð24Þ

where Genmax is the maximum number of generations, n

represents the modulation index i.e., real number and rInitial

and rFinal denote the initial and final value of the standard

distribution, respectively (figure 3).

Normal IWO algorithm confirms that all possible can-

didate solutions would contribute in the reproduction pro-

cess. But, in most of the meta-heuristic algorithms, less fit

individuals are not allowed to form the new off spring.

Moreover, IWO algorithm is straight forward and it takes

less computational time compared to other methods. On the

other hand, some problems require more number of seeds to

explore outsized search space. This leads to a drastic

increase in the computational time. In order to overcome

the limitations of IWO algorithm, in the present research

work the authors incorporated two new terms, namely

cosine and chaotic variables [41–44] to improve the per-

formance of the IWO algorithm. The main idea of adding

cosine variable is to increase the search space for exploring

the better solutions. Moreover, the introduction of chaotic

Table 3. Parameters related to the biped robot.

Link Mass(Kg) Inertia(Kg-m2) Length(m)

Lower limb of the leg 0.1190 0.00007440 0.093

Upper limb of the leg 0.0700 0.00012600 0.093

Ankle to foot 0.2460 0.00003300 0.033

Upper arm 0.1930 0.00008569 0.060

Lower arm 0.0592 0.00012000 0.060

Trunk 0.0975 0.00017700 0.122

Pelvis 0.1940 0.00671000 0.037

Figure 4. Flow chart showing the operation of DE algorithm.
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variable helps in reducing the chances of the solution to

trap in the local optimum. Due to the greater scanning and

search capabilities of the modified algorithm, the maximum

number of seeds that participate in the search process are

more, and the computational cost of the overall algorithm is

less. The chaotic variable that is used in this algorithm is

derived from the Chebyshev map, and the expression is

given in the following equation.

Xkþ1 ¼ cos k cos�1 Xkð Þ
� 	

ð25Þ

The main goal of the present modification is not only to

get the global optimum solution, but also to obtain the best
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Figure 5. Results of parametric study to determine the parameters of MCIWO: (a) Initial standard deviation vs best fitness, (b)
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possible outcome after utilizing minimum resources. After

introducing the cosine term, the equation (24) will be

modified to the following form.

rGen ¼
Genmax � Genð Þ

Genmaxð Þn
n

� cos Genð Þj j � rinitial � rfinal
� 	

þ rfinal ð26Þ
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Figure 6. Results of parametric study to determine the parameters of DE: Crossover vs best fitness, (b) pop size vs best fitness, (c)
generations vs best fitness.

Table 4. Optimal tuning parameters

Joint

Manual tuning MCIWO based tuning DE based tuning

Kp Kd Ki Kp Kd Ki Kp Kd Ki

1 800 300 2000 797.04 257.89 1927.42 755.86 325.96 1800.00

2 900 300 1200 816.80 282.93 1148.77 800.00 350.00 1197.67

3 850 400 700 835.76 350.00 797.14 950.00 350.02 800.00

4 800 400 600 899.99 350.00 632.45 900.00 350.00 699.68

5 1000 300 4000 982.23 350.00 3917.47 900.02 349.99 3800.03

6 600 300 700 500.01 326.69 637.05 507.60 349.65 603.38

7 1000 300 4000 924.64 328.31 3866.66 1077.64 278.24 3800.00

8 800 400 3000 723.84 417.74 3178.15 846.07 350.00 3164.22

9 1000 200 4000 1037.12 161.04 3863.30 900.92 150.02 3800.00

10 800 300 1200 803.78 342.27 1107.32 718.72 349.96 1249.43

11 800 300 3200 703.73 266.52 3252.65 700.90 350.00 3384.95

12 2000 600 3000 2120.14 613.74 2963.58 1849.20 550.07 3200.00
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After the new seeds occupy their position in the search

area, they grow and become flowering plants and they are

also assigned with a rank along with their parent plants.

Then these plants are arranged from the lower rank to

higher rank based on the fitness value of each plant. The

lower ranked plants are eliminated, once the colony reaches

its maximum number of plants i.e., Pmax. This procedure

continues until the maximum number of iterations are

reached.

4.2 Differential evaluation algorithm

DE is a vector based stochastic optimization algorithm

developed by Storn and Price in 1995 [45]. The flow

chart shown in figure 4 explains the operation of DE

algorithm. In DE, the populations (NP) are vectors in a D-
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Figure 7. Results showing the convergence of the fitness

comparison with different optimization algorithms.
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Figure 8. Results showing the variation of joint error of the swing leg: (a) Joint 2, (b) Joint 3, (c) Joint 4 and (d) Joint 5.
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dimensional search space. Some crucial control parameters

namely scaling factor (F) and crossover rate (CR) are used

to improve the convergence performance of DE. The initial

population in the search space is generated with the help of

the following equation.

xj;i;0 ¼ xj;min þ randi;j 0; 1½ � � xj;max � xj;min

� 	
ð27Þ

Once the population is initialized, DE employs the

mutation operator to bring changes in the vectors that

represent parameter space. It is to be noted that the parent

vector in the current generation (Xi;G) and vector obtained

after mutation operation (Vi;G) are called target vector and

mutant vector, respectively. In each generation, the target

vector is associated with the mutant vector Vi;G ¼
v1;i;G; v2;i;G; v3;i;G; v4;i;G. . .vD;i;G

 �

and can be generated

after using a certain mutation strategy. In the present paper,

DE/rand/1 strategy has been used to implement the muta-

tion strategy.

‘‘DE=rand=1’’ : Vi;G ¼ Xri
1
;G þ F � Xri

2
;G � Xri

3
;G

� �
ð28Þ

The parameters ri1; r
i
2andr

i
3indicates three integers generated

randomly once for each mutant vector in the range of [1, NP]

and the termF represent the scaling factor.Once themutation is

over, crossover operation is implemented on the mutant vector

to generate the trail vector: Ui;G ¼ u1i;G; u
2
i;G; u

3
i;G. . .u

D
i;G

h i
. In

the present problem, binomial crossover is used to perform the

operation and is given below:

u
j
i;G ¼ v

j
i;G;

x
j
i;G;

(
ifrand 0; 1ð Þ�CRorðj ¼ jrandÞ

rand 0; 1ð Þ[CR

j ¼ 1; 2; 3. . .;D

ð29Þ

where CR represents the crossover rate and is a constant

within the range of [0, 1], which controls the parameter

values chosen from the mutant vector. The term jrand is

(c) (d)
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Figure 9. Results showing the variation of joint error of the swing leg: (a) Joint 8, (b) Joint 9, (c) Joint 10 and (d) Joint 11.
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integer randomly chosen in the range [1, D]. The binomial

crossover operator selects the jth parameter of the mutant

vector ðVi;GÞ to the corresponding element in the trail

vector Ui;G if rand 0; 1ð Þ�CR or ðj ¼ jrandÞ. Otherwise, it is
copied from the corresponding target vector Xi;G.

If the parameters generated from the new trail vector is

not within the corresponding lower and upper limits of the

parameters, re-initialization has to be done with in the

specified range of the parameters and their objective

function is to be evaluated. The functional value of each

trail vector f Ui;G

� 	
and the corresponding functional value

of the target vector f Xi;G

� 	
of the current population are

compared. If the functional value of the trail vector is less

than or equal to the objective function value of the corre-

sponding target vector, the trail vector will replace the

target vector and enter in to the next generation. Otherwise

the same target vector will be copied to the next generation.

Xi;Gþ1 ¼
Ui;G if f Ui;G

� 	
� f Xi;G

� 	
Xi;G otherwise

�
ð30Þ

5. Results and discussions

In the present study, two non-traditional optimization

algorithms, namely MCIWO and DE are used to tune the

gains of the torque based PID controller. Table 3 shows the

parameters of the biped robot used in the study to carry out

the simulations.

5.1 MCIWO based PID controller

As the performance of the MCIWO algorithm depends on

its parameters, namely initial standard deviation, exponent
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Figure 10. Comparison of average torque required to complete

one cycle: (a) MCIWO, (b) DE tuned based PID controllers.
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value, maximum population size, maximum number of

seeds and number of generations, a detailed parametric

study has been conducted to determine the optimal

parameters. It is to be noted that the final standard devia-

tion, minimum number of seeds and initial population size

are kept equal to 0.00001, 0 and 10, respectively. The

results related to the parametric study are shown in figure 5.

The optimal values obtained for the initial standard

deviation, exponent value, maximum population size,

maximum number of seeds and number of generations are

found to be equal to 4%, 2, 10, 3 and 100, respectively.

These optimal parameters of the MCIWO are responsible

for deriving the optimal gains of the PID controller i.e., Kp,

Kd and Ki are given in table 4.

5.2 DE based PID controller

Here also, a parametric study has been conducted to

determine the optimal parameters, namely cross over rate,

population size and generations of the DE algorithm. It is to

be noted that the minimum and maximum scaling factor are

kept equal to 0.2 and 0.8, respectively. The results of the

       

0 ms 
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5 ms 15 ms 10 ms 

25 ms 30 ms 20 ms 

Figure 13. Results showing the swing moment of the left leg.

Table 5. Results of robustness test for the developed optimal control algorithms

Percentage

Change in inputs

Percentage change in DBM

MCIWO Algorithm DE Algorithm

X-DBM Y-DBM X-DBM Y-DBM

- 4 0.0013 - 0.0063 0.0014 - 0.0054

- 3 0.0009 - 0.0047 0.0010 - 0.0040

- 2 0.0006 - 0.0032 0.0007 - 0.0027

- 1 0.0004 - 0.0016 0.0002 - 0.0014

1 - 0.0002 0.0018 - 0.0005 0.0018

2 - 0.0005 0.0039 - 0.0008 0.0034

3 - 0.01 0.0076 - 0.0012 0.0052

4 - 0.0097 0.0097 - 0.0015 0.0067
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DE-parametric study are shown in figure 6. The optimal

values of DE parameters are found to be as follows:

(i) Cross over rate = 0.7

(ii) Population size = 30

(iii) Maximum no. of generations = 100

The above optimal values of the DE algorithm are useful

to tune the gains of the PID controller. The optimal gains

obtained by using DE are given in table 4.

Further, figure 7 shows the final converge graph for

IWO, DE and MCIWO algorithms. It can be observed that

MCIWO has shown a better performance in convergence

when compared with the IWO algorithm. Therefore, only

MCIWO along with DE are used in the further study to

compare the performances of the torque based PID con-

trollers used by the biped robot.

5.3 Comparative study

Once the optimal PID controllers are evolved, a compara-

tive study has been conducted between MCIWO and DE-

tuned controllers in terms of variation of joint error, torque

required, variation of ZMP and DBM of the biped robot.

Table 4 shows the comparison of optimal gains (that is, Kp,

Kd and Ki) obtained using the manual, MCIWO and DE

based tuning of the PID controller.

Further, the performances of the optimalMCIWOandDE-

based PID controllers are tested in computer simulations. The

graphs 8 (a), (b), (c) and (d) show the variation of error in

angular position for the swing leg joints. Initially, the mag-

nitude of the error is very high and it slowly reached to the

study state. Moreover, it has also been observed that both the

MCIWOandDE-based PID controllers are found to reach the

steady state error by exhibiting a similar trend. Further, it has

also been observed that the MCIWO tuned PID controller

converges quickly when compared with DE tuned PID con-

troller. It may be due to the enhanced search space created in

MCIWO algorithm due to the introduction of cosine and

chaotic terms, when compared with the DE algorithm. Sim-

ilarly, figures 9 (a), (b), (c) and (d) show the error in angular

position of the stand leg of the biped robot, and both the

controllers have shown the similar trend as explained for the

joints of the swing leg.

In addition to the above result, a comparative study has

also been conducted for the aforementioned torque based

PID controllers in terms of average torque required by the

biped robot to perform the walk on the flat surface (ref.

figure 10). It can be observed that the MCIWO tuned PID

controller required less torque to execute the walk on the

flat surface by the biped robot when compared with the DE

tuned PID controller.

Further, a study has also been conducted to see the variation

of actual ZMP (that is, after controller action) in X and

0 ms 

20 ms 25 ms 

5 ms 

30 ms 

10 ms 15 ms 

35 ms 

Figure 14. Results showing the swing moment of the right leg.
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Y-directions with that of the theoretical ZMP (that is, obtained

by gait generation algorithm) in X and Y-directions. It can be

observed that the ZMP trajectories (refer to enlarged view of

figure 11) obtained by MCIWO-based PID controller is seen

to be more close to the center of the foot when compared with

the trajectory obtained by IWO andDE based PID controllers.

It may be due to the reason that in the case of controllers, they

might have introduced a correction for the angular position of

the link at the end of each interval that pushes the position of

ZMP towards the end of the foot support polygon. Finally, the

gait obtained is found to be balanced in nature as the ZMP is

lying inside the foot support polygon.

Along with ZMP trajectory, a comparative study has also

been conducted on DBM of the biped robot in both X- and

Y-directions (ref. to figure 12). It can be observed that

MCIWO based PID controller has produced more dynam-

ically balanced gaits when compared with the theoretical,

IWO and DE based PID controllers.

5.4 Robustness test

A robustness test has been conducted to study the perfor-

mance of the controller after providing some variation in

the controller parameter. Table 5 shows the results related

to the robustness test conducted by using the aforemen-

tioned algorithms. It has been observed that a maximum of

-0.01% and 0.0097% variation in the values of DBM is

obtained for MCIWO and DE-based PID controllers,

respectively for a ±4% variation in the values of the gains

of the controller. From this test, it can be observed that both

the controllers are robust enough to accommodate small

change in the gains of the controller for generating the

dynamically balanced gaits of the biped robot.

5.5 Experiments with real robot

From the simulations, it has been observed that the

MCIWO tuned PID controller is found to perform better

than DE tuned PID controller. Then the gait angles obtained

using MCIWO tuned torque based PID controller is fed to

the real robot. Figures 13 and 14 show the results of swing

moment of left and right legs, respectively of the biped

robot while moving on the flat surface. From the images it

can be observed that the biped robot has successfully

walked on the flat surface.

6. Conclusions

An attempt has been made to develop the torque based PID

controller for the biped robot while moving on the flat

surface. Two non-traditional optimization algorithms,

namely MCIWO and DE algorithms are used to tune the

gains of the controller. The simulation results show that

both the developed controllers are able to generate the

dynamically balance gaits for the biped robot on the flat

terrain. It has been observed that the MCIWO-based PID

controller converged quickly and average torque required is

less when compared with the DE-based controller. It is

interesting to note that the MCIWO-based algorithm has

developed more dynamically balanced gaits than the DE

and manual tuning methods. It may be due to the reason

that in MCIWO algorithm, the search space is more

enhanced in the error domain and the chances of trapping

the solution in the local minima is less, when compared

with DE algorithm. Further, the algorithms are tested in

computer simulations and found to perform in a satisfactory

manner. Moreover, the gait angles obtained using the

MCIWO tuned PID controller are fed to the real robot and

found that the robot has successfully negotiated the terrain.

7. Scope for future work

In this manuscript, the performances of the developed

controllers are tested only on flat surface. However, it will

be more interesting to test the aforementioned controllers

on stair case and slope (ascending and descending) sur-

faces. Further, an adaptive algorithm i.e., MCIWO-NN,

PSO-NN algorithms and recently developed chemical

reaction and firework optimization algorithms may also be

used in future to solve the said problems. At present the

authors are working on these issues.
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