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Abstract. To overcome the limitations of context-free and context-sensitive grammars, regulated grammars

have been proposed. In this paper, an algorithm is proposed for the recognition of faulty strings in regulated

grammar. Furthermore, depending on the errors and certainty, it is decided whether the string belongs to the

language or not based on string membership value. The time complexity of the proposed algorithm is O(|GR
2|·|w|),

where |GR| represents the number of production rules and |w| is the length of the input string, w. The reader is

provided with numerical examples by applying the algorithm to regularly controlled and matrix grammar.

Finally, the proposed algorithm is applied in the Hindi language for the recognition of faulty strings in regulated

grammar as a real-life application.
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matrix grammar.

1. Introduction

Context-free grammars are not able to cover all aspects of

linguistic phenomena. The membership of a string in a

context-sensitive grammar is decided in exponential time.

To overcome the limitations of context-free and context-

sensitive grammars, the concept of regulated grammar

[1–3] was introduced. Regulated grammar is a class of

grammar in which certain restrictions are imposed on

context-free productions, making them more powerful than

context-free grammar. Regulated grammar is classified into

context and rule-based grammar. In context-based regu-

lated grammar, restrictions are imposed on the context,

whereas in rule-based regulated grammar, the restrictions

are imposed on the application of rules.

In formal languages, the input string is either accepted

(μ(w)=1) or rejected (μ(w)=0), where μ denotes the

membership of a string, w. To reduce the gap between

natural and classical formal languages, fuzziness has been

introduced into formal languages, thereby giving rise to

fuzzy languages. In recent years, fuzzy languages have

been applied in various areas, such as intelligent interface

design [4, 5], clinical monitoring [6], neural networks

[7, 8] and pattern recognition [9]. Various fuzzy

inference methods [10–12] are used in the design of

fuzzy systems.

Motivated by the prior work of recognition of imperfect

strings in context-free grammar [13] and context-sensitive

grammar [14], in this paper, the recognition of faulty strings

generated by the regulated grammar is described. As well,

the problem of single and multiple fault occurrences is

discussed. Faulty string refers to some imperfection caused

in the string. Single fault refers to imperfection at one

position in a string, whereas multiple faults refer to

imperfection at more than one position in a string. Here,

fuzzy sets are used to compute the membership of strings

that do not exactly match with the grammar.

1.1 Previous work

Regularly controlled and matrix grammar were proposed by

Ginsburg et al [15] and Cremers et al [16], respectively. In
regularly controlled grammar, the control is regulated by

the sequence of productions in the regular expression. In

matrix grammar, control is regulated by following the same

sequence given in the matrix. Solar and Meduna [17] pro-

posed a state translation scheme, which is an extended

version of state grammar [18], for producing two output

strings in a single derivation. Meduna and Zemek [19]

introduced one-sided random context grammars, a variant

of random context grammar [20]. Furthermore, Meduna

and Zemek [21] introduced one-sided random context
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grammars, with a limited number of right random context

rules. Meduna [22] put forth generalized forbidding gram-

mar. Furthermore, Meduna and Zemek [23] also introduced

one-sided forbidding grammars, where each rule is further

divided into left and right forbidden rules, and each rule

consists of a finite set of forbidden strings. Meduna and

Zemek [24] established that the power of one-sided for-

bidding grammars and selective substitution grammars

[25, 26] are equivalent in the case of erasing rule grammar.

Kalra and Kumar [27, 28] introduced the concept of

deterministic deep pushdown automata and fuzziness in

deep pushdown automata. Garhwal and Jiwari [29] intro-

duced the concept of fuzziness in parallel regular

expression.

The concept of fuzzy languages, a fuzzy subset of strings

over an alphabet, was introduced by Lee and Zadeh [30].

Asveld [31] proposed fuzzy context-free K-grammar for

describing correct and erroneous sentences. Asveld [32]

devised the modified Cocke–Younger–Kasami (CYK)

algorithm for recognizing fuzzy context-free grammar.

Additionally, Schinder et al [13] described an approach for

recognizing imperfect strings generated by the context-free

grammar. Inui et al [14] expanded on the work of Schinder

et al [13], describing an approach for identifying imperfect

strings generated by the context-sensitive grammar.

Schinder et al [13] and Inui et al [14] applied the concept of

fuzzy sets to determine the membership values of strings.

Here, the concept of errors and fuzzy sets in this context is

utilized which was earlier used by Schinder et al [13] and
Inui et al [14] regarding context-free grammar and context-

sensitive grammar. Recently, Zhanga et al [33] and Bag

et al [34] have applied the concept of pattern recognition in

intelligent computing systems and prediction of consumer

intention.

After introducing preliminary concepts in section2, the

following topics have been explained.

● Recognition of faulty strings generated by regulated

grammar using the different fuzzy sets has been

proposed in section3.

● The problem of occurrence of multiple faults has been

solved by converting the regulated grammar into

Chomsky normal form in section3.

● The complete procedure is depicted by numerical

example in section4.

● The proposed algorithm has been applied on the Hindi

language to demonstrate its real- life application in

section5 and the conclusions are provided in section6.

2. Preliminaries

Let T be an alphabet, λ denotes empty string and μ(w) de-
notes the membership of a string such that 0≤μ(w)≤1. _
represents the symbol that can be replaced by any symbol

from T.

Definition 2.1 Regular expression over an alphabet T is

defined using following rules:

i) ϕ and λ are regular expressions representing the

empty set and empty string.

ii) If a∊T, then a is a regular expression representing the

singleton set {a}.
iii) If r1 and r2 are regular expressions, then r1r2,r1|r2 and

r1* are regular expressions representing concatena-

tion, union, and Kleene closure.

The regulated grammar consists of production rules similar

as context-free grammar, but it has a larger generative

capacity than context-free grammar. Regulated grammar

lies between context-free and context-sensitive grammar.

Context-sensitive language (such as ww, anbncn and a2
n

)

involving interleaved dependencies can be represented

using regulated grammar.

Definition 2.2 Regulated grammar is GR=(G,R), where G
=(N,T,S,P) is a context-free grammar and R is the

restriction applied on the derivations of strings. R depends

on the type of regulated grammar [1–3].

Regularly controlled grammar is a rule-based regulated

grammar, where the restriction on rules is applied using a

regular expression.

Definition 2.3 Regularly controlled grammar [1–3] is

GRC=(G,r), where G=(N,T,S,P) is a context-free grammar

and r is a regular expression over P for controlling the

derivations of strings.

Language L (GRC) represented by regularly controlled

grammar GRC consists of all words w∊T* generated by the

following sequence:

S!pr1 w1 !pr2 w2 � � �!prn w such that pr1; pr2; . . .; prn 2 P

Example 2.1 Consider the regularly controlled grammar

[2] GRC=(G1,r), where G1=({S,C,D},{c,d},S,P) where the
production P is of the following forms:

pr0 : S ! CD pr1 : C ! cC

pr2 : D ! cD pr3 : C ! dC

pr4 : D ! dD pr5 : C ! c

pr6 : D ! c pr7 : C ! d

pr8 : D ! d

r ¼ pr0ðpr1pr2; pr3pr4Þ�ðpr5pr6; pr7pr8Þ
Consider w=cdcd

S!pr0 CD!pr1 cCD!pr2 cCcD!pr7 cdcD!pr8 cdcd
Hence, L(GRC)={ww|w∈(c,d)?} is a non-context-free

language.

Matrix grammar is a rule-based regulated grammar,

where restrictions on productions are applied using
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matrices. Here, we have to apply all productions of a matrix

before starting with another matrix.

Definition 2.4 Matrix grammar [1–3] is GM=(G,rm),
where G=(N,T,S,M) andM=(m1,m2, …, mn),n≥1 is a finite
set of matrices, where each mi consists of a finite set of

context-free production and rm is a regular expression over

the set of matrices mi.

Example 2.2 Consider GM=(G,rm), where G=({S,C,D},
{c,d},S,{m0,m1,m2,m3,m4}) be the matrix grammar [2]

where

m0 ¼ ðp0 : S ! CDÞ;
m1 ¼ ðp1 : C ! cC; p2 : D ! cDÞ;
m2 ¼ ðp3 : C ! dC; p4 : D ! dDÞ;
m3 ¼ ðp5 : C ! c; p6 : D ! cÞ;
m4 ¼ ðp7 : C ! d; p8 : D ! dÞ;

The control set is rm=m0(m1,m2)*(m3,m4).

Consider w=dcdc

S !m0:p0
CD !m2:p3

dCD !m2:p4
dCdD !m3:p5

dcdD !m3:p6
dcdc

Hence, L(GM)={ww|w∊(c,d)?} is a non-context-free

language.

Definition 2.5 Fuzzy grammar [30] is quadruple Gf=(N,
T,P,S), where P is a set of fuzzy productions of the form

fa�!l bj0� l� 1 ^ a; b 2 ðN [ TÞ�g.
Definition 2.6 Fuzzy language L [30] is a fuzzy set of

T*·L={(x,μ(x))|x∊T* and 0≤μ(x)≤1} where μ(x) denote the
degree of membership of string x.

μ(x) is obtained by taking a minimum of all derivation

rules from S to derive x if a single derivation exists for

the string x. If there exists more than one derivation for a

particular string x, then max is taken over the minimum

of all the derivation rules from starting from S to derive

x.

Example 2.3 [30] Consider L={(0,0.8),(00,0.4),(10,0.2),
(1,0.2),(11,0.6)}. Here L describes a fuzzy language

over {0, 1}. Zero membership strings are not represented

in L.

Definition 2.7 Fuzzy regulated grammar Gfr(GR,E,w),
where

i) GR is a regulated grammar in Chomsky normal form.

ii) E is the error set of productions constructed from the

original productions P using the replace operator

(replacing a terminal symbol with another terminal in

p∊P), add operator (adding an extra terminal in p∊P)
and remove operator (removing a terminal in p∊P).
Errors in the input string are classified into following

three types:

● Replacement Error [13, 14]: In replacement

error, a terminal is substituted with another

terminal symbol from T.
● Addition Error [13, 14]: In addition error, an

extra new terminal symbol is added from T. This
new terminal can be placed before or after the

terminal.

● Removal Error [13, 14]: In removal error, some

terminal is deleted.

iii) w is a weighted function such that {(p,w(p))|p∊P∧w
(p)∊[0,1]}. It is used to assign the degree of

membership to the production rules.

3. Proposed algorithm for the recognition of faulty
strings in regulated grammar using fuzzy sets

In classical automata theory, a string is either accepted or

rejected. Fuzzy languages close the gap between natural

and formal languages. In the fuzzy set, the degree to

which an element belongs to the set is referred to as the

degree of membership [35]. In this section, an algorithm is

proposed for the recognition of faulty strings in regulated

grammar using fuzzy sets (RFSRG). Given a regularly

controlled grammar GRC=(G,r). For avoiding multiple

errors, in step 1, GRC=(G,r) is converted into GRC0 ¼
ðG0; r0Þ where G′ is a Chomsky normal form of G. Every
production pi 2 G is converted into productions pi

1,pi
2,

…,pi
k|k≥1 of G′. Specifically, G is converted into Chom-

sky normal form G′ [36].
In step 2, control derivation r of GRC is converted into r′

of GRC
0 such that L(G′,r′)=L(G,r)−{λ}.

Example 3.1 Consider example 2.1, where the production

rules P is of the following forms:

pr0 : S ! CD pr1 : C ! cC

pr2 : D ! cD pr3 : C ! dC

pr4 : D ! dD pr5 : C ! c

pr6 : D ! c pr7 : C ! d

pr8 : D ! d

r ¼ pr0ðpr1pr2; pr3pr4Þ�ðpr5pr6; pr7pr8Þ
Equivalent Chomsky normal form (CNF) for the grammar

GRC:
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pr0 : S ! CD pr11 : C ! A1C

pr21 : A1 ! c pr12 : D ! A2D

pr22 : A2 ! c pr13 : C ! A3C

pr23 : A3 ! d pr14 : D ! A4D

pr24 : A4 ! d pr5 : C ! c

pr6 : D ! c pr7 : C ! d

pr8 : D ! d

r is converted into r′=pr0(pr1
1pr1

2pr2
1pr2

2,pr3
1pr3

2pr4
1pr4

2)*(pr5-
pr6,pr7pr8).

In step 3, we apply replace, add and remove operators to

the productions of the form A→a|A∊N and a∊T. Hence,
there is no possibility of occurrence of multiple errors using

one production. To accumulate the faulty string, replace,

add and remove operators are considered. Similar attempts

have been made for the recognition of faulty strings in

context-free and context-sensitive grammar [13, 14].

As regularly controlled grammar is ambiguous, in step 4,

different derivations for the string, w∉L, were generated. In
one derivation of a string, total 2|w|−1 productions are

used. In each derivation of a string, w, the number of

productions of the form A→BC|A,B,C∊N can be |w|−1 and

the number of productions of the form A→a|A∊N∧a∊
T can be |w|.

In step 5, a fuzzy set E is used for determining the

number of erroneous substitutions. Membership of a faulty

string is determined by lEðwÞ ¼ jwj�jEpj
jwj where |w| represents

the length of the string, w, and |Ep| represents the number of

error productions used for the generation of string w.
A certainty factor was defined that can be used for the

acceptance and rejection of strings. In step 6, a fuzzy set Tf
is used for determining the derivation with minimal pro-

duction rules utilized to derive the faulty string, w. Mem-

bership of a faulty string is determined by:

lTf ðwÞ ¼ 1� S shaped membership function

lTf ðwÞ ¼ 1�

0; x� a

2
x� a

b� a

� �2

; a\x�ðaþ bÞ=2

1� 2
x� b

b� a

� �2

; ðaþ bÞ=2\x\b

1; x� b

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð1Þ
where a and b represent the minimum and maximum

number of productions used to derive the faulty string, w, in
all derivations, respectively. x denotes the actual number of

productions used in a particular derivation of the faulty

string, w. In this a and b plots the extreme points of the

sloped curve, therefore making it S-shape. In step 7, the

optimal derivation for the string, w, was chosen. The

optimal derivation was found by choosing the highest

degree of membership obtained from E-set and Tf-set.

If a matrix grammar GM=(G,rm) is given instead of

regularly controlled grammar. During, the conversion of G
into Chomsky normal form G′, every production pi 2 G is
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replaced by production pi
1,pi

2,…pi
k|k≥1 of G′. In step 2 of

RFSRG, we call procedure Matrix_Control_derivation (GM,

GM′). The rest of the algorithm remains the same.

Example 3.2 Consider GM=(G,rm), where G=({S,C,D},
{c,d},S,{m0,m1,m2,m3,m4}) be the matrix grammar of

example 2.2 where

m0 ¼ ðp0 : S ! CDÞ;
m1 ¼ ðp1 : C ! cC; p2 : D ! cDÞ;
m2 ¼ ðp3 : C ! dC; p4 : D ! dDÞ;
m3 ¼ ðp5 : C ! c; p6 : D ! cÞ;
m4 ¼ ðp7 : C ! d; p8 : D ! dÞ;

The control set is rm=m0(m1,m2)*(m3,m4).

Equivalent CNF for the grammar GM:

m0
0 ¼ ðp0 : S ! CDÞ;

m0
1 ¼ ðp11 : C ! A1C; p

2
1 : A1 ! c; p12 : D ! A2D; p

2
2 : A2 ! cÞ;

m0
2 ¼ ðp13 : C ! A3C; p

2
3 : A3 ! d; p14 : D ! A4D; p

2
4 : A4 ! dÞ;

m0
3 ¼ ðp5 : C ! c; p6 : D ! cÞ;

m0
4 ¼ ðp7 : C ! d; p8 : D ! dÞ

The control set is rm′ is m0′(m1′,m2′)*(m3′,m4′).

Theorem 1 Given a regulated grammar GR and string
w. The time complexity of the RFSRG algorithm is equal to
O(|GR

2|·|w|), where |GR| represents the size of productions

and |w| represents the length of the string respectively.

Proof In Step1 of RFSRG algorithm, regulated grammar

GR is converted into Chomsky Normal form GR0 using

DEL, TERM, UNIT and BIN operations [36]. Size of GR0 i.

e. | GR0 | depends on the order in which DEL, BIN, UNIT

and TERM are carried out [36]. TERM always give a linear

increase in the size of the grammar. If we carry out the

transformation in BIN→DEL→UNIT, then |GR0 |=O(|GR
2|).

In step 2, the control derivation GR is converted into GR0 .

Each production pi∊GR may be converted into a number of

productions say pri
1,pri

2,…,pri
k|k≥1 in GR0 and each sub-

stitution of pi in control derivation r gives the corre-

sponding control derivation r′. Each substitution can be

carried out in O(|1|). Therefore, the control derivation r can
be converted into r′ in O(|GR|).

In step 3, we add additional productions using replace,

add and remove operators. Thus, the number of productions

is of the size O(|GR
2|). For each production, four faulty

productions (one each by replace and remove operation and

two productions by add operations) are generated. Addition

of each faulty productions can be carried out in O(|1|),
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thereby giving the overall complexity of the second step is

O(|GR
2|).

In each derivation of a string, w, the number of pro-

ductions of the form A→BC|A,B,C∊N can be |w|−1 and the
number of productions of the form A→a|A∊N∧a∊T can be

|w|. Therefore total 2|w|−1 productions are used in one

derivation of a string. Considering at each step of the

derivation, we can choose a production from O(|GR
2|) pro-

ductions. Hence the overall complexity is O(|GR
2|·|w|). Step

5 can be carried out in O(|1|). In step 6, for finding a, b and

x values, complexity is O(|GR
2|) and further computation of

lTf ðwÞ can be carried out in O(|1|). So overall complexity of

Step 6 is O(|GR
2|). Step 7 can be carried out in O(|1|). Thus

the overall complexity of the algorithm is O(|GR
2|·|w|).

The proposed algorithm works on all rule-based regu-

lated grammars with little modifications in applications of

rules.

4. Numerical examples

In this section, we apply RFSRG algorithm to regularly

controlled grammar.

Example 4.1 Consider the regularly controlled grammar

of example 2.1 GRC=(G1,r), where G1=({S,C,D},{c,d},S,
P) where the production P is of the following forms:

pr0 : S ! CD pr1 : C ! cC

pr2 : D ! cD pr3 : C ! dC

pr4 : D ! dD pr5 : C ! c

pr6 : D ! c pr7 : C ! d

pr8 : D ! d

r ¼ pr0ðpr1pr2; pr3pr4Þ�ðpr5pr6; pr7pr8Þ

Equivalent Chomsky normal form (CNF) for the gram-

mar GRC:

pr0 : S ! CD pr11 : C ! A1C

pr21 : A1 ! c pr12 : D ! A2D

pr22 : A2 ! c pr13 : C ! A3C

pr23 : A3 ! d pr14 : D ! A4D

pr24 : A4 ! d pr5 : C ! c

pr6 : D ! c pr7 : C ! d

pr8 : D ! d

r is converted into r′=pr0(pr1
1pr1

2pr2
1pr2

2,pr3
1pr3

2pr4
1pr4

2)*(pr5-
pr6,pr7pr8).

Using fuzzy replace operator:

pr9 : A1 ! pr10 : A2 !
pr11 : A3 ! pr12 : A4 !
pr13 : C ! pr14 : D !
pr15 : C ! pr16 : D !

Using fuzzy add operator:

pr17 : A1 ! cjc pr18 : A2 ! cjc
pr19 : A3 ! djd pr20 : A4 ! djd
pr21 : C ! cjc pr22 : D ! cjc
pr23 : C ! djd pr24 : D ! djd

Using fuzzy remove operator:

pr25 : A1 ! k pr26 : A2 ! k
pr27 : A3 ! k pr28 : A4 ! k
pr29 : C ! k pr30 : D ! k
pr31 : C ! k pr32 : D ! k

Consider the string w ¼ ddddcd 62 L. Table 1 depicts some

ways for deriving the string w.
Table 2 represents the confidence level for the string

w using E-set.
Table 3 represents the confidence level for the string w

using Tf-set. Table 4 represents the final interpretations with
fuzzy confidence for the string w ¼ ddddcd.

The optimal derivation for the string w ¼ ddddcd is as

follows:

lðwÞ ¼ maxð0; 0; 0:6667; 0; 0; 0; 0; 0; 0:3333Þ
¼ 0:6667

By choosing a certain level of confidence λc, we say the

string is accepted if μ(w)≥λc. Application of RFSRG

algorithm to matrix grammar (for details refer “Appendix

1”).

5. Real -life application of RFSRG algorithm
in the Hindi language

Regulated languages are the most appropriate formal

method for representing human languages.

In linguistic topology, the Hindi language contains cross-

serial dependency, and its structure is similar to the German

and Dutch languages. Consider the following sentence of

the Hindi Language spoken in India.
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Table 1. Various derivation for the string w=ddddcd.

Derivation 1 S !p0 CD !p1
3
A3CD !p2

3
dCD !p1

4
dCA4D !p2

4
dCdD !p1

3
dA3CdD

!p19 dddCdD !p40 dddCdA4D !p20 dddCdcdD !p29 ddddcdD !p30 ddddcd

Derivation 2 S !p0 CD !p1
3
A3CD !

p2
3

dCD !p1
4
dCA4D !p2

4
dCdD !p1

1
dA1CdD

!p9 ddCdD !p1
2
ddCdA2D !p2

2
ddCdcD !p7 ddddcD !p8 ddddcd

Derivation 3 S !p0 CD !p1
3
A3CD !p19 ddCD !p1

4
ddCA4D !p20 ddCdcD

!7 ddddcD !8 ddddcd

Derivation 4 S !p0 CD !p1
3
A3CD !p2

3
dCD !p1

4
dCA4D !p2

4
dCdD !p1

3
dA3CdD

!p2
3
ddCdD !p1

4
ddCdA4D !p12 ddCdcD !p7 ddddcD !p8 ddddcd

Derivation 5 S !p0 CD !p1
1
A1CD !p9 dCD !p1

2
dCA2D !p10 dCdD !p1

1
dA1CdD

!p9 ddCdD !p1
2
ddCdA2D !p2

2
ddCdcD !p7 ddddcD !p8 ddddcd

Derivation 6 S !p0 CD !p1
1
A1CD !p9 dCD !p1

2
dCA2D !p10 dCdD !p1

3
dA3CdD

!p19 dddCdD !p1
4
dddCdA4D !p20 dddCdcdD !p29 ddddcdD !p30 ddddcd

Derivation 7 S !p0 CD !p1
1
A1CD !p9 dCD !p1

2
dCA2D !p10 dCdD !p1

3
dA3CdD

!p2
3
ddCdD !p1

4
ddCdA4D !p12 ddCdcD !p7 ddddcD !p8 ddddcd

Derivation 8 S !p0 CD !p1
3
A3CD !p2

3
dCD !p1

4
dCA4D !p2

4
dCdD !

p1
3

dA3CdD

!p2
3
ddCdD !p1

4
ddCdA4D !p12 ddCdcD !p13 ddddcD !p14 ddddcd

Derivation 9 S !p0 CD !p1
3
A3CD !p19 ddCD !

p1
4

ddCA4D !p20 ddCdcD

!13 ddddcD !14 ddddcd

Table 2. Confidence level for the string w using E-set.

Derivation no. 1 2 3 4 5 6 7 8 9

Grade of

membership

0.3333 0.8333 0.6667 0.8333 0.5 0 0.5 0.5 0.3333

Table 3. Confidence level for the string w using Tf-set.

Derivation no. 1 2 3 4 5 6 7 8 9

Grade of membership 1–1=0 1–1=0 1–0=1 1–1=0 1–1=0 1–1=0 1–1=0 1–1=0 1–0=1
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In the above sentences, sequential noun phrases मोहन
(Mohan), सेब (apple), राम (Ram), पेन (pen) and the verb

phrases ख़ाया (ate), खराब हो गया (rotten), िलखा (written),
उपहार मे िमला था (gifted) both form two separate series of

constituents. Let m′ be the morphism which maps to मोहन
and ख़ाया to c, सेब and खराब हो गया to d and all other words

of the sentence to the empty string. Therefore, S1:cdcd.
Therefore, sentence S1 is of the form ww, which is a non-

context-free language.

Consider m″ be the morphism, which maps राम, पेन,
िलखा, उपहार मे िमला था to a,b,c and d, respectively and the

dependency relation between राम (Ram) and िलखा (written)
is denoted by m and पेन (pen) and उपहार मे िमला था (gifted)
by n and other words of the sentence by empty string.

Therefore, sentence S2 is of the form ambncmdn, which is a

non-context-free language. Cross-serial dependency of the

Hindi language can be represented by regulated grammar.

Now consider the sentence S1 and If the users uninten-

tionally write the S1 sentence as

S1′: मोहन ने वो सेब ख़ाया जो सेब खराब हो गया|

In this sentence, the user makes an insertion error of one

noun phrase सेब (apple). Now the sentence S1′ maps to

cdcdd instead of cdcd. In formal grammar, this string is

completely rejected. However, in case of fuzzy regulated

grammar, we cannot completely reject the string w. By

considering the grammar of example 4.1, Erroneous sen-

tence acceptance S1′ is shown using proposed algorithm

Table 4. Final interpretations with fuzzy confidence for the string w=ddddcd.

Derivation

no. 1 2 3 4 5 6 7 8 9

μ(w∈E) 0.3333 0.8333 0.6667 0.8333 0.5 0 0.5 0.5 0.3333

μ(w∈Tf) 0 0 1 0 0 1 0 0 1

Min 0 0 0.6667 0 0 0 0 0 0.3333

Table 5. Various derivation for the string w=cdcdd.

Derivation 1 Derivation 2 Derivation 3 Derivation 4

pr0:S→CD pr0:S→CD pr0:S→CD pr0:S→CD
pr1

1:S→A1CD pr1
1:S→A1CD pr3

1:S→A3CD pr3
1:S→A3CD

pr1
2:S→cCD pr1

2:S→cCD pr11:S→cCD pr19:S→cdCD
pr2

1:S→cCA2D pr2
1:S→cCA2D pr4

1:S→cCA4D pr4
1:S→cdCA4D

pr18:S→cCcdD pr2
2:S→cCcD pr4

2:S→cCdD pr4
2:S→cdCdD

pr7:S→cdcdD pr7:S→cdcD pr23:S→cdcdD pr5:S→cdcdD
pr8:S→cdcdd pr24:S→cdcdd pr8:S→cdcdd pr14:S→cdcdd

Table 6. Confidence level for the string w using E-set.

Derivation no. Derivation 1 Derivation 2 Derivation 3 Derivation 4

Grade of membership 0.75 0.75 0.5 0.5

Table 7. Confidence level for the string w using Tf-set.

Derivation no. Derivation 1 Derivation 2 Derivation 3 Derivation 4

Grade of membership 1–0=1 1–0=1 1–0=1 1–0=1

Table 8. Final interpretations with fuzzy confidence for the string w=cdcdd.

Derivation No. Derivation 1 Derivation 2 Derivation 3 Derivation 4

μ(w∈E) 0.75 0.75 0.5 0.5

μ(w∈Tf) 1 1 1 1

Min 0.75 0.75 0.5 0.5
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RFSRG. Table 5 depicts few ways for deriving the string w
=cdcdd.

Table 6 represents the confidence level for the string

w using E-set.
Table 7 represents the confidence level for the string w

using Tf-set. Table 8 represents the final interpretations with
fuzzy confidence for the string w ¼ cdcdd.

The optimal derivation for the string w ¼ cdcdd is as

follows:

lðwÞ ¼ maxð0:75; 0:75; 0:5; 0:5Þ ¼ 0:75

By choosing a certain level of confidence λc, we say the

string is accepted if μ(w)≥λc.

6. Conclusions

In this paper, an algorithm for deriving a string, w∉L, with
a certain level of confidence is described. Regulated

grammar is converted to Chomsky normal form to avoid

multiple error elimination. Furthermore, the algorithm is

applied to regularly controlled and matrix grammar. The

time complexity of the proposed algorithm is O(|GR
2|·|w|).

By way of numerical examples for a string, w∉L, the

determination of a confidence level for the string, w, is also
demonstrated Further, the real-life application of a pro-

posed algorithm for the recognition of faulty strings for the

natural language, Hindi, is exhibited.
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Appendix 1: Numerical example

In this appendix, the proposed algorithm has been applied

to a matrix grammar.

Example 4.2 Consider GM = (G, rm), where

G = {{S, C, D}, {c, d}, S, {m0, m1, m2, m3, m4}} be the

matrix grammar of example 2.2 where

m0 ¼ ðp0 : S ! CDÞ;
m1 ¼ ðp1 : C ! cC; p2 : D ! cDÞ;
m2 ¼ ðp3 : C ! dC; p4 : D ! dDÞ;
m3 ¼ ðp5 : C ! c; p6 : D ! cÞ;
m4 ¼ ðp7 : C ! d; p8 : D ! dÞ;

The control set is rm = m0(m1, m2) * (m3, m4).

Equivalent CNF for the grammar GM:

m
0
0 ¼ ðp0 : S ! CDÞ;

m
0
1 ¼ ðp11 : C ! A1C; p

2
1 : A1 ! c; p12 : D ! A2D;

p22 : A2 ! cÞ;
m

0
2 ¼ ðp13 : C ! A3C; p

2
3 : A3 ! d; p14 : D ! A4D;

p24 : A4 ! dÞ;
m

0
3 ¼ ðp5 : C ! c; p6 : D ! cÞ;

m
0
4 ¼ ðp7 : C ! d; p8 : D ! dÞ

The control set is rm′ is m0′(m1′, m2′) * (m3′, m4′).
Using fuzzy replace operator:

pr9 : A1 ! pr10 : A2 !
pr11 : A3 ! pr12 : A4 !
pr13 : C ! pr14 : D !
pr15 : C ! pr16 : D !

Using fuzzy add operator:

pr17 : A1 ! cjc pr18 : A2 ! cjc
pr19 : A3 ! djd pr20 : A4 ! djd
pr21 : C ! cjc pr22 : D ! cjc
pr23 : C ! djd pr24 : D ! djd

Using fuzzy remove operator:

pr25 : A1 ! k pr26 : A2 ! k
pr27 : A3 ! k pr28 : A4 ! k
pr29 : C ! k pr30 : D ! k
pr31 : C ! k pr32 : D ! k

On considering string w = ddcd ∉ L. Table A1 depicts

few ways for deriving the string w = ddcd.
Table A2 represents the confidence level for the string

wusing E-set.
Table A3 and A4 represent the confidence level for the

string wusing Tf-set and final interpretations with fuzzy

confidence for the string w = cdcdcccd respectively.
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Table A1. Various derivation for the string w ¼ cdcdcccd.

Derivation

1
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m2

p1
3

cA3CcD!m2

p2
3

cdCcD

!m2

p1
4

cdCcA4D!m2

p14
cdCccD!m1

p1
1

cdA1CccD!m1

p2
1

cdcCccD!m1

p1
2

cdcCccA2D!m1

p2
2

cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

2
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m1

p1
1

cA1CcD!m1

p9
ccCcD

!m1

p1
2

cdCcA2D!m1

p2
2

cdCccD!m1

p1
1

cdA1CccD!m1

p2
1

cdcCccD!m1

p1
2

cdcCccA2D

!m1

p2
2

cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

3
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m1

p1
1

cA1CcD!m1

p17

cdcCcD!m1

p1
2

cdcCcA2D!m1

p18
cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

4
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m1

p1
1

cA1CcD!m1

p17
cdcCcD

!m1

p1
2

cdcCcA2D!m1

p18
cdcCcccD!m2

p1
3

cdcA3CcccD!m2

p2
3

cdcdCcccD

!m2

p1
4

cdcdCcccA4D!m2

p2
4

cdcdCcccdD!m4

p31
cdcdcccdD!m4

p32
cdcdcccd

Derivation

5
S!m0

p0
CD!m2

p1
3

A3CD!m2

p11
cCD!m2

p1
4

cCA4D!m2

p12
cCcD!m2

p1
3

cA3CcD!m2

p2
3

cdCcD

!m2

p1
4

cdCcA4D!m2

p12
cdCccD!m1

p1
1

cdA1CccD!m1

p2
1

cdcCccD!m1

p1
2

cdcCccA2D

!m1

p2
2

cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

6
S!m0

p0
CD!m2

p1
3

A3CD!m2

p11
cCD!m2

p1
4

cCA4D!m2

p12
cCcD!m1

p1
1

cA1CcD!m1

p9
ccCcD

!m1

p1
2

cdCcA2D!m1

p2
2

cdCccD!m1

p1
1

cdA1CccD!m1

p2
1

cdcCccD!m1

p1
2

cdcCccA2D

!m1

p2
2

cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

7
S!m0

p0
CD!m2

p1
3

A3CD!m2

p11
cCD!m2

p1
4

cCA4D!m2

p12
cCcD!m1

p1
1

cA1CcD!m1

p17
cdcCcD

!m1

p1
2

cdcCcA2D!m1

p18
cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

8
S!m0

p0
CD!m2

p1
3

A3CD!m2

p11
cCD!m2

p1
4

cCA4D!m2

p12
cCcD!m1

p1
1

cA1CcD!m1

p17
cdcCcD

!m1

p1
2

cdcCcA2D!m1

p18
cdcCcccD!m2

p1
3

cdcA3CcccD!m2

p2
3

cdcdCcccD!m2

p1
4

cdcdCcccA4D

!m2

p2
4

cdcdCcccdD!m4

p31
cdcdcccdD!m4

p32
cdcdcccd

Derivation

9
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m2

p1
3

cA3CcD!m2

p2
3

cdCcD

!m2

p1
4

cdCcA4D!m2

p12
cdCccD!m2

p1
3

cdA3CccD!m2

p11
cdcCccD!m2

p1
4

cdcCccA4D

!m2

p12
cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd

Derivation

10
S!m0

p0
CD!m1

p1
1

A1CD!m1

p2
1

cCD!m1

p1
2

cCA2D!m1

p2
2

cCcD!m1

p1
1

cA1CcD!m1

p9
ccCcD

!m1

p1
2

cdCcA2D!m1

p2
2

cdCccD!m2

p1
3

cdA3CccD!m2

p11
cdcCccD!m2

p1
4

cdcCccA4D

!m2

p12
cdcCcccD!m4

p7
cdcdcccD!m4

p8
cdcdcccd
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lðwÞ ¼ maxð0; 0; 0:75; 0; 0; 0; 0:5; 0; 0; 0Þ ¼ 0:75

By choosing a certain level of confidence λc, we say string

is accepted if μ(w) ≥ λc.
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minization of fuzzy automata with membership values in

complete residuated lattices. Information Sciences 178(1):

164–180

[13] Schneider M, Lim H and Shoaff W 1992 The utilization of

fuzzy sets in the recognition of imperfect strings. Fuzzy Sets
and Systems 49(3): 331–337

[14] Inui M, Shoaff W, Fausett L and Schneider M 1994 The

recognition of imperfect strings generated by fuzzy context

sensitive grammars. Fuzzy sets and systems 62(1): 21–29
[15] Ginsburg S and Spanier E H 1968 Control sets on grammars.

Math. Systems Theory 2(2): 159–177

[16] Cremers A and Mayer O 1973 On matrix languages. Infor-
mation and Control 23(1): 86–96

[17] Solar P 2014 Deep Pushdown Transducers and State Trans-

lation Schemes. In: Proceedings of the 20th Conference
STUDENT EEICT, Brno University of Technology, 24 April,

pp. 264–268

[18] Kasai T 1970 An hierarchy between context-free and con-

text-sensitive languages. Journal of Computer and System
Sciences 4(5): 492–508

[19] Zemek P 2013 One-sided random context grammars:

Established results and open problems. In: Proceedings of the

Table A3. Confidence level for the string w using Tf-set.

Derivation no. 1 2 3 4 5 6 7 8 9 10

Grade of Membership 1-1 = 0 1-1 =0 1-0 =1 1-1 =0 1-1 =

0

1-1 = 0 1-0 = 1 1-1 = 0 1-1 = 0 1-1 =0

Table A2. Confidence level for the string w using E-set.

Derivation no. 1 2 3 4 5 6 7 8 9 10

Grade of Membership 0.875 0.875 0.75 0.5 0.625 0.625 0.5 0.25 0.625 0.625

Table A4. Final interpretations with fuzzy confidence for the string w = cdcdcccd.

Derivation no. 1 2 3 4 5 6 7 8 9 10

μ(w 2 E) 0.875 0.875 0.75 0.5 0.625 0.625 0.5 0.25 0.625 0.625

μ(w 2Tf) 1-1=0 1-1=0 1-0=1 1-1=0 1-1=0 1-1=0 1-0=1 1-1=0 1-1=0 1-1=0

Min 0 0 0.75 0 0 0 0.5 0 0 0

Sådhanå (2018) 43:134 Page 11 of 12 134



19th Conference STUDENT EEICT, Brno University of

Technology, 25 April, pp. 222–226

[20] Van der Walt A P J 1970 Random context grammars. In:

Proceedings IFIP Congress. North-Holland, Amsterdam,

pp. 66–68

[21] Meduna A and Zemek P 2014 One-sided random context

grammars with a limited number of right random context

rules. Theoretical Computer Science 516: 127–132

[22] Meduna A 1990 Generalized forbidding grammars. Inter-
national Journal of Computer Mathematics 36(1–2): 31–

38

[23] Meduna A and Zemek P 2013 Generalized one-sided for-

bidding grammars. International Journal of Computer
Mathematics 90(2): 172–182

[24] Meduna A and Zemek P 2012 One-sided forbidding gram-

mars and selective substitution grammars. International
Journal of Computer Mathematics 89(5): 586–596

[25] Kleijn H C M 1983 Selective Substitution Grammars Based
on Context-Free Productions. Ph.D. Thesis, Leiden Univer-

sity, Netherlands

[26] Kleijn H C M 1987 Basic ideas of selective substitution

grammars. In: Kelemenova A and Kelemen J (Eds.) Trends
Techniques and Problems in Theoretical Computer Science.
Berlin, Germany: Springer, pp. 75–95

[27] Kalra N and Kumar A 2017 Deterministic Deep Pushdown

Transducer and its Parallel Version. The Computer Journal
61(1): 63–73

[28] Kalra N and Kumar A 2016 Fuzzy state grammar and fuzzy

deep pushdown automaton. Journal of Intelligent and Fuzzy
Systems 31(1): 249–258

[29] Garhwal S and Jiwari R 2016 Parallel fuzzy regular

expression and its conversion to epsilon-free fuzzy automa-

ton. The Computer Journal 59(9):1383–1391
[30] Lee E T and Zadeh L A 1969 Note on fuzzy languages.

Information Sciences 1(4): 421–434
[31] Asveld P R J 2005 Fuzzy context-free languages. Part 1:

generalized fuzzy context-free grammars. Theoretical Com-
puter Science 347(1): 167–190

[32] Asveld P R J 2005 Fuzzy context-free languages. Part 2:

Recognition and parsing algorithms. Theoretical Computer
Science 347(1): 191–213

[33] Zhanga J, Williams S O and Wang H 2017 Intelligent

computing system based on pattern recognition and data

mining algorithms. Sustainable Computing: Informatics and
Systems. https://doi.org/10.1016/j.suscom.2017.10.010

[34] Bag S, Tiwari M K and Chan F T S 2017 Predicting the

consumer’s purchase intention of durable goods: An attri-

bute-level analysis. Journal of Business Research. https://doi.
org/10.1016/j.jbusres.2017.11.031

[35] Zadeh L A 1965 Fuzzy sets. Information and Control 8(3):
338–353

[36] Lange M and Leiß H 2009 To CNF or not to CNF? An

efficient yet presentable version of the CYK algorithm. In-
formatica Didactica 8: 2008–2010

134 Page 12 of 12 Sådhanå (2018) 43:134

https://doi.org/10.1016/j.suscom.2017.10.010
https://doi.org/10.1016/j.jbusres.2017.11.031
https://doi.org/10.1016/j.jbusres.2017.11.031

	Error tolerance for the recognition of faulty strings in a regulated grammar using fuzzy sets
	Abstract
	Introduction
	Previous work

	Preliminaries
	Proposed algorithm for the recognition of faulty strings in regulated grammar using fuzzy sets
	Numerical examples
	Real -life application of RFSRG algorithm in the Hindi language
	Conclusions
	Acknowledgements
	Appendix 1: Numerical example
	References




