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Abstract. The rising complexity of real-life optimization problems has constantly inspired computer

researchers to develop new efficient optimization methods. Evolutionary computation and metaheuristics based

on swarm intelligence are very popular nature-inspired optimization techniques. In this paper, the author has

proposed a novel elephant swarm water search algorithm (ESWSA) inspired by the behaviour of social ele-

phants, to solve different optimization problems. This algorithm is mainly based on the water search strategy of

intelligent and social elephants during drought. Initially, we perform preliminary parametric sensitivity analysis

for our proposed algorithm, developing guidelines for choosing the parameter values in real-life problems. In

addition, the algorithm is evaluated against a number of widely used benchmark functions for global opti-

mizations, and it is observed that the proposed algorithm has better performance for most of the cases compared

with other state-of-the-art metaheuristics. Moreover, ESWSA performs better during fitness test, convergence

test, computational complexity test, success rate test and scalability test for most of the benchmarks. Next,

ESWSA is tested against two well-known constrained optimization problems, where ESWSA is found to be very

efficient in term of execution speed and best fitness. As an application of ESWSA to real-life problem, it has

been tested against a benchmark problem of computational biology, i.e., inference of Gene Regulatory Network

based on Recurrent Neural Network. It has been observed that the proposed ESWSA is able to reach nearest to

global minima and enabled inference of all true regulations of GRN correctly with less computational time

compared with the other existing metaheuristics.

Keywords. Elephant swarm water search algorithm (ESWSA); global optimization; constrained optimization;

swarm intelligence; metaheuristic; gene regulatory network; recurrent neural network.

1. Introduction

Metaheuristics [1, 2], which are typically inspired by

physical phenomena, animals’ behaviours or evolutionary

concepts, are becoming very popular over the last few

years. In addition to the large number of theoretical works,

metaheuristics have been applied to different real-life

problems in various fields of study. The reasons behind

popularity of metaheuristics are simplicity, flexibility,

derivation-free mechanism and local optima avoidance

capability [3]. First, metaheuristics are mostly based on

very simple concepts of nature and easy to understand. The

simplicity of metaheuristics helps researchers to simulate

different natural phenomena, propose new metaheuristics,

hybridize two or more metaheuristics for better efficiency

or modify current metaheuristics. Second, flexibility refers

to the quick applicability of metaheuristics to different real-

life problems without any special changes in the structure

of the algorithm since they presume optimization problems

to be black boxes. For a metaheuristic, we need to be

concerned only about the input(s) and output(s) of a

problem. Normally, all researchers need to know how to

represent a problem for metaheuristics by an objective

function that will be minimized or maximized. Third,

mostly all metaheuristics have derivation-free mechanisms

since metaheuristics optimize problems stochastically. The

metaheuristics process is initiated with random solu-

tion(s) called population, and calculation of derivative of

search spaces is not necessary. These characteristics make

metaheuristics greatly appropriate for real-life optimization

problems with expensive or unknown derivative informa-

tion. Finally, due to the stochastic nature of metaheuristics,

they have superior capability to avoid local optimal point

compared with conventional optimization methods and also

help search the entire search space extensively. Usually, the

search space of real-life optimization problems is very

complex and unknown with lots of local optima; hence,

metaheuristics are very efficient for optimizing these types

of problems.

Although there are different types of metaheuristics, two

phases of search process: exploration (global search) and

exploitation (local search), are basic characteristics of all.
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The exploration phase is the process of finding the

promising area(s) of the overall search space. On the other

hand, exploitation refers to the searching capability around

the promising regions obtained in the exploration phase.

Suitable balance between these two types of search phases

is a very crucial task for any metaheuristic, which is nor-

mally obtained using different stochastic operators.

Generally, metaheuristics can be classified based on

number of initial solutions into two groups: single-solution-

based and population-based. In case of single solution (as

an example: Simulated Annealing [4]) approaches, the

optimization starts with a single candidate solution. This

initial solution is then modified over the course of itera-

tions. For population-based meta-heuristics, the search

process is initialized with a random initial population (a set

of solutions), and this population is changed during itera-

tions. However, population-based metaheuristics have

some advantages compared with single-solution-based

algorithms: greater exploration capability, less chance to

stick in local optima and ability to cover all promising

search space for sharing information among the population.

On the other hand, metaheuristics may be divided into three

major classes on the basis of their nature: Evolutionary,

Physics-based and Swarm Intelligence (SI) algorithms.

Usually, Evolutionary Algorithms (EA) are inspired by

the concepts of evolution in nature, like mutation, etc.

Some of the popular EAs are Genetic Algorithm (GA)

[5, 6], Differential Evolution (DE) [7], Evolutionary Pro-

gramming (EP) [8], Biogeography-Based Optimizer (BBO)

[9], etc. Use of several operators like selection, crossover,

mutation, etc. and computational deficiency are the main

disadvantages of EA.

The second branch of metaheuristics is physics-based

techniques. Such algorithms typically mimic physical rules,

namely gravitational force, ray casting, electromagnetic

force, inertia force, weights and so on. Some of the most

popular algorithms are Big-Bang Big-Crunch (BBBC) [10],

Gravitational Search Algorithm (GSA) [11], Black Hole

(BH) algorithm [12], Galaxy-based Search Algorithm

(GbSA) [13], etc. Although a large number of physics-

based metaheuristics exist, they are not so popular due to

the complex nature of these algorithms and search strate-

gies are also not so good.

Finally, the most popular and efficient subclass of

metaheuristics is the SI methods. According to Bonabeau

et al [14], SI is ‘‘The emergent collective intelligence of

groups of simple agents’’. These algorithms mostly mimic

the social behaviour of swarms, herds, flocks or schools of

insects and animals in nature where the search agents

navigate using the simulated collective and social intelli-

gence of creatures. Some of the advantages of SI algorithms

are the following: easy implementation, fewer parameters

to adjust, less operators to be used and storing capability of

previous results. Most popular SI techniques are as follows:

Particle Swarm Optimization (PSO) [15], Bat Algorithm

(BA) [16], Cuckoo Search (CS) [17], Flower Pollination

Algorithm (FPA) [18], Firefly Algorithm (FA) [19], Ant

Colony Optimization (ACO) [20], Artificial Bee Colony

(ABC) Optimization [21], Social Spider Algorithm (SSA)

[22], etc. For example, PSO algorithm simulates the social

behaviour or movement of particles such as bird flocking or

fish schooling. It uses particle best and global best position

to update the velocity and position of the particles, i.e.,

solutions. PSO is very popular for its good convergence

speed and exploration capability. Moreover, it has few

optimization parameters that need to be tuned properly.

Many types of modified PSO [23–26] have already been

proposed with advanced variants. BA searches the optimal

value of a function on the basis of foraging of prey using

echolocation behaviour of bats by updating frequency,

velocity and position. However, BA requires many vari-

ables to be properly tuned for better search [16]. CS is

based on brood parasitism of cuckoo birds, which repro-

duce their eggs by utilizing nests of others host birds, where

the highest quality nests with eggs (i.e., best solutions)

selected move over to the next generation. Due to the use of

Levy flights in the algorithm, it is very efficient and per-

forms superior than PSO [17] but requires more computa-

tional time. FPA is typically associated with the transfer of

pollen for reproduction or flowering of plants by different

pollinators such as insects. Due to long-distance pollinators

and flower consistency [18], FPA can explore larger search

space and converges more quickly. FA is based on gradual

movement of fireflies towards brighter light during dark

night. The main disadvantage of FA is that its computa-

tional complexity is very high and it requires lot of com-

putational time [19]. Moreover, its convergence speed is

not up to the mark. The social intelligence of ants in finding

the shortest path between the nest and a source of food

using pheromone is the main inspiration for ACO [20]. It

can be used in several dynamic applications but its theo-

retical analysis is quite difficult as probability distributions

change by iteration and sequences of random decisions.

Moreover, time to convergence is also uncertain. On the

other hand, ABC [21] mimics the collective behaviour of

bees in finding food sources, i.e., honey. The advantages of

ABC are robustness and fast calculation; however, it suffers

from a major drawback, i.e., search space limited by initial

solution. SSA algorithm [6] is based on the foraging

behaviour of social spiders and the information-sharing

foraging strategy. This is conceptually simple but consists

of a large number of probabilistic variants.

The No Free Lunch (NFL) theorem [27] is worth men-

tioning here. Through the NFL theorem it was logically

proved that there is no single metaheuristic that is best

suited for solving all kinds of optimization problems; this

implies that a particular algorithm might show very

promising results on a set of problems, but the same

metaheuristic might show worse results on a different set of

problems. Therefore, proposing new metaheuristics and

modification of current approaches (with good convergence

speed, good accuracy, less computational time, less number
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of parameters to be tuned, good exploration and exploita-

tion capability) is still a very fascinating field of study to

the computer science researchers.

This paper aims to introduce a new SI-based optimiza-

tion algorithm, namely elephant swarm water search algo-

rithm (ESWSA), which is based on water search strategy of

elephants swarm and its application in real-life problems.

The rest of the paper is organized as follows. In the next

section, we discuss some social behaviour and communi-

cation techniques of elephants that would be of help for the

proposed new ESWSA optimization technique. In sec-

tion 3, the ESWSA metaheuristic is proposed and elabo-

rated. Later, we perform experimentation for global

optimization of several numerical benchmark functions and

statistical analysis to validate the efficiency of the proposed

algorithm. The results of ESWSA are also compared to

those of several state-of-art techniques such as BA, CS,

FPA and PSO. Results regarding the performances of

ESWSA for two well-known constrained optimization

problem in the field of engineering are given in section 5.

Following this, ESWSA is applied to a real-life optimiza-

tion problem; it is used to reconstruct or infer Gene Reg-

ulatory Network (GRN) from time-series gene expression

data. Results analysis and discussion are given in section 7.

Conclusion is given in section 8 followed by references.

2. Behaviours of elephants

Elephants are the largest living terrestrial animals [28] of

the family Elephantidae, which are traditionally categorized

in two species, the African and Asian elephants [29].

African elephants are 3–4 m tall and weigh 4,000–7,000 kg

while Asian elephants are 2–3.5 m in height and weigh

3,000–5,000 kg [30]. Elephants are recognized by their

large ears, long trunk, long tusks, large limbs and huge

body structure. Elephants are often found to exist in a ‘‘fluid

fission–fusion’’ social environment [31]. In natural habitat,

elephants live in herds comprising 3–35 elephants. Number

of elephants in one herd can be varied depending on

weather and availability of food, water, etc. Living in

groups is a social habit that pays an important role in

protecting the herd members and finding resource for living

[32]. Each elephant herd is guided by the biggest and oldest

adult cow, while the adult bull lives only for breeding

periodically. Meanwhile, young cows and children keep

staying in the group.

Elephants are well known for their good memory [33]

and exhibit advanced intelligence [34] like self-recognition,

an indication of self-awareness and cognition that has also

been demonstrated in some apes and dolphins [35]. One

study of a captive female Asian elephant suggested that the

animal was capable of learning and distinguishing between

several visual and some acoustic discrimination pairs [36].

Elephants can also use tools in real life.

Social mammals like elephants have very advanced

sensing and communication systems; they use of all of their

senses of hearing, smell, vision, touch and exceptional

ability to detect vibrations [37]. Among different commu-

nication techniques, seismic, acoustic and chemical com-

munications are used for long-distance communication up

to 10–12 km away. On the other hand, visual and tactile

communications are considered as short-distance commu-

nication. For seismic communication, elephants are able to

pick up the seismic signals (i.e., 10–40 Hz vibration on

earth surface caused due to rumble and movement of ele-

phants), to orient in the direction the vibrations come from

and even to respond to them appropriately using their

mechano-receptors [38] in the toes or feet and the tip of an

elephant’s trunk, which are extremely sensitive to vibra-

tions. Elephants produce a broad range of acoustic (i.e.,

sound) signal from a low of 5 Hz to a high of over 10,000

Hz (generally called as infrasound) rumbles [38]. These

animals use their ears like a parabola, scanning back and

forth while remaining still to listen to low-frequency sounds

from other distant elephants. The trunk can amplify audible

sounds. The use of chemical or olfactory cues is central to

communication between elephants [38]. They often raise

their trunks up to smell the air, or use the tips of their trunks

to explore the ground or tree as well as to sniff other ele-

phants. The trunk is a fusion of nose and upper lip and is

made up of millions of olfactory receptor cells. On the other

hand, the eyesight of elephants is said to be good in dull

light, but considerably reduced in bright light, reaching a

maximum range of 46–100 m [38]. Elephants use many

different displays and gestures to communicate with one

another. In case of visual communication, heads, eyes,

mouth, ears, trunk and even their whole body are used for

signalling messages to each another or to other species.

Elephants are extremely tactile animals. They touch each

other purposefully using their trunk, tusks, feet, tail, etc.

Tactile communication between elephants occurs to express

aggressive, defensive, sexual and exploratory behaviour

[38], etc.

During dry weather, lack of water creates an over-

whelming problem for all animals, especially for huge

animals like elephants. In spite of the ruthless living con-

ditions created during drought, elephants are equipped well

to survive by finding water resources. Elephants may utilize

one or more communication system or methods to search

the water resources, depending on their current conditions.

An adult elephant drinks approximate 40–60 gallons/day on

average from rivers, water holes, lakes, ponds, etc. If the

area is very dry and the duration of drought is very long,

elephants can migrate to other surrounding areas where

water is available or plentiful. Typically, they migrate as far

as required to find food and water. If the size of drought

area is small, the elephants do not go far away usually.

When the drought area is very large, elephants can travel to

more remote areas in search of water, where they stay until

the rainy season. They dig with their feet, trunks and tusks
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into dry stream earths or beds or other spots to discover

ample amount of water source lurking below the surface.

Elephants also help others animals by creating or finding

new water sources. Elephants show an unselfish and social

behaviour during adverse situation like drought. They

communicate and share information among different ele-

phant groups for better water searching, which is another

secret of their longevity.

3. Elephant swarm water search algorithm

Now we can idealize some characteristics of water search

strategies for elephants so as to develop ESWSA. For

simplicity, following four idealized rules are used to

describe our proposed algorithm.

(i) Elephants roam around in search of water during

drought in several groups, which is called elephant

swarm. Each group consists of a number of

elephants and all groups (i.e., elephant swarm)

work together to find water. The leader of each

group (oldest cow) is responsible for taking decision

about the movement of the group to search the best

water resource. For an optimization problem, each

elephant group is identified by its particular velocity

and position whereas each elephant group of the

swarm is similar to the solution of the corresponding

problem.

(ii) Whenever an elephant group finds some water

resource, the leader communicates (via seismic,

acoustic, chemical, visual and tactile communica-

tion) with the other groups of the swarm about the

quantity and quality of the water. For a maximiza-

tion problem, the fitness value and the objective

function are directly proportional to the quantity and

quality of the water resources. Better water level

denotes better solution.

(iii) Elephants have very sharp memory. Each elephant

group can remember the best location of water

supply that was discovered by its own group (local

best solution) so far and the best location of water

source so far (global best solution), which was

discovered by the whole swarm or all groups. Based

on these memories (solutions), the elephant group

can move from one point to another, i.e., velocity

and position of each elephant group are updated

gradually during the searching process according to

some rules (the rules for global search, local search

and position updating are described later). Long-

distance and short-distance communication tech-

niques of elephants are dominant for global and

local search, respectively.

(iv) Water search in local and global area is controlled

by a probabilistic constant called switching proba-

bility p [ [0, 1]. The leader of the group takes

probabilistic decision to switch between local search

and global search during water search. Due to the

physical proximity and other factors such as atten-

uation of signal from large distance, local water

search can have a significant fraction p in the overall

searching activities.

For d-dimensional optimization problem, the position of

i-th elephant group of a swarm (consisting of N particles,

i.e., number of elephant groups) at t-th iteration is given as

Xi,d
t = (xi1, xi2, …, xid) and the velocity is represented by

Vi,d
t = (vi1, vi2, …, vid). Locally best solution by i-th ele-

phant group at current iteration is given as

Pbest,i,d
t = (Pi1, Pi2, …, Pid) and global best solution is

denoted by Gbest,d
t = (G1, G2, …, Gd). Initially, the ele-

phant groups (position and velocity) are randomly placed

throughout the search space. As iteration proceeds, the

velocity and position of the elephants are updated accord-

ing to some rules.

Most water finding activities can occur at both local and

global scales. In practice, adjacent water searches in the

not-so-far-away neighbourhood are more likely to be exe-

cuted by the group than those far away. For this, a constant

known as switching probability p is used to switch between

global and local water searches. It is assumed that if value

of a random variable is greater than p, common global

water search will be performed, else intense local water

search will be executed. This randomized condition helps

reducing the probability of sticking at local optima. Global

and local best solutions are updated after each iteration. As

iteration proceeds, the velocities of the particles are updated

in different ways for global and local search according to

following equations depending on the value of parameter p:

Vtþ1
i;d ¼ Vt

i;dx
t þ rand 1; dð Þ � Gt

best;d � Xt
i;d

� �

if rand[ p for global search½ �
ð1Þ

Vtþ1
i;d ¼ Vt

i;dx
t þ rand 1; dð Þ � Pt

best;i;d � Xt
i;d

� �

if rand� p for local search½ �
ð2Þ

where rand(1, d) generates a d-dimensional array of ran-

dom values within [0,1]; � denotes element-wise multi-

plication; xt is the inertia weight at current iteration to

balance between exploration and exploitation. Then, posi-

tion of an elephant group is modified according to follow-

ing equation.

Xtþ1
i;d ¼ Vtþ1

i;d þ Xt
i;d ð3Þ

tmax;Xmax andXmin denote the values of maximum iteration

number, upper boundary and lower boundary of the posi-

tions, respectively. After completion of all iterations, the

elephants gradually update their position and reach the best

water resource position, i.e., best solution of the opti-

mization problem. Thus, the pseudo-code of the proposed

ESWSA is given as follows.
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Our proposed ESWSA optimization technique is slightly

different from standard PSO metaheuristic. In case of PSO,

the velocity update formula, i.e., new search direction is

always effected by three components namely: current

velocity (vi,d
t ), current particle memory influences (Pbest,i,d

t )

and swarm memory influences (Gbest,d
t ) [39]. Particle mem-

ory influence is associated with current best position of a

particle and swarm memory influence is associated with the

global best position among all particles. Hence, it may be

considered that the particles memory influence is responsible

for local search and swarm memory influence is responsible

for global search of the optimization. It is interesting to note

that random parameters are incorporated along with the

global search or local search terms so that chance of sticking

at local optima for the metaheuristics can be reduced.

However, in case of ESWSA, the velocity update for-

mula, i.e., new search direction is effected by either current

velocity and current elephant memory influences or current

velocity and swarm memory influences depending on

probabilistic value (p), also known as switching probability.

Start  ESWSA
Define , , , , , and objective function f; // Inputs

for i=1 to N // Initializations
Initialize , and , ;

, , = , ;
end;

Evaluate fitness value ( , )for all N elephant group positions; // Evaluations and find best
best ,d=Min( );

Assign value of according to the weight update rules [Eq. (6)]; //Assignment of 

for = 1 to //Start the iteration
for i=1 to N

if rand > p //Global Search
global water search or update the elephant velocity , using Eq. (1);

else //Local Search
local water search or update the elephant velocity , using Eq. (2);

end if;
update the position , using Eq. (3); //Update positions
evaluate fitness value for ( , );
if , <  ( , , ) //Update current best

, , = , ; 
end if;
if  ( , , ) < ( , ) //Update global best

, = , , ; 
end if;

end for;
∗ = , ; 

end for;         //End Iteration

Return ∗ and ( , ); //Output
End ESWSA
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Hence, depending on the value of p, velocity will be

updated on the basis of current elephant best or global best

solution, i.e., ESWSA switch from local search to global

search or vice versa on the basis of switching probability.

During local search of ESWSA, velocity is updated

according to current elephant best position, i.e., search

around the current best solution. During global search of

ESWSA, velocity is updated according to global best

position of elephants, i.e., search towards the global best

solution. However, in case of PSO, the search is simulta-

neously effected by both current and global best solution.

This is the main difference between ESWSA and PSO with

respect to formal hypothesis. Figure 1a and b shows the

depiction of velocity and position update procedure for

PSO and ESWSA, respectively, during iteration that

determines the new search direction.

4. Study of ESWSA for global optimization

To validate the proposed ESWSA algorithm, we have chosen

10 different benchmark functions [40, 41], which are De

Jong, Rosenbrock, Schwefel P2.22, Noisy Quadric, Rotating

hyper-ellipsoid, Ackley, Easom, Griewank, Rastrigin and

Alpine. Among these functions, first five are unimodal and

the rest are multimodal in nature. The details of these func-

tions, respective search ranges of variables and correspond-

ing global minima points are presented in table 1.

4.1 Parametric sensitivity of ESWSA

Selection of suitable parameters of ESWSA is a very

important task to achieve best performances for numerical

and real-world optimization problems. Use of trial and error

scheme or random selection of parameters for a real-life

problem may lead to high computational cost and less

efficiency. Normally, researchers have used several

benchmark functions to tune the parameters of an opti-

mization algorithm to accomplish the best performances

and they can also help in revealing some important char-

acteristics about the parametric sensitivity of the algorithm.

We carry out extensive simulations on our benchmark

functions, which cover a wide range of optimization

problems. Thus, the derived rules of thumb can be expected

to give generally good performance on unknown problems.

In EWSA, following parameters are employed to guide

searching behaviour.

• Inertia weight (xt): It is a deterministic parameter (use

some pre-defined rules to change the parameter values

throughout the search) that denotes inertia weight of

velocity at current iteration.

• Switching probability (p): It is a fixed parameter (value

remains constant throughout the whole search) that

denotes the switching probability between local and

global water search.

• Maximum iteration number (tmax) and number of

population (N) are also fixed parameters of ESWSA

optimization.

4.1a. Performance on the basis of inertia weight (xt): Many

strategies have been proposed for updating inertia weight

during the course of iteration for PSO. However, we con-

sider only three types of inertia update technique for

ESWSA. In case of Constant Inertia Weight (CIW) tech-

nique [42], value of inertia weight is constant (normally 0.5

is preferred) throughout the iteration. Thus, CIW can be

described using the following equation:

xt ¼ constant: ð4Þ

(a) (b)

,

,

, ,

,
+1

,

Current Motion Influences

Particle Memory Influences

Swarm 
Memory  

Particle’s 
Next  
Position 

,
+1

Particle’s 
Current 
Position 

,,

, ,

,
+1

,

Current Motion Influences

Particle Memory Influences

Elephant’s Next 
Position (if rand ≤ p) 

,
+1

,
+1

Elephant’s Next 
Position (if rand > p) 

Swarm Memory 
Influence

,
+1

Elephant’s Current
Position

Figure 1. Depiction of velocity and position update in (a) PSO [39] and (b) proposed ESWSA.
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In case of Random Inertia Weight (RIW) [16], the value

of inertia weight is selected in a random manner and it is

very efficient to find out the optima in a dynamic system.

For RIW, the value of inertia weight is assigned using the

following equation:

xt ¼ 0:5þ rand=2 ð5Þ

where rand is a function that generates random number

within [0, 1].

Linearly Decreasing Inertia Weight (LDIW) [15, 43, 44]

is a very popular and efficient technique in improving the

fine-tuning characteristics of the PSO, where the value of

inertia weight depends linearly on the iteration number. In

case of LDIW, the value of x is linearly decreased from an

initial large value (xmax) to a final small value (xmin)

according to the following equation:

xt ¼ xmax �
xmax � xmin

tmax

� �
t ð6Þ

where t is iteration index and tmax denotes maximum

number of iterations.

Now, these three techniques were applied on 10-di-

mensional benchmark problems to observe the impact of

these strategies on ESWSA. For this, a swarm of 50

elephant groups (population) and 1000 maximum itera-

tions are considered. Value of switching probability is set

as 0.5. All the techniques were simulated using Matlab 7.6

with 2 GB RAM, a Dual Core processor and Windows7

operating System. Each function is tested 50 times for

each of the inertia weight update strategies. Resultant

median of best solution and deviation from it for each

benchmark function and each strategy are shown in fig-

ure 2 using boxplots.

It can be clearly seen that, LDIW performed better than

other strategies as the median of best solution for LDIW is

always nearer to the global minima and also smaller than

the other two. Moreover, the variation in output is mini-

mum for LDIW. Therfore, we shall use LDIW technique

for the rest of our experiment and simulation.F

4.1b Performance on the basis of switching probability (p):

Now, ESWSA along with LDIW is applied against all

afore-mentioned 10-dimensional benchmark functions for

different values of p with the same number of iteration and

population. The value of p is selected from the set {0.01,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. The exper-

iment is performed 50 times for each of the functions. The

performance evaluation criteria are minimum fitness value,

mean of fitness values, median of fitness values and stan-

dard deviation of the same. Table 2 shows the values of

p that yield the minimum fitness, mean, median and stan-

dard deviation. It is observed that for different functions,

the best solution is achieved for different values of

p. Therefore, we observed the maximum number of

occurrences for a particular value of p such that the best

performance can be achieved. For an example, the mini-

mum fitness is obtained for benchmark function number 7

for the value p = 0.6. It can be also observed that p = 0.6

gives better performance for most of the cases under dif-

ferent evaluation criteria. Therefore, it can be concluded

that p = 0.6 is the most suitable for numerical and real-life

problems of optimization. Moreover, from this point we

shall consider the value p = 0.6 for further simulation

using the proposed ESWSA optimization technique.

4.1c Performance on the basis of population and maximum

iteration number: Next, performance of ESWSA opti-

mization is observed for different values of population and

maximum iteration number of the algorithm. For each

function, value of population and maximum iteration

number are selected from the sets {25, 50, 75, 100} and

{1000, 2000, 3000, 4000, 5000}, respectively. We use the

LDIW technique and value of p is 0.6 for 10-dimensional

function minimization problems. The experiment is

Table 1. Different benchmark functions for global optimization.

Function name Function Range of search Global minima point

De Jong f1(x) =
P

i=1
d xi

2 -5.12 B xi B 5.12 f* = 0 at (0,0,…0)

Rosenbrock f2(x) =
P

i=1
d-1[(xi - 1)2 ? 100(xi?1 - xi

2)2] -5 B xi B 5 f* = 0 at (1,1,…,1)

Schwefel P2.22 f3(x) =
P

i=1
d |xi| ?

Q
i=1
d |xi| -10 B xi B 10 f* = 0 at (0,0,…0)

Noisy Quadric f4(x) =
P

i=1
d ixi

4 ? rand -1.28 B xi B 1.28 f* = 0 at (0,0,…0)

Rotating hyper-

ellipsoid

f5(x) =
P

i=1
d (
P

j=1
i xj)

2 -100 B xi B 100 f* = 0 at (0,0,…0)

Ackley
f6 xð Þ ¼ �20 exp 1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
i¼1 x

2
i

q� �
� exp ½1

d

Pd
i¼1 cos 2pxið Þ� þ 20þ e

-30 B xi B 30 f* = 0 at (0,0,…0)

Easom f7 xð Þ ¼ �1ð Þdþ1Qd
i¼1 cos xið Þexp �

Pd
i¼1 xi � pð Þ2

h i
-30 B xi B 30 f* = – 1 at

(p; p; . . .:; p)
Griewank f8 xð Þ ¼ 1

400

Pd
i¼1 x

2
i � cos xiffi

i
p
� �

þ 1 -600 B xi B 600 f* = 0 at (0,0,…0)

Rastrigin f9(x) = 10d ?
P

i=1
d [xi

2 - 10 cos(2pxi)] -5.12 B xi B 5.12 f* = 0 at (0,0,…0)

Alpine f10(x) = -
P

i=1
d |xisin(xi) ? 0.1xi| -100 B xi B 100 f* = 0 at (0,0,…0)
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Figure 2. Box plot of raw simulation results for different benchmark functions.
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performed 50 times for each case and table 3 shows the

mean value of the best fitness for each function for a set of

population and maximum iteration number. It is observed

that mean fitness is quite satisfactory for all functions

except Rosenbrock and Rastrigin although values of best

fitness were very small for these two functions. For all

unimodal functions (except Rosenbrock), mean value

decreases considerably if population and maximum itera-

tion number increase. Moreover, for multimodal function,

increment in maximum iteration number has less effect on

mean fitness. However, if we increase population number,

the mean fitness value decreases considerably. However,

increase in population and iteration number will lead to

more computational time. Therefore, observing the fol-

lowing table, N = 50 and tmax = 2000 are preferred in this

research work as well as for other real-life optimization

problems as it will balance accuracy and computational

time.

4.2 Comparison with other state-of-art

optimization techniques

In this section, the simulation results of ESWSA on the

different benchmark functions described in table 1. More-

over, we perform comparison among ESWSA and other

algorithms and statistical analysis of the simulation results.

For comparison purpose, we have selected some well-

known optimization methods, namely BA [16, 45, 46], CS

[17, 47, 48], FPA [18, 49] and PSO [15, 43, 44]. For all

algorithms, population and maximum iteration number are

set to 50 and 2000, respectively. Search space is restricted

to 10, i.e., we have considered 10-dimensional function

optimization problems. Each algorithm is executed 50

times for each function. The parameters setting for each

algorithm in the comparison is described as follows:

1. For ESWSA, value of switching probability (p) is set to

0.6 and the inertia weight factor decreases linearly from

0.9 to 0.4.

2. For BA, loudness decreasing factor (a), pulse rate

decreasing factor (c), minimum and maximum frequency

are set to 0.9, 0.9, 0 and 1, respectively, based on earlier

work [16, 45, 46].

3. For CS, value of discovery rate of alien eggs (pa) is set to

0.25, the same as in previous work [17, 47, 48].

4. For FPA, value of probability switch (p) is fixed to 0.8

using the guidelines provided by the reference [18, 49].

5. For PSO, acceleration constants (C1 and C2) are both set

to 2 and the inertia weight factor decreases linearly from

0.9 to 0.4 as mentioned by the author [15, 43, 50].

In these numerical experimentations, we have tested and

compared the efficiency of the proposed algorithm on the

basis of some criteria such as fitness test, reliability test,

convergence test and computational complexity, which are

described in following subsections.

4.2a Fitness test: Final output or fitness value of an opti-

mization algorithm is the most important criterion to prove

its efficiency. Using the afore-mentioned parameters set-

ting, we optimized each benchmark function. Here, we

observed 3 criteria (output), namely best (minimum) fit-

ness, worst (maximum) fitness and median of fitness, which

are obtained after 50 program runs. Comparative studies

based on these criteria are shown in table 4, where most

excellent values are shown in italic letters.

From table 4, it can be observed that ESWSA can reach

global minima point for all functions except Rastrigin with

satisfactory accuracy. For the Rastrigin function, only PSO

was able to reach the global minima point. Moreover, for

benchmark function 7, ESWSA is able to give the best

(minimum) fitness and these values are far better than those

from other algorithms. BA is the least efficient in this case.

Table 2. Performance of ESWSA for different values of p.

Function

Minimum fitness

occurred at

Minimum mean fitness

occurred at

Minimum median fitness

occurred at

Minimum standard deviation

occurred at

De Jong p = 0.6 p = 0.6 p = 0.6 p = 0.6

Rosenbrock p = 0.6 p = 0.6 p = 0.6 p = 0.6

Schwefel 2.22 p = 0.6 p = 0.7 p = 0.7 p = 0.7

Noise Quadric p = 0.6 p = 0.6 p = 0.6 p = 0.6

Rotating hyper-

ellipsoid

p = 0.6 p = 0.7 p = 0.6 p = 0.7

Ackley p = 0.6 p = 0.6 p = 0.6 p = 0.6

Easom p = 0.6 p = 0.6 p = 0.6 p = 0.6

Griewank p = 0.1 p = 0.6 p = 0.6 p = 0.7

Rastrigin p = 0.5 p = 0.9 p = 0.9 p = 0.7

Alpine p = 0.5 p = 0.7 p = 0.8 p = 0.7

Maximum

occurrences

7 (p = 0.6) 6 (p = 0.6) 7 (p = 0.6) 5 (p = 0.6 or p = 0.7)
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Next, we have made a comparison based on worst

(maximum) fitness, whose value should be as less as pos-

sible. From table 5, it can be observed that the proposed

ESWSA is able to achieve the minimum value of worst

fitness for benchmark function 7. Only CS and PSO are able

to achieve minimum value of worst fitness for 2 cases.

Next, we observe the median of 50 best fitness values

corresponding to 50 runs. It is clearly observed (table 6)

that median values for ESWSA are better than those from

other algorithms for all benchmark functions except Rast-

rigin and Rosenbrock. In case of Rastrigin and Rosenbrock,

CS performs better.

4.2b Reliability test: An optimization algorithm should

always reach nearest to global minima as close as possible,

i.e., it should be successful and reliable in every single run.

However, due to random nature of the metaheuristic, the

output may differ. Therefore, in this subsection, we have

tested reliability of ESWSA and also make a comparison

with the other algorithms on the basis standard deviation

and success rate.

From table 7, it is clearly noticed that ESWSA gives

output with very small standard deviation for all functions

except Rosenbrock and Rastrigin whereas other algorithms

yield comparatively larger deviations than that of ESWSA.

Table 3. Performance of ESWSA for different values of population and maximum iteration number.

Function name Population and iteration

tmax = 1000 tmax = 2000 tmax = 3000 tmax = 4000 tmax = 5000

Mean fitness value (output minima)

De Jong N = 25 3.75E-23 2.17E-46 4.82E-67 1.80E-84 7.61E-106

N = 50 2.04E-35 6.40E-71 9.63E-105 1.34E-132 8.06E-168

N = 75 4.19E-47 7.84E-89 6.27E-132 2.40E-178 5.95E-210

N = 100 3.28E-57 5.06E-104 1.30E-148 7.56E-196 1.20E-241

Rosenbrock N = 25 4.10E?00 1.74E?00 1.30E?00 6.74E-01 5.70E-01

N = 50 1.83E?00 6.02E-01 5.02E-01 4.63E-01 4.41E-01

N = 75 9.79E-01 6.93E-01 6.06E-01 2.68E-01 1.02E-01

N = 100 1.23E?00 5.23E-01 3.51E-01 2.75E-01 4.09E-01

Shewefel P2.22 N = 25 7.99E-09 9.46E-17 1.46E-23 4.72E-28 5.44E-36

N = 50 7.48E-15 9.15E-25 1.19E-38 2.56E-48 6.62E-59

N = 75 1.88E-17 2.14E-34 1.47E-47 3.83E-59 7.34E-80

N = 100 1.16E-18 1.80E-36 4.37E-53 9.38E-76 4.61E-88

Noisy Quadric N = 25 4.40E-03 1.91E-03 1.38E-03 1.06E-03 7.66E-04

N = 50 1.55E-03 8.08E-04 5.24E-04 3.84E-04 3.31E-04

N = 75 1.03E-03 5.16E-04 3.55E-04 2.83E-04 1.95E-04

N = 100 7.56E-04 3.80E-04 2.96E-04 2.17E-04 1.36E-04

Rotating hyper-ellipsoid N = 25 1.56E-20 9.39E-41 2.89E-66 1.78E-83 1.65E-103

N = 50 1.31E-31 5.54E-71 2.57E-97 6.04E-129 9.47E-168

N = 75 9.79E-42 1.26E-113 2.53E-128 8.04E-170 1.57E-202

N = 100 1.38E-50 7.46E-95 1.87E-148 1.36E-198 4.21E-240

Ackley N = 25 2.18E-01 4.62E-02 2.31E-02 2.31E-02 4.58E-15

N = 50 6.43E-15 4.51E-15 4.58E-15 4.30E-15 4.44E-15

N = 75 5.36E-15 4.44E-15 4.30E-15 4.30E-15 4.23E-15

N = 100 4.80E-15 4.44E-15 4.09E-15 4.09E-15 4.23E-15

Easom N = 25 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00

N = 50 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00

N = 75 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00

N = 100 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00

Griewank N = 25 1.11E-01 9.92E-02 8.78E-02 9.19E-02 8.25E-02

N = 50 8.11E-02 7.96E-02 7.37E-02 6.46E-02 6.16E-02

N = 75 8.28E-02 6.40E-02 6.01E-02 6.26E-02 5.85E-02

N = 100 6.79E-02 6.43E-02 5.85E-02 5.25E-02 6.59E-02

Rastrigin N = 25 8.02E?00 7.36E?00 5.53E?00 5.05E?00 5.27E?00

N = 50 6.17E?00 4.38E?00 3.90E?00 3.48E?00 3.18E?00

N = 75 4.24E?00 3.88E?00 2.85E?00 2.83E?00 2.41E?00

N = 100 3.90E?00 2.85E?00 2.69E?00 1.79E?00 2.05E?00

Alpine N = 25 1.28E-04 1.10E-09 3.64E-10 2.55E-13 5.21E-15

N = 50 9.79E-08 2.59E-15 3.59E-07 6.66E-15 3.70E-15

N = 75 6.17E-07 2.46E-15 1.84E-15 2.57E-15 1.86E-15

N = 100 2.61E-15 1.83E-15 2.93E-15 1.70E-15 2.83E-15
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For 7 cases, it achieves the least deviation where its nearest

competitor CS has the least standard deviation for 4 cases.

This proves that ESWSA gives output with less variation in

output, i.e., it is a more reliable optimization process than

other algorithms. Again, BA has the largest standard vari-

ation for all benchmark functions.

A simulation is considered as successful if and only if the

best-found fitness value is smaller than or equal to the

successful threshold. The overall success rate is calculated

by the number of successful runs under a specific success

threshold divided by the total number of runs. Thus a larger

overall success rate implies a more reliable algorithm.

Table 4. Comparative study based on best fitness.

Function

Minimum fitness

ESWSA BA CS FPA PSO

De Jong 1.45E-94 2.53E-07 2.36E-33 1.96E-08 3.87E-54

Rosenbrock 3.77E-04 3.09E-02 4.88E-08 7.97E-02 7.26E-02

Schwefel 2.22 2.32E-39 1.34E-03 5.80E-12 4.44E-02 2.62E-28

Noisy Quadric 9.98E-05 2.21E-02 7.81E-04 1.36E-03 4.80E-04

Rotating hyper-ellipsoid 5.77E-91 2.62E?01 2.89E-30 3.84E-04 1.25E-51

Ackley 4.44E-15 2.01E?00 1.18E-11 2.21E-02 4.44E-15

Easom -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00 -1.00E?00

Griewank 1.48E-02 5.16E-02 8.56E-03 3.89E-02 1.07E-02

Rastrigin 9.95E-01 8.95E?00 1.12E?00 8.76E?00 7.50E-10

Alpine 4.81E-112 3.04E-04 1.58E-02 2.27E-01 3.73E-36

Table 5. Comparative study based on worst fitness.

Function

Maximum fitness

ESWSA BA CS FPA PSO

De Jong 2.69E-69 8.24E-07 9.35E-31 2.07E-07 6.03E-29

Rosenbrock 5.63E?00 4.25E?00 3.08E-04 4.35E?00 8.23E?00

Schwefel 2.22 4.47E-23 4.53E?01 1.71E-10 5.20E-01 8.60E-08

Noisy Quadric 2.05E-03 5.72E-01 4.23E-03 1.25E-02 8.11E-03

Rotating hyper-ellipsoid 8.92E-70 2.61E?04 3.51E-28 2.78E-03 3.35E-25

Ackley 7.99E-15 7.67E?00 2.55E-08 2.81E-01 1.16E?00

Easom -1.00E?00 -4.66E-24 -1.00E?00 -1.00E?00 -1.00E?00

Griewank 2.12E-01 1.53E?00 5.64E-02 1.15E-01 1.94E-01

Rastrigin 1.29E?01 6.77E?01 4.33E?00 2.17E?01 8.95E?00

Alpine 2.26E-14 4.13E?00 2.19E-01 1.00E?00 1.27E-02

Table 6. Comparative study based on median fitness.

Function

Median fitness

ESWSA BA CS FPA PSO

De Jong 1.46E-83 6.03E-07 2.92E-32 7.10E-08 1.39E-45

Rosenbrock 1.06E-01 3.78E-02 2.90E-06 1.98E?00 4.49E?00

Schwefel 2.22 3.00E-33 2.16E-03 3.97E-11 9.64E-02 5.52E-21

Noisy Quadric 7.95E-04 1.20E-01 2.36E-03 5.87E-03 1.44E-03

Rotating hyper-ellipsoid 5.79E-79 5.89E?03 3.17E-29 1.02E-03 1.59E-40

Ackley 4.44E-15 5.09E?00 4.47E-10 7.06E-02 4.44E-15

Easom -1.00E?00 -6.58E-09 -1.00E?00 -1.00E?00 -1.00E?00

Griewank 7.01E-02 4.88E-01 2.78E-02 7.24E-02 7.81E-02

Rastrigin 3.98E?00 2.24E?01 2.79E?00 1.52E?01 3.98E?00

Alpine 1.44E-15 3.49E-01 9.44E-02 5.50E-01 5.85E-10
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Here, if the absolute value of best-found fitness is smaller

than 0.1 we considered it to be successful for all benchmark

functions except the Easom function. In case of Easom

function, if the fitness value is less than –0.9 and greater

than –1.1, then it will be considered as a successful attempt.

From table 8, it is observed that the proposed ESWSA has

100% success rate for all functions except Griewank,

Rosenbrock and Rastrigin. It is interesting to note that CS

has higher successful rate than ESWSA as they have 85%

and 82% average success rate, respectively. For Rastrigin,

almost every algorithm has 0% success rate except PSO,

which has only 4% success rate. BA is the worst algorithm

among these.

4.2c Convergence test: The final result comparison cannot

completely describe the searching performance of an

algorithm. Hence, we further conduct a convergence test on

the compared algorithms on each 10-D benchmark func-

tion. Next, we have tested the convergence speed of the

proposed ESWSA algorithm and compare with others. For

this purpose, we have calculated the mean of best-found

fitness for all 50 runs at each iteration index. Then, we plot

them for all algorithms and for all functions, which are

shown in figure 3. It is observed that ESWSA converges

faster than other algorithms do except for Rotating hyper-

ellipsoid, Griewank and Noisy Quadric. For these 3 func-

tions, CS performs better than ESWSA. PSO has the worst

convergence speed. Overall, ESWSA has satisfactory con-

vergence speed, which is highly desirable for an opti-

mization algorithm. For most of the cases, ESWSA

converges within 250 iterations.

4.2d Computational efficiency test: Besides the previous

tests, the computational complexity is also a major factor

for evaluating the efficiency of an evolutionary compu-

tation algorithm. For this purpose, we studied the average

execution time taken by each algorithm for each bench-

mark function, which indicates the computational effi-

ciency of the algorithm. Table 9 shows a comparative

study based on average execution time. It is clearly

shown that ESWSA is faster than all others algorithms

for all functions except Rosenbrock. PSO and ESWSA

have almost same performance regarding computational

complexity. CS takes the largest time to execute. This

proves the efficiency of our proposed ESWSA opti-

mization technique.

4.2e Overall performance: Now we summarize the per-

formance of ESWSA based on afore-mentioned evaluation

criteria and compare with other techniques. For this pur-

pose, we assigned a performance score against each algo-

rithm for each criterion. The value of this score is

calculated as the ratio of number of cases (functions) where

an algorithm achieves the best result (criterion) to the total

number of cases. Table 10 shows the comparative study

based on these scores to evaluate overall efficiency of our

proposed algorithm. It is clearly noticed from table 10 that

for all conditions, ESWSA performed better than others.

Only in case of success rate, CS and ESWSA have similar

performance. Therefore, it can be concluded that ESWSA is

one of the most efficient optimization techniques for global

optimization.

Table 7. Comparative study based on standard deviation.

Function

Standard deviation

ESWSA BA CS FPA PSO

De Jong 3.8E-70 1.5E-07 1.4E-31 4.2E-08 8.5E-30

Rosenbrock 1.3E?00 1.4E?00 5.0E-05 1.1E?00 2.1E?00

Schwefel 2.22 6.3E-24 8.3E?00 3.0E-11 8.7E-02 1.5E-08

Noisy Quadric 4.5E-04 1.1E-01 8.6E-04 3.0E-03 1.4E-03

Rotating hyper-ellipsoid 1.8E-70 7.4E?03 6.5E-29 6.7E-04 4.7E-26

Ackley 5.0E-16 1.2E?00 4.4E-09 6.0E-02 2.3E-01

Easom 0.0E?00 1.4E-01 0.0E?00 3.8E-06 0.0E?00

Griewank 4.0E-02 2.7E-01 1.1E-02 1.7E-02 3.5E-02

Rastrigin 2.4E?00 1.2E?01 8.6E-01 3.2E?00 2.0E?00

Alpine 4.2E-15 1.1E?00 4.5E-02 1.8E-01 2.0E-03

Table 8. Comparative study based on success rate.

Function

Success rate (%)

ESWSA BA CS FPA PSO

De Jong 100 100 100 100 100

Rosenbrock 48 86 100 2 2

Schwefel 2.22 100 74 100 52 100

Noisy Quadric 100 34 100 100 100

Rotating hyper-ellipsoid 100 0 100 100 100

Ackley 100 0 100 64 96

Easom 100 2 100 100 100

Griewank 74 2 100 94 78

Rastrigin 0 0 0 0 4

Alpine 100 20 54 0 100
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Figure 3. Convergences of different benchmark functions.
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4.3 Scalability of ESWSA

In addition to the 10-dimensional benchmark function tests,

we also performed a series of simulations on high dimen-

sional (both 30-D and 50-D) benchmarks to test the scala-

bility of ESWSA. Here, we have used N = 100 and

tmax = 5000 for simulation and corresponding results are

shown in table 11. It has been observed that ESWSA gives

very good accuracy and success rate for De Jong, Schwefel

2.22, NoisyQuadric, Rotating hyper-ellipsoid, Griewank and

Alpine functions for both cases. In general, it can be stated

that performance of ESWSA is degraded for high-dimen-

sional multimodal function optimization. For unimodal and

large-dimensional problem, ESWSA can provide satisfac-

tory accuracy. However, if we increase population number

(elephant swarm) and iteration number, it is expected that

accuracy will be increased but computational time will also

increase consequently. Therefore, for a real-life optimization

problem, sufficient population and iteration numbers are

needed to be considered for better accuracy and efficiency.

5. Application of ESWSA for constrained
optimization

In order to evaluate the optimization power of the proposed

ESWSA, in the presence of constraints, two engineering

design problems are considered and solved, including three-

bar truss and tension/compression spring. These two prob-

lems have different natures of objective functions, con-

straints and decision variables. In this paper, for each

problem the constraints are directly handled. It indicates

that if a solution cannot satisfy all constraints altogether, it

will be not considered as a feasible solution and will be

abandoned consequently.

5.1 Three-bar truss design problem

In case of three-bar truss design problem [51, 52], the

primary objective is the minimization of the volume of a

three-bar truss (statistically loaded) subject to the stress (r)
constraints, length (l) and pressure (P) on every truss

member by optimizing the areas of cross section (i.e., x1
and x2). Figure 4 shows a schematic of three-bar truss

design problem. This constrained optimization problem

consists of three nonlinear inequality constraints and two

continuous decision variables and corresponding nonlinear

fitness function is given as follows:

Table 11. Scalability test of ESWSA.

Function name

Min. Success rate (%)

d = 30 d = 50 d = 30 d = 50

De Jong 1.12E-47 4.78E-18 100 100

Rosenbrock 0.000102 1.534299 14 0

Schwefel 2.22 3.53E-18 2.05E-06 100 92

Noisy Quadric 0.00107 0.00949 100 100

Rotating hyper-

ellipsoid

1.61E-44 5.81E-13 100 100

Ackley 1.322669 1.496879 0 0

Easom -1 -3.1E-09 96 0

Griewank 0 1.24E-14 100 98

Rastrigin 200 400 0 0

Alpine 5.22E-15 1.45E-06 100 94

Figure 4. Three-bar truss design problem [52].

Table 9. Comparative study based on average execution time.

Function

Average execution time (s)

ESWSA BA CS FPA PSO

De Jong 0.740 2.879 17.115 6.542 0.742

Rosenbrock 0.834 3.124 11.193 6.537 0.832

Schwefel 2.22 0.794 3.215 7.878 4.561 0.846

Noisy Quadric 1.030 3.456 8.374 7.161 1.140

Rotating hyper-ellipsoid 0.913 3.308 7.797 4.999 0.983

Ackley 1.916 6.178 22.149 9.552 2.438

Easom 2.131 4.964 21.030 7.951 2.199

Griewank 1.958 4.927 19.960 7.794 2.294

Rastrigin 0.802 3.078 7.525 6.627 0.912

Alpine 0.793 3.259 24.064 7.592 0.873

Table 10. Comparative study based on score.

Criterion

Score

ESWSA BA CS FPA PSO

Best fitness 0.7 0.1 0.3 0.1 0.3

Worst fitness 0.7 0 0.2 0.1 0.1

Median fitness 0.8 0 0.3 0.1 0.2

Standard deviation 0.7 0 0.4 0.1 0.1

Success rate 0.7 0.1 0.7 0.4 0.5

Convergence 0.7 0 0.3 0 0

Execution time 0.9 0 0 0 0.1
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Min: f xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
l

s:t:

g1 xð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x21 þ 2x1x2
P� r� 0

g2 xð Þ ¼ x2ffiffiffi
2

p
x21 þ 2x1x2

P� r� 0

g3 xð Þ ¼ 1ffiffiffi
2

p
x2 þ 2x1

P� r� 0

0� xi � 1; i ¼ 1; 2

l ¼ 100 cm;P ¼ 2 kN=cm2; r ¼ 2 kN=cm2:

ð7Þ

Table 12 shows the performance of different meta-

heuristics for constrained optimization of three-bar truss

design problem [52]. We have considered six criteria for

the comparison. We consider a population of 50 and 2000

iterations for each metaheuristic. The program is executed

10 times and corresponding best, worst, mean, median fit-

ness, standard deviation and execution time are presented in

table 12. It is seen that all the metaheuristics can reach

close to the optimal point 263.89584 as reported in the

paper [52]. Best fitness of ESWSA, CS and FPA are the

same and their standard deviation is also very small (for

ESWSA it is 3910-6). However, the standard deviation for

PSO and BA is significant whereas CS and FPA have

almost zero deviation. This indicates that the output of PSO

may not be able to reach close to the optimal point for all

cases. One of the most important advantages for ESWSA is

that it is the most computationally efficient compared with

all other metaheuristic, whereas, the time requirement for

CS and FPA is the highest (almost three times).

5.2 Tension/compression spring design problem

The objective of tension spring design problem [52] is to

minimize the weight of a tension/compression spring (f)

with respect to three nonlinear and one linear inequality

constraints according to Eq. (8). Figure 5 shows a sche-

matic of tension spring design problem. It has three con-

tinuous decision variables, namely, wire diameter ðd or x1),
mean coil diameter D or x2ð Þ and number of active coils

P or x3ð Þ.

Min: f xð Þ ¼ x3 þ 2ð Þx2x21
s:t:

g1 xð Þ ¼ 1� x32x3

71785x41
� 0

g2 xð Þ ¼ 4x22 � x1x2

12566 x2x
3
1 � x41

	 
þ 1

5180x21
� 1� 0

g3 xð Þ ¼ 1� 140:45x1
x22x3

� 0

g4 xð Þ ¼ x1 þ x2

1:5
� 1� 0

0:05� x1 � 2; 0:25� x2 � 1:3; 2� x3 � 15:

ð8Þ

Table 13 shows the performance of different meta-

heuristics for constrained optimization of tension/com-

pression spring design problem [52]. For the earlier

optimization setting, it has been seen that all the meta-

heuristics can reach close to the optimal point 0.012665 as

reported in the paper [52]. Standard deviation of ESWSA

and CS is very small whereas it is almost zero for FPA.

However, the standard deviation for PSO and BA is sig-

nificant, which indicates that the output of PSO and BA

may not be able to reach close to the optimal point for all

cases. One of the most important advantages for ESWSA is

that its computational time is the least compared with

others.

6. Application of ESWSA for inference of GRN

Correct inference of genetic regulations [53] inside a cell

from the biological database like time-series microarray

data [54] (which contains gene expression level of many

genes at different time instances) is one of the greatest

challenges in post genomic era for the biologist and

Figure 5. Schematic of tension/compression spring design prob-

lem [52].

Table 12. Comparison for constrained optimization of three-bar truss design.

Criterion

Metaheuristics

ESWSA BA CS FPA PSO

Worst fitness 263.89585 263.89610 263.89584 263.89584 263.94879

Best fitness 263.89584 263.89585 263.89584 263.89584 263.89625

Mean fitness 263.89585 263.89592 263.89584 263.89584 263.91243

Median fitness 263.89584 263.89589 263.89584 263.89584 263.90597

Standard deviation 0.000003 0.000074 0.000000 0.000000 0.017683

Execution time 0.84299 1.56144 3.58392 3.52433 0.85408
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computer researchers. Recurrent Neural Network (RNN)

[55] is one of the most popular and simple approaches to

model the dynamics of gene expression as well as to infer

correct dependencies among genes, i.e., GRN. In this paper,

the proposed ESWSA is tested against benchmark small-

scale artificial genetic network inference problem as an

application of ESWSA in the field of computational biology

and bioinformatics.

A GRN [56] is represented by a directed graph where

nodes of the denote genes and regulatory interactions

between genes are denoted by directed edges. In canonical

RNN model [57, 58] the gene’s regulations are expressed

by the following tightly coupled architecture where it is

assumed that each of the total N neurons in the output unit

ei t þ Dtð Þ is a gene expression value of next time instant,

and the neurons in the input units ei(t) are the gene

expression of present state for the same genes; thus they

interact with each and everyone:

ei t þ Dtð Þ ¼ Dt
si
f
XN
j¼1

wi;jej tð Þ þ bi

 !
þ 1� Dt

si

� �
ei tð Þ;

i ¼ 1; 2; . . .;N

ð9Þ

where f() is a nonlinear function (usually the sigmoid

function is used, where f(z) = 1/1 ? e-z); wi;j represents the

type and strength of the regulatory interaction from j-th

gene towards i-th gene. Positive (negative) value of wi;j

represents activation (repression) control of gene-j on gene-

i; wi,j = 0 implies that gene-j has no regulatory control on

gene-i; bi represents the basal expression level and si
denotes the decay rate parameter of the i-th gene. Dt is

incremental time instance (in this work it is set to 1).

Hence, the discrete form of the RNN model for GRN can be

described by the following set of N(N?2) unknown

parameters X ¼ wi;j; bi; si

 �

; which are called as RNN

model parameters, where i, j = 1, 2,…,N.

Usually, the inference of RNN-based genetic network

from time-series gene expression data is obtained by opti-

mizing the values of RNN parameters with the help of a

metaheuristic so that training or learning error is mini-

mized. All metaheuristics use an objective function or a

fitness function to measure the goodness of a solution. The

most common estimation criterion is squared error [57, 58],

which is defined as follows:

f ¼
XM
k¼1

XN
i¼1

XT
t¼1

ecal;k;i;t � eexp;k;i;t
	 
2 ð10Þ

where N is the number of genes, T is the number of time

instances of the gene expression data, M is number of

datasets, ecal;k;i;t is numerically calculated gene expression

value of k-th dataset at time t of i-th gene using the set of

obtained parameters of RNN model and eexp,k,i,t is the

actual gene expression level of k-th dataset at time t of i-

th gene; f denotes total squared error between the calcu-

lated and the observed gene expression data. Therefore,

RNN modelling is a nonlinear function optimization

problem to discover the optimal RNN parameter by

minimizing the fitness function or square error so that

calculated gene expression data fit best with the observed

gene expression data. Moreover, the genetic network

inference problem is decoupled [57], i.e., it is divided into

several sub-problems corresponding to each gene to

reduce large dimensionality of search space.

6.1 Experimental results for inference of small-

scale GRN

To explore the effectiveness of ESWSA optimization for

inference of RNN-based GRN, initially a benchmark small

artificial regulatory network is chosen that contains four

genes with simple regulatory dynamics. The parameters of

this artificial GRN are presented in table 14 and the net-

work is shown in figure 6. There are totally 8 regulations in

the network. The artificial time-series data were generated

by solving the set of differential equations (9) using the

following RNN parameters and the initial values of these

sets were selected randomly. In real life, these time-series

data could be obtained by different biological experiments.

The number of time instances per dataset is 50 and number

of dataset is 4. Hence, for this work, there were totally 200

data points for each gene. For each gene, 6 parameters

X ¼ wi;j; bi; si

 �

need to be identified using ESWSA,

Table 13. Results for constrained optimization of tension/compression spring design problem [52].

Criterion

Metaheuristics

ESWSA BA CS FPA PSO

Worst fitness 0.012713 0.016747 0.013596 0.012666 0.013317

Best fitness 0.012666 0.012667 0.012666 0.012665 0.012682

Mean fitness 0.012680 0.013519 0.012985 0.012665 0.013012

Median fitness 0.012674 0.012756 0.012934 0.012665 0.013022

Standard deviation 0.000015 0.001502 0.000306 0.000000 0.000219

Execution time 0.903812 1.649376 3.749864 3.566125 0.909446
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where these parameters are considered as the position of

elephants groups. The search space was selected as wi,j 2
[- 30,30], bi 2 [- 10,10] and si 2 [0,20], the same as in

earlier work [48, 50, 57, 58]. Here, we have used ESWSA

to get the decoupled RNN model parameters.

First, the most important performance criterion is mea-

sured from network structure point of view where inferred

network is compared to the original network structure with

respect to edge connectivity. Now, the sensitivity (Sn),

specificity (SP), F-score (F) and accuracy (ACC) of the

reconstructed network are defined as follows:

Sn ¼
TP

TPþ FN
ð11Þ

Sp ¼
TN

TN þ FP
ð12Þ

F ¼ 2 � TP
2 � TPþ FPþ FN

ð13Þ

ACC ¼ TPþ TN

TPþ FPþ FN þ TN
ð14Þ

where TP (True Positive) denotes the number of correctly

predicted regulations, TN (True Negative) represents the

number of properly predicted non-regulations, FP (False

Positive) denotes the number of incorrectly predicted reg-

ulations and FN (False Negative) represents the number of

falsely predicted non-regulations by the inference algo-

rithm. Moreover, inferred values of the parameters should

not deviate much from the original one as its sign and

magnitude may affect the connectivity of reconstructed

genetic network. Therefore, another performance mea-

surement parameter, Inferred Parametric Error (IPE), is

defined that measures the deviation in the magnitude of

obtained parameters from original one:

IPE ¼
XN
i;j¼1

w
exp
i;j � wcal

i;j

���
���þ
XN
i¼1

bexpi � bcali

�� ��

þ
XN
i¼1

sexpi � scali

�� �� ð15Þ

where w
exp
i;j ; b

exp
i ; sexpi are the actual values of RNN param-

eters and wcal
i;j ; b

cal
i ; scali are the calculated values of the

same. However, due to random and stochastic nature of

metaheuristic, outputs may be slightly varied for different

runs and this may lead to different network topologies.

Therefore, in this work, each algorithm is executed 10

times and final regulations of genes are obtained by taking

their mean. Other optimization parameters for ESWSA,

BA, CS, FPA and PSO remain the same as those in

section 4.2.

Table 15 shows a comparative study on the performance of

proposed ESWSA algorithm and other state-of-art techniques

for inference of small-scale artificial GRN. It can be seen that

ESWSA, CS and FPA are able to detect all TPs and do not

include any FPs. Therefore, values of Sn, SP, F and ACC are 1

for all of these cases. However, BA and PSO both include 3

FPs. It can be also seen that PSO has the least computational

time whereas FPA has the maximum. Moreover, it is inter-

esting to observe that ESWSA has the least training error,

computational time and IPE while PSO has the largest

training error. Therefore, overall, ESWSA is preferable if we

want to balance accuracy of inference capability and com-

putational time of respective algorithm.

Gene-2Gene-1

Gene-3 Gene-4

Figure 6. Original small-scale GRN.

Table 14. Actual RNN model parameters for small artificial

genetic network.

wi;j 1 2 3 4 bi si

1 20 -20 0 0 0 10

2 15 -10 0 0 -5 5

3 0 -8 12 0 0 5

4 0 0 8 -12 0 5

Table 15. Comparative study for inference of small artificial GRN using RNN.

Process TP TN FP FN Sn Sp F ACC Average training error IPE Average computational time (s)

ESWSA 8 8 0 0 1 1 1 1 1.09910-11 0.0040 416.94

BA 6 5 3 2 0.7 0.63 0.71 0.69 0.3253 90542 508.40

CS 8 8 0 0 1 1 1 1 3.63910-10 0.0087 1104.23

FPA 8 8 0 0 1 1 1 1 0.0061 39 9773.48

PSO 6 5 3 2 0.7 0.63 0.71 0.69 0.2320 6.691022 420.63
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Figure 6 shows the original small-scale (4 genes) artifi-

cial GRN, where solid arrow-lines denote activation and

dashed lines denote inhibition. Figure 7 depicts the GRN

reconstructed from time-series gene expression data using

ESWSA, CS and FPA techniques. It has been observed that

all of these three metaheuristics are able to identify all true

regulations (both activations and inhibitions, denoted by

green coloured arrow) without including any false positive.

However, in case of BA and PSO, both metaheuristics are

able to identify only 6 true regulations but also include 3

false regulations (shown by red coloured arrow) in the

inferred network. Moreover, for each case, BA and PSO

have 2 FNs. Figures 8 and 9 show the small-scale GRN

inferred by BA and PSO, respectively.

7. Results, analysis and discussion

Both PSO and ESWSA are dependent on two pieces of

information: current particle or elephant best and swarm or

global best. This allows greater diversity and exploration for

both PSO and ESWSA. However, due to combined effect of

particle best and global best, PSO may not reach as close as

the ESWSA can reach to the global optimal point. We can see

from tables 4–6 that ESWSA performs the best and PSO

holds the second position in terms of accuracy, i.e., minimum,

maximum and median fitness of numerical benchmark func-

tions. From the obtained accuracy of different numerical

benchmark functions and also GRN inference problem, it can

be concluded that ESWSA and PSO used information about

particle and global best positions in the search direction, and

performed better compared with other existing metaheuristics

like CS, FPA and BA. From tables 7 and 8, it is also very

interesting to observe that ESWSA is better in term of success

rate and standard deviation. It indicates that ESWSA is able to

reach nearer to the global optima most of the times. For

constrained optimization, ESWSA has similar accuracy as

those of CS and FPA (see tables 12 and 13). Table 15 also

supports this observation when we tried to infer RNN-based

GRN using ESWSA. Training error is the least for ESWSA.

However, performance of PSO is not up to mark for con-

strained optimization.

One of the main advantages of PSO is that the momen-

tum effects (using inertia weight) on particle movement can

allow faster convergence (e.g., when a particle is moving in

the direction of a gradient) and more variety/diversity in

search trajectories [39]. We have used similar approaches

for ESWSA, namely LDIW [15], to update the velocity.

This strategy leads to better convergence of ESWSA

compared with other methods. From figure 2, it can be seen

that ESWSA attends faster convergence for 7 cases of

numerical functions.

Now, if we consider the case of ESWSA and PSO, both

use velocity update formula but in different ways. To use

the particle memory or swarm memory or both, we need to

perform point-wise multiplication (see Eqs. (1) and (2)).

However, to determine the search direction, PSO always

use both memories whereas ESWSA uses either particle

memory or swarm memory depending on the probability

switch. Obviously, the point-wise multiplication for

ESWSA is almost half of the required multiplication for

PSO during velocity update. Hence, computational effi-

ciency of ESWSA is better than that of PSO. On the other

Gene-2Gene-1

Gene-3 Gene-4

Figure 7. Inferred small-scale GRN by ESWSA, CS and FPA.

Gene-2Gene-1

Gene-3 Gene-4

Figure 8. Small-scale GRN inferred by BA.

Gene-2Gene-1

Gene-3 Gene-4

Figure 9. Small-scale GRN inferred by PSO.
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hand, as CS and FPA both use Levy’s Distribution for

global search, the required computational time is more for

CS and FPA. Moreover, as CS needs to perform more

operations like selection of nest using random walk or Levy

flight, empty a nest, etc., its computational time is the

highest. As BA uses more number of tuning parameters and

equations for updating the velocity, position, frequency,

etc. during iteration, computational efficiency of BA is

better than that of CS and FPA but worse than that of

ESWSA and PSO. All these observations are made from

table 9 for global optimization of different benchmark

functions. In case of constrained optimizations (tables 12

and 13), we have also seen that computational time of

ESWSA is lower (comparable or not much difference) than

that of PSO whereas other methods required more time to

execute. CS and FPA needed almost three times the com-

putational time for constrained optimizations. In case of

GRN inference problem, ESWSA needs the least compu-

tational time (table 12) whereas PSO required more exe-

cution time than that of ESWSA but less than that of other

metaheuristics.

It is interesting to note that the IPE of GRN inference

problem using PSO is very high; this indicates that PSO has

been stuck at local minima or values are trying to reach

beyond the boundary of the variables. Due to combined

effects of particle and swarm memories, large step may be

achieved during velocity update and there is always a

chance of going beyond limit. Therefore, PSO may some-

times fail to reach nearer to the global optima. For this

reason, PSO is not able to learn the exact value of regula-

tory parameters (i.e., GRN) and consequently parametric

error is huge for inference of RNN-based GRN. However,

ESWSA achieved the least IPE due to the use of particle

and swarm memories alternatively (see the pseudo-code of

ESWSA). From figures 8 and 9, it can be observed that BA

and PSO are not suitable for learning of optimal parameters

from time-series data, i.e., GRN inference, due to inclusion

of FPs in the reconstructed network. CS and FPA have

similar performance in terms of accuracy for GRN infer-

ence, but their IPE, computational time and training error

are comparatively higher than those of ESWSA. For con-

strained optimizations, we have seen similar results, where

standard deviation is very significant for PSO. It also

indicates that the output of PSO may fluctuate significantly

as it is not so robust against sticking at local minima.

Table 10 describes or summarizes overall findings of the

exposition of this work. ESWSA is found to be the most

efficient optimization in terms of best (minimum) fitness,

worst (maximum) fitness, median fitness, standard devia-

tion, success rate, convergence speed and computational

time. It is also suitable for large-dimensional optimization

problems. In case of constrained optimizations, ESWSA

gives best results in terms of computational time and best

fitness. As an application of ESWSA, we have tested

ESWSA on a benchmark small-scale GRN inference

problem, where it also performed better in many ways

(accuracy and output training error) than the other state-of-

art techniques. Hence, it can be concluded that ESWSA is

the most suitable optimization technique compared with the

other methods like BA, CS, FPA and PSO.

8. Conclusion

In this paper, the author has proposed a novel ESWSA to

solve global optimization problems. This algorithm is based

on the water search strategies of social elephants swarm

with the help of their different short- and long-distance

communication techniques. The velocity and positions of

elephants swarms are gradually updated according to the

current velocity and either local best or global best position

depending on a probabilistic condition. ESWSA is theo-

retically very simple and relatively easy to implement as

there are very few parameters that need to be adjusted

during optimization. ESWSA can deal with several differ-

ent continuous optimization problems and has the potential

to be employed to solve real-world problems with satis-

factory accuracy.

Initially, in order to evaluate the efficiency of ESWSA, a

set of 10 benchmark functions are used, which cover a large

variety of different global optimization problem types.

Also, compared ESWSA with the state-of-the-art opti-

mization algorithms, namely, BA, CS, FPA and PSO based

on different criteria like best-found fitness, worst fitness,

mean fitness, median fitness, standard deviation, success

rate, convergence speed, computational efficiency, etc. The

results showed that the performance of ESWSA is out-

standing compared with the afore-listed algorithms and

conditions for most of the benchmark functions. This

conclusion was validated by both the simulation results and

the statistical analysis of the simulation data.

Next, tested ESWSA for two well-known constrained

optimization problems, namely three-bar truss and tension

spring design problem. It has been observed for both cases

that ESWSA performance is outstanding in terms of com-

putational time, best fitness and standard deviation.

As a part of this work, ESWSA has been applied against

a benchmark problem of computational biology, i.e.,

inference of GRN based on RNN. The objective was to

learn the parameters of RNN accurately from time-series

gene expression dataset by minimizing the training error. It

is observed that the proposed ESWSA is able to reach

nearest to global minima point and can infer all true reg-

ulations of GRN correctly in less computational time

compared with the other existing metaheuristics.

In future, research on ESWSA can be carried out in the

following areas: scheme, algorithm and real-world appli-

cation. The local water search and global water search

scheme in the current ESWSA may be further improved

using advanced and hybrid optimization algorithms. In

terms of algorithm research, development of adaptive or

self-adaptive strategies for tuning of ESWSA parameters is
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also another interesting direction of research, which will

reduce the time in tuning parameters. Lastly, it will be very

fascinating to test the effectiveness of the proposed algo-

rithm for more different real-world applications.
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