
PSOM2—partitioning-based scalable ontology matching using
MapReduce

B SATHIYA1,*, T V GEETHA1 and K SARULADHA2

1Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University,

Chennai 600025, India
2Department of Computer Science and Engineering, Pondicherry Engineering College, Puducherry 605014,

India

e-mail: sathiyabalu89@gmail.com; tv_g@hotmail.com; charusanthaprasad@yahoo.com

MS received 20 April 2015; revised 15 October 2015; accepted 9 May 2017; published online 16 November 2017

Abstract. The growth and use of semantic web has led to a drastic increase in the size, heterogeneity and

number of ontologies that are available on the web. Correspondingly, scalable ontology matching algorithms

that will eliminate the heterogeneity among large ontologies have become a necessity. Ontology matching

algorithms generally do not scale well due to the massive number of complex computations required to achieve

matching. One of the methods used to address this problem is the use of partition-based systems to reduce the

matching space. In this paper, we propose a new partitioning-based scalable ontology matching system called

PSOM2. We have designed a new neighbour-based intra-similarity measure to increase the quality of the cluster

set formation for the partition-based ontology matching process. These sets of clusters or sub-ontologies are

matched across the input ontologies to identify matchable cluster pairs, based on anchors that are efficiently

discovered through a new light-weight linguistic matcher (EI-sub). However, in order to further increase the

efficiency of the time-consuming anchor discovery process we have designed a MapReduce-based EI-sub

process where anchors are discovered in distributed and parallel fashion. Experiments on benchmark OAEI

(Ontology Alignment Evaluation Initiative) large scale ontologies demonstrate that the new PSOM2 system

achieves, on an average, 31% decrease in entropy of the clusters and 54.5% reduction in overall run time. Based

on the experimental results, it is evident that the new PSOM2 achieves better quality clusters and a major

reduction in execution time, leading to an effective and scalable ontology matching system.

Keywords. Ontology matching; data integration; semantic heterogeneity; MapReduce; ontology partitioning.

1. Introduction

The semantic web is developed by the International stan-

dard body World Wide Web Consortium (W3C). In

accordance with W3C, semantic web aims at providing a

common framework that allows data sharing and reusing

across various applications. The semantic web’s aim is

achieved by the ontology that is the new form of knowledge

representation. According to the ontology search engine,

SWOOGLE [1] the semantic web search engine has

retrieved more than 10,000 ontologies from the web.

Growth of the semantic web has led to an enormous growth

in number and size of these ontologies. Due to the dis-

tributed nature of the web, different ontologies for same or

similar domains are constructed, which leads to hetero-

geneity among these ontologies. The semantic technology

called ontology matching is an effective way to enable

interoperability among these heterogeneous ontologies.

As of today, there are a number of applications that

require matching large ontologies, such as medicine [2],

biology domains, large life-science ontologies [3], E-busi-

ness [4], web directory [5] and web data [6]. Therefore,

these emerging demands on matching large ontologies

bring new challenges for ontology matching techniques.

The list of challenges presented by Shvaiko and Euzenat [7]

are large scale evaluation, efficiency of ontology matching,

matching with background knowledge, matcher selection

and self-configuration, user involvement, explanations of

ontology matching results, collaborative and social ontol-

ogy matching and alignment infrastructure. The open issue

focused in this paper is the efficiency of the ontology

matching systems. Based on the OAEI 2012 [8] report

many ontology matching systems spend hours or weeks to

match large ontologies or fail due to memory resource

constraint.

Generally, in ontology matching systems each entity

(class, property or instance) of one ontology should be

matched with all entities of the other input ontology,*For correspondence

2009

Sādhanā Vol. 42, No. 12, December 2017, pp. 2009–2024 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-017-0742-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0742-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0742-5&domain=pdf
https://doi.org/10.1007/s12046-017-0742-5

leading to nm number of computations where n and m are

the number of entities in each of the input ontologies. A set

of matchers exploring different information aspects of

ontology such as linguistic, structural and instance match-

ers are used to identify the similar entity pairs. If k such

matchers are used to process these entities, then totally knm

number of computations are needed. As the size of input

ontologies increases the number of computations increases,

leading to large memory requirement and computation

time.

According to Bellahsene et al [9], the scalability tech-

niques available to handle large scale ontologies are

ontology partitioning [10–13], early pruning of the dis-

similar entities [14, 15], parallel matching [16], self-tuning

of the match workflows [17] and reuse of previous match

results [10]. However, these systems fail to utilize the

advancements in the parallel and distributed computations

such as MapReduce framework [18].

MapReduce is a programming model where large data

records are processed by parallel and distributed algorithm

using a cluster of nodes. The general dataflow of the

MapReduce is depicted in figure 1. The large input data is

spilt into several subsets of records and each record is rep-

resented as \key, value[pair. Each subset of records is

processed by a function called mapper in parallel to produce

\intermediate key, intermediate value[pair. These pairs are

shuffled such that all values belonging to the same key are

shuffled to the same subset of records. The reducer reads

these recordswith the same key and produces the final output.

In this paper, a three-phase-partition based monolingual

(input ontologies should belong to the same language)

ontology matching system using MapReduce framework

called PSOM2 that aims at scalability with good accuracy is

proposed. The three phases of the novel system are as

follows: (i) the large input ontologies are decomposed into

sets of small clusters using the partition algorithm, (ii) then

the matchable cluster pairs across the input ontologies are

identified based on the anchors distribution where anchors

are linguistically similar entity pairs and (iii) finally, these

matchable cluster pairs are processed by a set of available

matchers to produce the output. The output is the set of

similar entity pairs called alignments with the similarity

value ranging between 0 and 1. Anchors are also considered

as alignments since they represent linguistically similar

entity pairs.

The partitioning will lead to huge reduction in match

space, since only the matchable cluster pairs are considered

for matching rather than the entire two input ontologies.

Even though partition-based ontology matching systems

achieve good scalability, the time required to find anchors

is high. Hence the anchors are identified in parallel using

the MapReduce framework, which leads to considerable

reduction in execution time. Scalability is achieved by the

proposed system through the following contributions.

• An efficient and effective neighbour-based intra-ontol-

ogy similarity measure that is used by the ontology

partition algorithm to decompose the input ontologies.

• Each of the input ontologies is partitioned in parallel

using the single-node-thread-based parallelism, leading

to reduction in computation time required for cluster

sets formation.

• A new light-weight linguistic similarity matcher called

EI-Sub that aims at discovering anchors has been

Figure 1. A sample MapReduce dataflow.

2010 B Sathiya et al

proposed. The anchors identification is the bottleneck

process that consumes large percent of the total

computation time. Therefore, the proposed EI-Sub

matcher is designed for efficient matching.

• A new MapReduce-based EI-Sub matcher is also

proposed that further reduces the computation time of

the anchor discovery to a larger scale. To the best of

our knowledge, PSOM2 is the first system to apply

MapReduce framework for anchor discovery.

The remainder of the paper is organized as follows.

Section 2 discusses the related work. Section 3 outlines the

new ontology matching system: PSOM2. Section 4 dis-

cusses in detail, the proposed intra-ontology similarity

measure and the partition algorithm used. In section 5, the

new light-weight linguistic matcher EI-Sub and MapRe-

duce-based EI-Sub are discussed in detail. Further, the

methodology used to identify the matchable cluster pairs is

also presented. Section 6, outlines the two matchers V-Doc

and GMO that are used to find the alignments. Section 7

demonstrates the various experimental results and section 8

concludes the paper with future work.

2. Related work

Even though several ontology matching systems exist, there

are only very few matching systems that can handle large

scale ontologies efficiently. In this section, ontology

matching systems that can efficiently handle large scale

ontologies are discussed. Readers are referred to Shvaiko

and Euzenat [7], Bellahsene et al [9], Euzenat et al [19],

Granitzer et al [20], Euzenat and Shvaiko [21] and Saru-

ladha et al [22] for the complete literature survey on small

and large scale ontology matching systems.

2.1 Partition-based ontology matching systems

The partitioned-based large scale ontology matching sys-

tems available are Anchorflood [12], COMA?? [10],

Falcon [13], TaxoMap [16, 11], and LOMPT [23]. These

systems decompose the large ontology into sets of small

clusters, but each system uses different partitioning

techniques.

Anchorflood uses a dynamic partitioning algorithm to

create clusters using the pre-calculated anchors (similar

entity pairs). For each anchor, a set of neighbour entities are

collected based on which the ontology is partitioned into

clusters. The anchors are discovered using exact string

match between descriptions of the entity pairs, which may

lead to lesser recall since the quality of the partition is

based on the quality of the anchor input.

In COMA??, the ontology is viewed as a graph, where

a cluster can be an entire graph or a subgraph. The cluster

can either be manually selected by the user or the

COMA?? can select subgraphs as clusters. Here, cluster is

the collection of entities from the subgraph root to leaf of

the subgraph. The matchable cluster pairs are identified

based only on the cluster pairs root entity’s linguistic

similarity. Similarly, COMA?? is basically designed for

XML ontologies and hence it does not use the semantic

enrichment of the OWL–RDF ontologies. In addition, the

simple heuristic rule for partitioning will lead to too few or

too many partitions.

Unlike COMA?? and Anchorflood, the Falcon sys-

tematically decomposes the ontology into sets of clusters

using the modified ROCK partition algorithm. The partition

algorithm used is an agglomerative hierarchical partitioning

algorithm that is based on depth-based structural proximity

measure. Then, the matchable cluster pairs are identified

using the anchors distribution across the cluster pairs.

These anchors are discovered using the linguistic matcher

I-Sub.

TaxoMap first identifies the anchors and the clusters are

partitioned around these anchors using the same modified

ROCK partition algorithm as that of Falcon. However, the

partition algorithm of Falcon and TaxoMap can be applied

only to the RDF language ontology and it is more time-

consuming since the time complexity of the partition

algorithm is O(n2) where n is the average number of entities

of the input ontologies. TaxoMap explores only the labels

and hierarchical relation for finding alignments, which

leads to less accuracy of the system.

Gross et al [16] proposed a matching system that uses

both partitioning and distributed-thread-based parallelism

technique to reduce computation time. Both inter- and

intra-matcher parallelisms are incorporated in this proposed

matching system. Inter-matcher parallelism is achieved by

parallelizing the linguistic and structural matcher. How-

ever, there is no reduction in memory requirements since

the entire ontologies need to be processed. In the intra-

matcher parallelism, the input ontology is decomposed into

sets of clusters based on a size-based partitioning algo-

rithm. These clusters are processed in parallel to find the

alignments. The partitioning algorithm is a naive heuristic

strategy and it also depends on the correct choice of size

parameter to produce proper clusters. In addition, the

Cartesian product of the cluster pairs should be processed

by the matching system, leading to large computation time.

In LOMPT, an entity’s neighbour-based partitioning of the

ontology was proposed. This system used a new partitioning

algorithm, which was adopted from the network clustering

algorithm, AHSCAN [24]. Then, the set of anchors were

discovered using a simple linguistic matcher called SI-Sub.

The matchable cluster pairs are discovered based on the

anchor distributions. The proposed system PSOM2 is sub-

stantially improved work in terms of effectiveness and

scalability of the LOMPT ontology matching system.

The drawback of these systems can be summarized as fol-

lows. (i) The partitioning techniques used are either naive or

dependent on a specific language such asRDF, except LOMPT.

PSOM2—partitioning-based scalable ontology matching using MapReduce 2011

(ii) All these systems, except COMA??, involve a - process

that consumes a lot of time to identify the set of anchors,

whereas COMA?? uses a very simple approach, leads to less

accuracy. Due to these drawbacks, various matching systems

proposeddifferent strategies for achieving scalability,which are

briefly outlined in the following subsection.

2.2 Other large scale ontology matching systems

To handle large scale ontologies, QOM (Quick Ontology

Matching) [14, 15] was proposed, where the matching

space is reduced by pruning dissimilar entity pairs in the

initial stage by a matcher that needs less computational

cost. RiMoM [17] is a scalable self-tuning system that

selects the set of matchers dynamically based on the input

ontology characteristics. For example, the input ontology

has predominant linguistic characteristics and the numbers

of structural property and instances available are very less.

In the RiMoM, only the linguistic matchers are deployed to

discover the alignments rather than a default set of

matchers. COMA?? reduces the computation time by

reusing the already available alignments, if any. Giorgos

et al [25] used a light-weight linguistic matcher called

I-Sub based on edit-distance measure [26] to calculate

similarity between the large ontology with less computation

time. LogMap [27] is a scalable ontology matching system

with a built-in ontology reasoner. The input ontologies are

linguistically and structurally indexed using a highly opti-

mized data structure. These processed data structures are

used to extract sets of anchors. LogMap involves an itera-

tive process that uses these sets of anchors and changes

between alignment discovery and repair. To identify and

correct the misalignments, a highly scalable ontology rea-

soner and greedy diagnosis algorithm are used.

The drawbacks of these systems can be summarized as

follows. (i) The system that aims at scalability, by reducing

the match space or employing a light-weight matcher, will

have a considerable reduction in the accuracy. (ii) Despite

dynamic selection of matchers, the self-tuning system

needs to process the entire ontology, leading to larger

execution time. The decrease in large computation time

without compromising on the accuracy can be achieved by

the modern parallelism paradigm: MapReduce. The

MapReduce-based ontology matching systems are dis-

cussed in the following subsection.

2.3 MapReduce-based ontology matching systems

Uthayasanker and Doshi [28] proposed a MapReduce

framework for partition-based ontology matching. This

system utilizes the anchor-based ontology partitioning from

TaxoMap matching system. Clusters from different input

ontologies are said to form alignment sub-problems if there

exist a significant number of anchors between those clusters.

These alignment sub-problems are matched by the MapRe-

duce framework in parallel to produce the alignments for

each alignment sub-problem. Finally, a post-processing

method such as crisscross and redundancy check is carried

out to eliminate duplicate and inconsistent alignments. The

two drawbacks of this system are as follows. (i) It executes

coarse-granularity parallelism since inputs to the MapRe-

duce framework are coarse-grained data, i.e., clusters rather

than fine-grained data, i.e., entities. (ii) The time required for

identification of the anchor set is the - process that consumes

maximum time in partition-based matching system. Instead,

the MapReduce framework is applied for finding alignments

between the alignment sub-problems, which will not achieve

good scalability.

Zhang et al [29] proposed an ontology matching system

called V-Doc? using MapReduce framework. In this sys-

tem, a virtual document is constructed for each class,

property and instance of the ontology using four MapRe-

duce processes. Initially, two MapReduce processes are

used to construct virtual documents of the entities and the

blank nodes. Later, two MapReduce processes are used to

exchange descriptions with the neighbour entities. Finally,

another MapReduce process deploys a linguistic-weight-

based similarity measure in the corresponding reducer,

which uses these constructed virtual documents to find the

alignments. Zhu and Hu [30] used the afore-discussed

MapReduce-based virtual document construction for

matching food metadata ontologies. These systems achieve

remarkable reduction in execution time but there is con-

siderable loss in the accuracy of the system.

In this paper, by the proposed system PSOM2, the draw-

backs of the existing partition-based and MapReduce-based

matching systems are handled. A new intra-ontology simi-

larity measure is proposed and a hierarchical clustering algo-

rithm that is independent of language is deployed, unlike other

matching system such as Falcon and TaxoMap. Also, a new

light-weight linguistic matcher called EI-Sub is designed to

scale down the time consumed for anchor identification.

Unlike the existing partitioned-based systems, which do

not incorporate any advanced parallelism technique, and

the existing MapReduce-based system, which does not

either deploy fine-grain parallelism or compromise on

effectiveness of the system, a novel MapReduce-based EI-

Sub has been proposed. It works at fine-grained level, i.e.,

at each entity pair to further reduce the computation time of

anchor identification without compromising on the effec-

tiveness of the proposed system, leading to larger

improvement in the efficiency.

3. Overview of the PSOM2

The design of the proposed ontology matching system

PSOM2 is illustrated in figure 2. Inputs to the algorithm are

the two large ontologies to be matched. The approach first

2012 B Sathiya et al

pre-processes the OWL (Web Ontology Language)/RDF

(Resource Description Framework) ontology using the

JENA library and converts it into RDF graph ontology. The

intra-ontology similarity between the entities (i.e., classes

and properties) of the RDF graph is calculated using the

new neighbour-based intra-ontology similarity measure.

The intra-ontology similarity values greater than the

threshold (c) are stored in the hash table. The partition

algorithm decomposes the input ontologies into sets of

clusters in parallel using the single-node-thread-based

parallelization technique. Similar clusters across the input

ontologies, called matchable cluster pairs, are discovered

based on the anchor distribution. These anchors are iden-

tified based on the proposed parallelized light-weight string

matcher EI-Sub using the MapReduce framework. These

cluster pairs are to be further matched by two matchers:

V-DOC [31] and GMO [32], for identifying the alignments.

In general, the detailed design of the large scale ontology

matching system can be divided into three major phases as

follows: (i) neighbour-based intra-ontology similarity

computation and parallelized partitioning of the input

ontologies, (ii) identifying matchable cluster pairs using

anchor distribution and (iii) entity level matching of

matchable cluster pairs to identify alignments. Each phase

is discussed in detail in the following sections.

4. Partitioning ontologies

In this section, the proposed neighbour-based intra-ontol-

ogy similarity measure is described. Then, the partitioning

algorithm based on the proposed neighbour-based intra-

ontology similarity measure to identify clusters is dis-

cussed. The two input ontologies are partitioned in parallel

using single-node-thread-based parallelism. The MapRe-

duce framework is not used here, since the overhead time of

MapReduce will be more than the time required to partition

the ontology.

4.1 Neighbour-based intra-ontology similarity

computation

Neighbour-based intra-ontology similarity between entities

of the ontology is defined based on how closely the entities

are placed in the hierarchies of the ontology. In general, the

neighbour of an entity in an ontology graph is represented

by its descendants, ancestors, siblings, etc. In LOMPT,

immediate parent, immediate children and siblings are

considered as neighbours. However, in horizontal ontolo-

gies, i.e., the ontologies with a large number of children, the

neighbour of entities considering siblings are outsized,

Figure 2. Design of the novel ontology matching system: PSOM2.

PSOM2—partitioning-based scalable ontology matching using MapReduce 2013

leading to more computations. Hence in this system, the

considered neighbours of an entity are immediate descen-

dants (children), immediate ancestors (parents) and the

entity itself. Let e be an entity in the graph and E be the set

of entities in graph such that e [E; then, the neighbour of

e, denoted by N (e), is defined as follows:

N eð Þ ¼ w 2 Ej w 2 parents eð Þð Þ or w 2 children eð Þð Þf gU ef g:
ð1Þ

The proposed intra-ontology similarity measure based on

the afore-defined neighbour is derived from the Dice’s

coefficient [33], which is used to find similarity between

sets. Let ei, ej [E; the intra-ontology similarity, denoted by

d (ei, ej), is defined as follows:

dðei; ejÞ ¼
jNðeiÞ \ NðejÞj

ð jN(eiÞj + jN(ejÞjÞ=2
ð2Þ

where N(e) is defined based on Eq. (1). The proposed

measure is a normalized and symmetry similarity measure,

i.e., 0 B d(ei, ej) B 1, and the following properties hold in

accordance with Euzenat and Shvaiko [34].

Positiveness property: Vei, ej [O, d(ei, ej) C 0.

Maximality property: Vei [O, Vej, z [O, r(ei, ei) C r(ej,

ek)

Symmetry property: Vei, ej [O, d(ei, ej) = d(ej, ei).

When an entity of a partition shares a similar structure

with one of its neighbours, their computed intra-ontology

similarity will be large. In general, (n2–n)/2 entity pairs are

computed for the intra-ontology similarity values. However,

in the proposed system the intra-ontology similarity value is

computed only for the entity pairs that have common

neighbours and hence reduction in computation time.

4.2 Partitioning algorithm

The partitioning algorithm presented in this section is

adopted from the LOMPT system. The partition algorithm

is used to divide the ontology O into sets of small disjoint

clusters o1,o2,…,on (sub-ontologies) based on the intra-

ontology similarity value. The clusters should be formed

such that the set of entities in a cluster should have more

structural closeness (cohesion) and the set of entities across

clusters should have less structural closeness (coupling). In

the following, the agglomerative hierarchical partitioning

algorithm, which is based on the proposed neighbour-based

intra-ontology similarity measure for better cluster quality

and efficiency, is presented. The terminologies defined in

the partitioning algorithm are discussed in the following

subsection.

4.2a Preliminaries

Definition 1: Bond An entity pair whose intra-ontology

similarity value is greater than the threshold c is defined as

a bond. The threshold c is experimentally determined and

the bond is denoted by Bm, which is defined as follows:

Bm ¼ ðei; ej; d ei; ej

� �� �
such that d ei; ej

� �
[c and ei; ejE

ð3Þ

where d(ei, ej) is the intra-ontology similarity between

entities ei, ej [E computed using Eq. (2). These bonds are

stored in entity neighbour similarity hash table called

BONDSET. The entity set and the BONDSET are the

inputs for the partitioning algorithm. The other similarity

values less than c are not considered for partitioning.

Definition 2: Coupling Let us consider two clusters: c1
containing n1 entities and c2 containing n2 entities. The

coupling between these clusters is the average of the intra-

ontology similarity between the entities of the clusters c1
and c2. It is defined as follows:

coupling ðc1; c2Þ ¼
Pn1

i¼1

Pn2
j¼1 dðe1i; e2jÞ

n1

�� ��þ n2

�� �� ;

e1i 2 e1 ; e2j 2 e2

ð4Þ

where d(e1i, e2j) is the intra-ontology similarity between

entities computed using Eq. (2), e1 and e2 are the sets of

entities of clusters c1 and c2, and e1i and e2j are entities

belonging to e1 and e2. This measure is used to decide

whether two clusters should be merged or not in the par-

titioning process based on the threshold CutOff.

Definition 3: Cluster_Cohesion Cluster_Cohesion mea-

sures the cohesion of a cluster, i.e., how the entities in a

cluster are structurally close. This measure is computed by

the average of intra-ontology similarity value of all the

bonds within a cluster. Let c be a cluster, ei and ej be the

entities in cluster c and n be the number of entities in

cluster c. The Cluster_Cohesion is formally defined as

follows:

Cluster Cohesion ðcÞ ¼
Pn

i¼1

Pn
j¼1 dðei; ejÞ
n

: ð5Þ

Definition 4: ClusterSet_Cohesion The ClusterSet_Co-

hesion measures the cohesion of the cluster set produced

by the partitioning algorithm. It is used as the one of the

terminating conditions for the partitioning algorithm. If

the cohesion of the cluster set is less than the threshold

b, the partitioning algorithm should terminate. Other-

wise, less-quality cluster sets are produced, i.e., less

cohesion and more coupling between the clusters. This

measure is computed by the average of all the Clus-

ter_Cohesion within the cluster set. Let C be a set of

clusters with K number of clusters, ci be the ith cluster in

the cluster set C and N be the number of entities in the

cluster set C. The ClusterSet_Cohesion is formally

defined as follows:

2014 B Sathiya et al

ClusterSet Cohesion ¼
Pk

i¼1 Cluster Cohesion ðciÞ
N

: ð6Þ

4.2b Partitioning algorithm: The partitioning algorithm

presented is an agglomerative (i.e., bottom up) hierarchical

algorithm derived from the AHSCAN (Agglomerative

Hierarchical Structure Clustering Algorithm for Networks)

[24] approach, which is a very scalable algorithm in the

area of network partitioning. The main differences between

the AHSCAN and the proposed partitioning algorithm are

as follows. (i) In AHSCAN the intra-ontology similarity is

scaled by the geometric mean, whereas, in the proposed

system, arithmetic mean is used for two reasons. First,

geometric mean is used when the values are dependent on

each other. However, the neighbours of the entity pairs are

independent of each other and hence arithmetic mean is the

suitable choice. Secondly, arithmetic mean is chosen to

reduce the computation time since the geometric mean

involves more costlier computational operations than the

arithmetic mean. (ii) The cohesion measure of the AHS-

CAN is calculated based on the random connection

between the nodes of the network. However, ontology does

not have random connections and hence a new cohesion

measure is proposed.

As shown in figure 3, the proposed partitioning

algorithm proceeds as follows. Initially each entity of

the ontology forms a cluster. These initial clusters are

stored in set CS and Temp_CS. Each cluster pair is

calculated for the coupling value. If the coupling value

is greater than the threshold CutOff, the cluster pair is

merged to form a single cluster. This process is repeated

for all possible cluster pairs. Upon merging, the bond

whose entity pairs are in the same cluster should be

removed from the hash table. The new cluster set is

stored in Temp_CS and checked for the ClusterSet_Co-

hesion. If the ClusterSet_Cohesion is less than the

threshold b the algorithm should terminate. Else the

algorithm should repeat these steps with Temp_CS as

the initial cluster set. The other three terminating

conditions are the following: (i) all the entities are

merged into one single cluster, (ii) there is no change in

the cluster set between two iterations and (iii) there is no

sufficient coupling between the clusters to do merging,

i.e., no bond is available in the hash table, which is

checked by the NoMoreMerge() function. Since the

coupling between the clusters decreases as the size of

clusters increases, the CutOff should be decreased

accordingly.

Each of the two input ontologies are partitioned into

sets of clusters, i.e., sub-ontologies using the afore-

discussed partitioning algorithm. Next, each cluster pairs

across the input ontologies are checked for similarity

based on anchor distribution using the proposed MapRe-

duce-based EI-Sub, which is discussed in the following

section in detail.

5. Cluster matching

In the following section, the proposed light-weight lin-

guistic matcher: EI-Sub and the MapReduce-based EI-Sub

are discussed in detail. Then, the methodology used to

discover matchable cluster pairs using anchors is presented.

5.1 Anchor discovery using EI-Sub

The entity pairs with high linguistic similarity are termed as

anchors, which are primarily discovered for finding

matchable cluster pairs. Only the entities between these

matchable cluster pairs are matched rather than matching

the Cartesian product of all entities of the two large input

ontologies [9], leading to tremendous reduction in match

space. However the time required for finding the set of

anchors is huge, since comparison of nm number of entity

pairs is needed, where n and m are the number of entities in

the input ontologies. Consequently, there is a strong

necessity for an efficient linguistic matcher to find the

anchors. Hence in the proposed system, an efficient light-

weight linguistic similarity matcher: EI-Sub (Efficient

I-Sub) has been proposed to identify the anchor that is

derived from I-Sub matcher. The existing linguistic

matcher in the partitioned-based ontology matching system

such as I-Sub [25] and SI-Sub [23] considers both com-

monality and difference between strings to compute the

similarity value. However, the proposed EI-Sub considers

only the sub-string commonality for efficiency. The dif-

ferences between the strings are not considered for simi-

larity computation as discussed by Giorgos et al [25], who

stated that ‘‘difference should play a less important role on

the computation of the overall similarity’’.

The linguistic descriptions such as entity’s local name,

label and comment are used for finding the similarity. The

proposed measure is defined as the common substring

length normalized to the input strings length. The process

repeatedly finds and removes the longest common sub-

string in the two strings compared, up to a minimum length.

The minimum substring length is set to 2. The sum of the

lengths of these substrings is then scaled to the length of the

strings. Let p and q be two strings; the similarity between p

and q is defined as follows:

EI - Sub(p, q) =
2
P

i length ðmaxComSubStringiÞ
length ðpÞ þ length ðqÞ ð7Þ

For example, the two strings ‘numberofpages’ and ‘num-

pages’ have the longest common sub-string ‘pages’. After it

is removed, the two new strings are ‘numberof’ and ‘num’.

In the second iteration the sub-string ‘num’ is removed,

leaving ‘berof’ and ‘ ’. The total length of the common sub-

strings is now 8. Hence the EI-Sub value is 0.76 (16/21). If

the similarity between two entities descriptions is greater

than the threshold l (experimentally determined), then

PSOM2—partitioning-based scalable ontology matching using MapReduce 2015

these two entities are termed as anchors. The anchors are

also considered as parts of the alignments.

Even though the time required for anchor identification

across the entire two large ontologies is the maximum

among all processes in the matching system, it is justified

with the following claims. (i) As only matchable cluster

pairs are processed for alignment identification, a consid-

erable number of alignments are missed. These missed

alignments can be compensated by the anchors since the

anchors are identified from the entire input ontologies. (ii)

According to the OAEI 2007 report, the light-weight lin-

guistic matchers are capable of producing 50% of the total

alignments. Hence, the anchors contribute in identifying a

significant number of alignments.

5.2 Anchor discovery using MapReduce-based EI-

Sub

Even though the proposed EI-Sub has reduced the com-

putational time of anchor discovery considerably, it is the -

process that consumes the maximum time. To overcome

this, a new MapReduce-based EI-Sub matcher where

mapper and reducer functions of the MapReduce frame-

work are adopted to deploy the anchor discovery process in

distributed and parallel fashions has been proposed. Fig-

ure 4 depicts an example of dataflow for anchor finding in

MapReduce. The input data to the MapReduce framework

are represented as files, where each line (record) consists of

a key–value pair. The number of such pairs is nm where

n and m are, respectively, the number of entities in the first

and second input ontologies. The key is represented as

\uri1i, uri2j[where uri1i is the URI (Unique Resource

Identifier) of the ith entity in the first input ontology and

uri2j is the URI of the jth entity in the second input ontol-

ogy. This key is used as the unique identifier for the entity

pair. The value is represented as\Desc1i, Desc2j[where

Desc1i is the linguistic description of the ith entity in the

first input ontology and Desc2j is the linguistic description

of the jth entity in the second input ontology. The linguistic

description consists of three different elements such as local

name, label and comment of an entity.

Algorithm: Par��oning
Input: E is the set of en��es of the input ontology. H is the hash table which contains the
bonds (intra ontology similarity values)

Output: A set of clusters C

for each en�ty ei in E
Cluster ci = Create_cluster(ei)
CS = CS U {ci}

end for
Temp_CS = CS

While (CS.size>1) // Termina�on Condi�on 1
for each cluster ci in CS

for each cluster cj in CS such that j != i
if(coupling(ci,cj) > CutOff)

temp_c = merge(ci, cj)
Temp_CS = {Temp_CS - {ci,cj}} U {temp_c}

end if
end for

end for
if (CS.size != Temp_CS.size)

Temp_CS_ClusterSet_Cohesion = ClusterSet_Cohesion(Temp_CS)
if (Temp_CS_ClusterSet_Cohesion <β) then

break // Termina�on Condi�on 2
else

CS = Temp_CS
end if

else break // Termina�on Condi�on 3
end if
If NoMoreMerge() then

Break // Termina�on Condi�on 4
end if
Update CutOff

end while
Return CS

Figure 3. Pseudo-code for partitioning algorithm.

2016 B Sathiya et al

The logic behind concatenating three different linguistic

information into the same key–value pair is as follows.

Creating the input data file with nm records requires nm File

Write operations. However, if we assume each three lin-

guistic elements of an entity pair to be in separate key–

value pairs, then 3 nm File Write operations are needed to

create the input data file, which will lead to an extra pre-

processing time. Henceforth, three linguistic elements are

concatenated into a single key–value pair, which can be

split by a mapper function in parallel fashion. Hence, for

each record {\uri1i, uri2j[–\Desc1i, Desc2j[} the map-

per produces three key–value pairs as follows: {\uri1i,

uri2j[–\lname1i, lname2j[,\uri1i,uri2j[–\label1i,

label2j[,\uri1i, uri2j[–\comment1i, comment2j[}. All

the mappers together process nm input records and produce

3 nm output records. After mapping, the shuffler partitions

all these records with the same key to the same reducer.

Then, the reducer function where the EI-Sub matcher is

deployed calculates the linguistic similarity between the

entity pairs’ local name, label and comment. The highest

similarity among the entity pair’s local name, label and

comment is assigned as the similarity value of this entity

pair. Reducer function qualifies the entity pair with simi-

larity value greater than the threshold l as the output record

(anchor) while the other entity pairs are ignored. Hence the

number of output records from the MapReduce framework

is less than nm records. The output records are represented

as key–value pairs where the key is the unique entity pair id

(\uri1i, uri2j[) and value is the similarity value of the

entity pair. These output records from the MapReduce

framework are the sets of anchors.

5.3 Finding matchable cluster pairs

The matchable cluster pairs are identified using the anchors

discovered. Two clusters are said to be a matchable cluster

pair if more anchors are found between them. The basic

idea is the following: more alignments can be identified

between the two clusters if the linguistic similarity between

the two clusters is high. Let the input ontologies be repre-

sented by O1 and O2; CS1 is the set of clusters of O1, nc1 is

the number of clusters in CS1, CS2 is the set of clusters of

O2 and nc2 is the number of clusters in CS2. The measure to

identify the matchable cluster pairs is defined [13] as fol-

lows:

The function anchor (c1i,c2j) returns the number of

anchors between the cluster c1i and c2j where c1i [CS1
and c2j [CS2. This measure is defined as the ratio of the

number of anchors shared between the two clusters to the

total number of anchors of both the clusters. The cluster

pairs whose value is greater than the threshold g(g [[0,1])

are termed as matchable cluster pairs. Based on Falcon,

the g is assigned a value of 0.075. The number of

matchable cluster pairs will be less than the number of all

possible cluster pairs (|CS1||CS2|) and hence the cost of

computation for further alignment discovery would be

largely reduced.

Figure 4. Dataflow example for anchor finding.

pm simðc1i; c2jÞ ¼
Pnc1

i¼1

Pnc2
j¼1 2� anchorðc1i; c2jÞP

c1k2CS1 anchorðc1k; c2jÞ þ
P

c2k2CS2 anchorðc1i; c2kÞ
: ð8Þ

PSOM2—partitioning-based scalable ontology matching using MapReduce 2017

6. Alignment discovery

The set of matchable cluster pairs obtained from the afore-

discussed phase can be matched strenuously by a set of

available matchers to discover the alignments. The pro-

posed system, similar to Falcon [13], uses a powerful lin-

guistic matcher: V-Doc [31] and a matcher based on

incremental structure: GMO [32] in a sequential workflow,

i.e., the output alignment of the V-Doc is given as input for

GMO matcher. Both of these matchers are computationally

intensive or heavy-weight matchers, which are used to find

the alignments across the matchable cluster pairs. A brief

outline of these matchers is given here.

The V-Doc matcher constructs the virtual document for

each entity of the cluster from the matchable cluster pairs.

The virtual document consists of details like local name,

label and comments of the entity. The linguistic informa-

tion of the neighbourhoods that is obtained from the RDF

triple structure is also included in the virtual document to

emphasize the correct meaning of the entity. These col-

lected details are converted into weighted words. The

similarities between the virtual documents of the entity

pairs are identified using the vector space technique: TF/

IDF [35, 36].

The GMO is an incremental matcher, which discovers

new alignment based on the alignment form the V-Doc

matcher. In GMO, the similarity between the entity pairs is

computed by recursively broadcasting their structural sim-

ilarity across the ontology, which is represented as an RDF

Bipartite graph [37]. The set of alignments from the V-Doc

and GMO matcher along with the anchor discovered should

be heuristically aggregated to obtain the final alignment set.

A detailed description on similarity aggregation strategy

can be found for Falcon.

7. Experimental results

The proposed matching system is evaluated with varied size

ontologies to prove the scalability. The ontology pairs used for

the evaluation along with the number of classes are shown in

table 1. The first two ontology pairs that are small in size are

used for evaluating the partitioning algorithm. These two

synthetic ontology pairs can be downloaded from the website:

http://ws.nju.edu.cn/falcon-ao/. The next three very large

ontology pairs are real world ontology pairs, which can be

downloaded along with the reference alignments from the

OAEI (Ontology Alignment Evaluation Initiative) website:

http://oaei.ontologymatching.org/2013/. These ontology

pairs: FMA–NCI, FMA–SNOMED (40%) and NCI–

SNOMED (40%) are recognized as large ontology pairs by the

OAEI. As depicted in table 1, (knm) number of computations

are neededwhere, n andm are the number of entities in the two

input ontologies and k is the number of matchers used in the

ontology matching system. The last column of table 1 indi-

cates the enormous number of computations required and this

multiplies as k increases. Hence these ontology pairs are

declared to be large due to the large number of concepts and

very huge number of matching computations required for any

basic ontology matching system.

Although numerous ontology pairs exist in the literature

(Framenet, Yago knowledge base, UMLS, etc.), the metrics

used for evaluating effectiveness such as precision, recall

and F-Measure can be calculated only for the ontology

pairs that have reference alignment. Since our proposed

system aims at proving the efficiency with good effec-

tiveness we have chosen these three large ontology pairs,

which have reference alignments for evaluation. According

to OAEI 2010 report [38], only 50% of the ontology

matching systems are capable of matching the large

ontologies within 1 h. The ontology matching systems also

have a heavy memory requirement to match these large

ontologies. Hence there is a need for better scalable

ontology matching algorithm. The system is implemented

in Java with the 64-bit, Java 1.7 compiler. All the experi-

ments are conducted on an Intel core i7 processor 3.4 GHz

desktop machine with 8 GB RAM memory and Windows 7

professional (SP1), 64-bit Operating System.

This section can be divided into the following subsections.

(i) In subsection 7.1 the experiments carried out for the new

intra-ontology similarity measure and the partitioning algo-

rithm are discussed. (ii) In subsection 7.2 the experiments

performed for the new linguistic matcher EI-Sub and the

MapReduce-based EI-Sub are presented and (iii) experi-

ments on the new PSOM2 ontology matching system’s F-

Measure and execution time are discussed in subsection 7.3.

7.1 Experiments on ontology partitioning

The ontology pairs used for the evaluation of the cluster

sets are Russia1–Russia2 and TourismA–TourismB. To

Table 1. List of ontology pairs and corresponding number of classes.

Ontology pair Number of classes Number of classes Number of computations (assume k = 1)

Russia1–Russia2 Russia1 – 151 Russia2 – 162 24,462

TourismA–TourismB TourismA – 340 TourismB – 474 161,160

FMA–NCI FMA – 78,989 NCI – 66,724 5,270,462,036

FMA–SNOMED (40%) FMA – 78,989 SNOMED (40%) – 122,464 9,673,308,896

NCI–SNOMED (40%) NCI – 66, 724 SNOMED (40%) – 122,464 8,171,287,936

2018 B Sathiya et al

http://ws.nju.edu.cn/falcon-ao/
http://oaei.ontologymatching.org/2013/

evaluate the cluster sets, reference clusters (correct clusters)

are needed. Among the datasets mentioned in table 1, only

the Russia1–Russia2 and TourismA–TourismB ontology

pairs have reference clusters. Hence, even though the sizes

of these ontologies are small, they are used for evaluating

clusters. Moreover, in this section the accuracy of the new

intra-ontology similarity measure and the partitioning

algorithm is checked and not the scalability.

The evaluation metrics used in this section are execution

time and entropy. The entropy is a standard cluster metric

to measure the randomness of the clusters. Less the entropy

of a cluster set, more the quality of the cluster set. A

detailed description of this measure can be obtained for the

Falcon [13]. As mentioned in section 4.2a, the entity pair

whose intra-structural similarity value is greater than a

threshold c is defined as a bond. This threshold should be

assigned the value for which the minimum entropy is

achieved. As shown in figure 5, the ideal value of c is 0.5

since it achieves the minimum entropy value.

In the first experiment, the efficiency achieved by the

new neighbour-based intra-ontology similarity computation

is depicted in figure 6 through the computation time. As

shown in figure 6, the time required for the new measure is

less compared with the existing measures for the following

reasons. (i) The scaling factor of the similarity measure is

the arithmetic mean rather than the geometric mean used in

the AHSCAN’s similarity measure method. (ii) The

LOMPT’s measures requires more time, since it also con-

siders siblings for the neighbourhood.

In the second experiment, the entropy of the clusters

formed by the partitioning algorithm using the new

neighbour-based intra-ontology similarity is measured. The

result of COMA is quoted from the experimental results for

Falcon. The reasons to choose these systems are as follows.

(i) Falcon is recognized as one of the best ontology

matching systems in the OAEI 2007 report. (ii) COMA is a

flexible matching system with a large number of inbuilt

matchers. COMA was also considered in the OAEI work-

shop and yielded good results. (iii) Similar partitioning

algorithms are used in LOMPT and PSOM2. As shown in

figure 7, the proposed system’s partitioning algorithm

yields less entropy. Specifically, it achieves, on an average,

31% decrease in entropy as compared with the Falcon,

COMA and LOMPT. Even though the LOMPT and PSOM2

deploy similar partitioning algorithms, the entropy of

PSOM2 is reduced by 16%. This reduction is achieved due

to the effective evaluation of the intra-ontology similarity

through the new measure.

The third experiment demonstrates the need for partition-

based ontology matching system. The PSOM2 is modified

to match the input ontologies without partitioning. As

shown in figure 8, the experimental results on execution

0

0.05

0.1

0.15

0.2

0.25

0.3 0.4 0.45 0.5 0.55 0.6 0.7

En
tr

op
y

Intra Ontology Similarity Threshold γ

TourismA TourismB Russia1 Russia2

Figure 5. Variation of entropy of partitioning algorithm of

PSOM2 with the threshold c.

48.4 40.6

113.8116
90.48

234

31.6 28.44

74.12

0

50

100

150

200

250

FMA NCI SNOMED (40%)

Ex
ec

u�
on

�m
e

(s
)

Ontologies

AHSCAN LOMPT PSOM2

Figure 6. Execution time of new neighbour-based intra-ontology

similarity measure.

0.
16

0.
16 0.

18 0.
21

0.
3

0.
37

0.
28

0.
26

0.
15

0.
14

5

0.
15

8 0.
19

0.
09

7 0.
13

2

0.
13

4 0.
17

8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TourismA TourismB Russia1 Russia2

En
tr

op
y

Ontology

Falcon COMA LOMPT PSOM²

Figure 7. Entropy of partitioning algorithms of Falcon, COMA,

LOMPT and PSOM2.

6

2

19

11

0

5

10

15

20

ToursimAB Russia12

Ex
ec

u�
on

 �
m

e
(s

)

Ontology Pair

PSOM²
PSOM² without par��oning

0.791
0.78

0.817
0.83

0.74

0.76

0.78

0.8

0.82

0.84

ToursimAB Russia12

F-
M

ea
su

re

Ontology Pair

PSOM²
PSOM² without par��oning

Figure 8. Execution time and F-Measure of PSOM2 and PSOM2

without partitioning.

PSOM2—partitioning-based scalable ontology matching using MapReduce 2019

time proved the efficiency achieved by PSOM2 even though

the accuracy of the PSOM2 is marginally compromised

since Cartesian product of the entity pairs is not evaluated

for matching. The execution time required for PSOM2

without partitioning is many folds higher than the PSOM2

with partitioning. In addition, memory insufficiency prob-

lem occurred for the other large ontology pairs such as

FMA–NCI, FMA–SNOMED (40%) and NCI–SNOMED

(40%). Hence, the usage of partition-based ontology

matching is twofold: (i) increased efficiency by reduced

execution time and (ii) decrease in memory requirement.

7.2 Experiments on anchor identification

The set of anchors discovered by the new light-weight

linguistic matcher: EI-Sub is evaluated for efficiency and

effectiveness. The ontology pairs used for evaluation are

FMA–NCI, FMA–SNOMED (40%) and NCI–SNOMED

(40%). The anchor threshold l is experimentally deter-

mined by assigning the value that yields the maximum F-

Measure (figure 9). F-Measure is considered for two rea-

sons. (i) Anchors are also part of the final alignments.

Hence, correct choice of l yields better anchors and hence

better alignments and (ii) the correct identification of the

matchable cluster pairs are based on the anchors that result

in good accuracy of the system. Based on the experiment,

the threshold l is assigned a value of 0.75. First, the time

required to identify the anchors based on EI-Sub, I-Sub and

SI-Sub is measured (table 2). On an average, the time

reduction obtained by the EI-Sub over I-Sub is 13.5%. It is

also noted that SI-Sub has less execution time than EI-Sub

since it uses a very naive linguistic similarity measure that

is less effective as evident by the following experiment.

The matchable cluster pairs are identified based on the

anchors discovered. Only these matchable cluster pairs are

processed to obtain the final alignment set. Hence, the

correct choice of matchable cluster pairs is the important

task. This is made possible only if the sets of both cluster

and anchors obtained are of good quality. Hence, the time

required to process the matchable cluster pairs is the metric

to evaluate both the novel neighbour-based partitioning

algorithm and the EI-Sub. Less time to match indicates

better clustering and more accurate match between clusters,

leading to significant reduction in execution time.

The time required by PSOM2 is less compared with the

Falcon and LOMPT systems (figure 10). The inference

from the experiment is as follows. (i) Even though Falcon

uses a more robust linguistic matcher to identify anchors,

more time is required to process the matchable cluster pairs

since the clusters formed have more randomness. When the

clusters are random, identifying the correct choice of

matchable cluster pairs is difficult. (ii) LOMPT and PSOM2

have good entropy measure, i.e., both produce good quality

clusters. However, the time required to process the

matchable cluster pairs is more in LOMPT due to the less-

effective naive SI-Sub matcher. The anchors discovered by

SI-Sub fail to identify correct matchable cluster pairs,

leading to more execution time. (iii) Since PSOM2 pro-

duces good quality clusters and anchors set, the time

required to process the matchable cluster pairs is the least.

In spite of the efficiency achieved in intra-ontology

similarity computation and anchor finding in PSOM2, the

system still spends huge time in anchor finding. Hence to

make the system more scalable, a new MapReduce-based

EI-Sub matcher is proposed to reduce the time taken for

anchor finding. To implement the MapReduce

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86

0.6 0.65 0.7 0.75 0.8 0.85

F-
M

ea
su

re

Anchor Threshold μ

FMA - NCI

FMA - SNOMED (40%)

NCI - SNOMED (40%)

Figure 9. Variation of F-Measure based on the anchor threshold

l.

Table 2. Execution time (s) of Falcon, LOMPT and PSOM2 for

anchor identification.

FMA–

NCI

FMA–SNOMED

(40%)

NCI–SNOMED

(40%)

(Falcon)

I-Sub

44,214 148,392 106,448

(LOMPT)

SI-Sub

35,623 117,267 84,413

(PSOM2)

EI-Sub

39,919 125,192 90,118

6820

6248
5311

1744
2016

1724

986 1056
903

850

1700

3400

6800

FMA - NCI FMA – SNOMED (40%) NCI - SNOMED (40%)

Ex
ec

u�
on

�m
e

(s
)

Ontology Pair

Falcon LOMPT PSOM²

Figure 10. Time required to match the matchable cluster pairs.

2020 B Sathiya et al

environment, Hadoop clusters using Amazon EC2 clusters

with 10 nodes are set up.

The percentage of reduced execution time achieved by

MapReduce-based EI-Sub with 10 nodes over the EI-Sub

(figure 11) for varying size ontology pairs are (i) 51.5%

reduction for FMA–NCI, (ii) 57.46% reduction for FMA–

SNOMED (40%) and (iii) 54.7% reduction for NCI–

SNOMED (40%). The new PSOM2 achieves large reduc-

tion in anchor finding time, leading to a more scalable

system. It is also evident from the results that, as the size of

the ontology decreases, the reduction in execution time also

decrease. This is due to the fact that for smaller datasets the

overhead time is more than the time reduced by parallelism.

To measure the efficiency achieved by the parallelism,

the speedup metric [29] is used. Speedup is the ratio of the

execution time without parallelism to execution time with

parallelism. The speedup achieved by PSOM2 is shown in

figure 12. The achieved speedup increases as the number of

nodes increases. Hence, the proposed system PSOM2 can

achieve better reduction in anchor discovery time as the

number of nodes deployed increases.

7.3 Experiments on precision, recall, F-Measure

and execution time

The main objective of the new ontology matching system:

PSOM2 is to achieve better scalability by reduced execution

time with good accuracy. The ontology pairs used for

evaluation are FMA–NCI, FMA–SNOMED (40%) and

NCI–SNOMED (40%). PSOM2 is evaluated with the met-

rics like precision, recall, F-Measure and execution time.

The precision, recall and F-Measure are defined as follows:

precision ¼ A \ Rj j= Aj j ð9Þ

Recall ¼ A \ Rj j= Rj j ð10Þ

F � Measure ¼ ð2ðprecision � recallÞÞ
ðprecision þ recallÞ ð11Þ

where A is the set of alignments obtained by the PSOM2

and R is the set of reference alignments. Inferences

obtained for the experiments on precision (figure 13), recall

(figure 14) and F-Measure (figure 15) of the matching

systems are as follows. (i) PSOM2 achieves better cor-

rectness of the alignments compared with the LOMPT

system. Even though both PSOM2 and LOMPT use the

same partitioning algorithm, more precision is achieved in

PSOM2 due to the improved effectiveness of the new intra-

ontology similarity measure and EI-Sub. (ii) However,

PSOM2 makes a small marginal compromise on the pre-

cision compared with the Falcon. Falcon uses the more

robust, comparatively time-consuming linguistic matcher

I-Sub to identify anchors, which also contributes to the final

alignment. Experiments on the effectiveness of the

35
,9

63

31
,2

72

26
,7

28

22
,8

44

19
,3

60

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000

2 4 6 8 10

Ex
ec

u�
on

Ti
m

e
(s

)

Nodes

FMA – NCI

11
17

79

93
93

2

78
27

6

64
96

0

53
24

6

0

20000

40000

60000

80000

100000

120000

2 4 6 8 10

Ex
ec

u�
on

Ti
m

e
(s

)

Nodes

FMA - SNOMED (40%)

80
82

3

68
78

5

58
79

3

49
40

4

40
83

0

600

20600

40600

60600

80600

100600

2 4 6 8 10

Ex
ec

u�
on

�m
e

(s
)

Nodes

NCI - SNOMED (40%)

Figure 11. Execution time for anchor identification by EI-Sub using MapReduce.

PSOM2—partitioning-based scalable ontology matching using MapReduce 2021

matching systems depicts that the PSOM2 achieves better

effectiveness (F-Measure) than LOMPT and almost equal

effectiveness as that from Falcon.

Finally, the execution times of the matching systems for

producing the final alignments are measured (table 3). The

results obtained are as follows. (i) On an average, 58.8% of

the execution time is reduced as compared with the Falcon.

Specifically, 61.7% of the execution time is reduced as

compared with the Falcon for NCI–SNOMED (40%)

ontology pair. (ii) Compared with LOMPT, the execution

time is reduced by 50.3%. Particularly, for NCI–SNOMED

(40%) ontology pair, 55.4% reduction in execution time is

achieved. It is evident from the results that PSOM2

achieves better efficiency then the existing ontology

matching systems: Falcon and LOMPT. It is also noted that

the efficiency of PSOM2 will increase as the size of the

input ontology increases.

1.
11 1.

28

1.
49

1.
75

2.
06

1.
12

1.
33

1.
6

1.
93

2.
35

1.
11

1.
31

1.
53

1.
82

2.
21

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

2 4 6 8 10

Sp
ee

du
p

Nodes

FMA - NCI FMA – SNOMED (40%) NCI - SNOMED (40%)

Figure 12. Speedup of EI-Sub using MapReduce.

0.84
0.86 0.86

0.79 0.79
0.820.83 0.84 0.85

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FMA - NCI FMA – SNOMED
(40%)

NCI - SNOMED
(40%)

Pr
ec

is
io

n

Ontology Pairs

Falcon LOMPT PSOM²

Figure 13. Precision of Falcon, LOMPT and PSOM2.

0.807

0.63 0.63

0.76

0.59 0.6

0.804

0.62 0.64

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

FMA - NCI FMA – SNOMED (40%) NCI - SNOMED (40%)

Re
ca

ll

Ontology Pairs

Falcon LOMPT PSOM²

Figure 14. Recall of Falcon, LOMPT and PSOM2.

0.823

0.72 0.727

0.774

0.68 0.693

0.817

0.71
0.73

0.6

0.65

0.7

0.75

0.8

0.85

FMA - NCI FMA – SNOMED
(40%)

NCI - SNOMED (40%)

F-
M

ea
su

re

Ontology Pairs

Falcon LOMPT POSM²

Figure 15. F-Measure of Falcon, LOMPT and PSOM2.

Table 3. Overall execution time (s) of Falcon, LOMPT and

PSOM2.

FMA–

NCI

FMA–SNOMED

(40%)

NCI–SNOMED

(40%)

Falcon 47,745 165,480 135,694

LOMPT 38,896 133,376 116,701

PSOM2 24,200 67,400 52,000

2022 B Sathiya et al

8. Conclusion

In this paper, a new scalable partition-based ontology

matching algorithm called PSOM2 is proposed, which aims

at better efficiency and effectiveness over the existing

matching algorithms. Specifically, a new neighbour-based

intra-ontology similarity measure is proposed to effectively

decompose the large ontologies into sets of small clusters in

parallel. As the quality of the clusters increases, the chance

of similar entity pairs getting matched increases, leading to

increase in effectiveness. To achieve better scalability, the

proposed system tackled the most time-consuming, anchor

finding process. An efficient light-weight linguistic matcher

called EI-Sub is introduced to identify the set of anchors in

less time. Further, a new MapReduce-based EI-Sub

matcher is proposed to discover the anchor in parallel and

distributed ways.

In the future work, neighbour sets of the entities can be

dynamically selected based on the ontology characteristics

to increase the cluster quality. The execution time required

to find anchors can be reduced by random selection of the

entities rather than the Cartesian product of the entities. For

very large ontologies, the processing time required to find

alignments from the matchable cluster pairs can be further

reduced by introducing parallelism through MapReduce

framework.

Acknowledgement

This work was financially supported by Anna University,

Chennai, India, through the Anna Centenary Research

Fellowship.

References

[1] Ding L, Pan R, Finin T, Joshi A, Peng Y and Kolari P 2005

Finding and ranking knowledge on the semantic web. In:

Proceedings of the 4th ISWC 2005, Lecture Notes in Com-

puter Science, vol. 3729, pp. 156–170

[2] Zhang S, Mork P, Bodenreide O and Bernstein P A 2007

Comparing two approaches for aligning representations of

anatomy. Artif. Intell. Med. 39(3): 227–236

[3] Kirsten T, Thor A and Rahm E 2007 Instance-based

matching of large life science ontologies. In: Proceedings of

the Data Integration in the Life Sciences, DILS 2007, Lecture

Notes in Computer Science, vol. 4544, pp. 172–187

[4] Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D,

Seligman L and Wolf C 2009 The role of schema matching

in large enterprises. arXiv preprint arXiv:0909.1771

[5] Avesani P, Giunchiglia F and Yatskevich M 2005 A large

scale taxonomy mapping evaluation. In: Proceedings of

ICSW 2005, Lecture Notes in Computer Science, vol. 3729,

pp. 67–81

[6] Su W, Wang J and Lochovsky F H 2006 Holistic schema

matching for web query interfaces. In: Proceedings of the

International Conference on Extending Database Technol-

ogy, EDBT 2006, Lecture Notes in Computer Science, vol.

3896, pp. 77–94

[7] Shvaiko P and Euzenat J 2013 Ontology matching: state of

the art and future challenges. IEEE Trans. Knowl. Data Eng.

25(1): 158–176

[8] Aguirre L J, Bernardo C G, Eckert K, Euzenat J, Ferrara A,

Hague R W V, Hollink L, et al 2012 Results of the ontology

alignment evaluation initiative 2012. In: Proceedings of the

7th ISWC Workshop on Ontology Matching, pp. 73–115

[9] Bellahsene Z, Bonifati A and Rahm E 2011 Towards large-

scale schema and ontology matching. In: Schema matching

and mapping, New York–Heidelberg: Springer, pp. 3–28

[10] Do H H and Rahm E 2007 Matching large schemas:

approaches and evaluation. J. Inf. Syst. 3(6): 857–885

[11] Hamdi F, Safar B, Reynaud C and Zargayouna H 2009

Alignment-based partitioning of large-scale ontologies. In:

Advances in Knowledge Discovery and Management, Studies

in Computational Intelligence, vol. 292, pp. 251–269

[12] Hanif M S and Aono M 2009 An efficient and scalable

algorithm for segmented alignment of ontologies of arbitrary

size. J. Web Semant. Sci. Serv. Agents WWW 7(4): 344–356

[13] Hu W, Qu Y and Cheng G 2008 Matching large ontologies: a

divide-and-conquer-approach. J. Data Knowl. Eng. 67(1):

140–160

[14] Ehrig M and Steffen S 2004 QOM—quick ontology map-

ping. In: Proceedings of The Semantic Web—ISWC 2004,

pp. 683–697

[15] Peukert E, Berthold H and Rahm E 2010 Rewrite techniques

for performance optimization of schema matching processes.

In: Proceedings of the 13th International Conference on

EDBT 2010, pp. 453–464

[16] Gross A, Hartung M, Kirsten T and Rahm E 2010 On

matching large life science ontologies in parallel. In: Pro-

ceedings of the 7th International Conference on Data Inte-

gration in the Life Sciences, DILS 2010, Lecture Notes in

Computer Science, vol. 6254, pp. 35–49

[17] Li J, Tang J, Li Y and Luo Q 2009 RiMOM: a dynamic

multistrategy ontology alignment framework. IEEE Trans.

Knowl. Data Eng. 21(8): 1218–1232

[18] Dean J and Ghemawat S 2008 MapReduce: simplified data

processing on large clusters. Commun. ACM 51(1): 107–113

[19] Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P and

Trojahn C 2011 Ontology alignment evaluation initiative: six

years of experience. J. Data Semant. 15: 158–192

[20] Granitzer M, Sabol V, Onn K W, Lukose D and Tochter-

mann K 2010 Ontology alignment—a survey with focus on

visually supported semi-automatic techniques. Future Inter-

net 2(3): 238–258

[21] Euzenat J and Shvaiko P 2013 Overview of matching sys-

tems. In: Ontology matching, 2nd edn. Berlin–Heidelberg:

Springer, pp. 153–193

[22] Saruladha K, Aghila G and Sathiya B 2011 A comparative

analysis of ontology and schema matching systems. Int.

J. Comput. Appl. 34(8): 14–21

[23] Saruladha K, Aghila G and Sathiya B 2012 LOMPT: an

efficient and scalable ontology matching algorithm. Proc.

Eng. 38: 2272–2287

[24] Yuruk N, Mete M, Xu X and Schweiger T A 2009 AHS-

CAN: agglomerative hierarchical structural clustering algo-

rithm for networks. In: Proceedings of the IEEE

PSOM2—partitioning-based scalable ontology matching using MapReduce 2023

https://arxiv.org/abs/0909.1771

International Conference on Advances in Social Network

Analysis and Mining, pp. 72–77

[25] Giorgos S, Stamou G and Kollias S 2005 A string metric for

ontology alignment. In: Proceedings of The Semantic Web—

ISWC 2005, pp. 624–637

[26] Levenshtein V I 1966 Binary codes capable of correcting

deletions insertions and reversals. Sov. Phys. Dokl. 10(8): 707

[27] Jiménez-Ruiz E and Grau B C 2011 Logmap: logic-based

and scalable ontology matching. In: Proceedings of The

Semantic Web—ISWC 2011, pp. 273–288

[28] Uthayasanker T and Doshi P 2013 Speeding up batch

alignment of large ontologies using MapReduce. In: Pro-

ceedings of the Seventh IEEE International Conference on

Semantic Computing (ICSC), pp. 110–113

[29] Zhang H, Hu W and Qu Y 2012 VDoc?: a virtual document

based approach for matching large ontologies using

MapReduce. J. Zhejiang Univ. Sci. 13(4): 257–267

[30] Zhu L and Hu W 2012 Towards matching food metadata in

emergency decision-making using ontology and MapReduce.

In: Proceedings of the IEEE International Conference on

Information Management, Innovation Management and

Industrial Engineering, vol. 2, pp. 498–501

[31] Qu Y, Hu W and Cheng G 2006 Constructing virtual docu-

ments for ontology matching. In: Proceedings of the 15th

International Conference on World Wide Web, pp. 23–31

[32] Hu W, Ningsheng J, Yuzhong Q and Yanbing W 2005

GMO: a graph matching for ontologies. In: Proceedings of

the K-CAP Workshop on Integrating Ontologies,

pp. 41–48

[33] Dice L R 1945 Measures of the amount of ecologic associ-

ation between species. Ecology 26(3): 297–302

[34] Euzenat J and Shvaiko P 2013 Basic techniques. In: Ontol-

ogy matching, 2nd edn. Berlin–Heidelberg: Springer,

pp. 73–117

[35] Raghavan V V and Wong S M 1986 A critical analysis of

vector space model for information retrieval. J. Am. Soc. Inf.

Sci. 37(5): 279–287

[36] Su X and Gulla J A 2006 An information retrieval

approach to ontology mapping. Data Knowl. Eng. 58(1):

47–69

[37] Hayes J and Gutiérrez C 2004 Bipartite graphs as interme-

diate model for RDF. In: Proceedings of the 3rd Interna-

tional Semantic Web Conference, Lecture Notes in Computer

Science, vol. 3298, pp. 47–61

[38] Euzenat J, Isaac A, Meilicke C, Shvaiko P, Stuckenschmidt

H, Sváb O, Svátek V, Van Hage W R and Yatskevich M

2007 Results of the ontology alignment evaluation initiative

2007. In: Proceedings of the ISWC?ASWC Workshop on

Ontology Matching, pp. 96–132

2024 B Sathiya et al

	PSOM2---partitioning-based scalable ontology matching using MapReduce
	Abstract
	Introduction
	Related work
	Partition-based ontology matching systems
	Other large scale ontology matching systems
	MapReduce-based ontology matching systems

	Overview of the PSOM2
	Partitioning ontologies
	Neighbour-based intra-ontology similarity computation
	Partitioning algorithm

	Cluster matching
	Anchor discovery using EI-Sub
	Anchor discovery using MapReduce-based EI-Sub
	Finding matchable cluster pairs

	Alignment discovery
	Experimental results
	Experiments on ontology partitioning
	Experiments on anchor identification
	Experiments on precision, recall, F-Measure and execution time

	Conclusion
	Acknowledgement
	References

