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Abstract. A theoretical study is made in the region near the stagnation point when a lighter incompressible

viscoelastic fluids impinges orthogonally on the surface of another quiescent heavier incompressible viscous

fluid. Similarity solutions of the momentum balance equations for both fluids are equalized at the interface. It is

noted that an exact boundary layer solution is obtained for the lower lighter fluid. The velocity of the lower fluid

is independent of lateral interface velocity but the velocity of the upper viscoelastic fluid increases with

increasing lateral interface velocity. It is observed that lateral interface velocity increases with increasing

viscoelastic parameter for fixed values of density and viscosity ratio of the two fluids. The convective heat

transfer is investigated base on the similarity solutions for the temperature distribution of the two fluids. The

interface temperature increases with increasing viscoelastic parameter of the upper viscoelastic fluid.
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1. Introduction

The flow of an incompressible fluid past a rigid or moving

surface has several engineering applications within, for

instance, polymer processing. A great deal of literature is

available on the two-dimensional stagnation-point flow

over a solid plate. On the other hand, there is free stagna-

tion point flow or line interior to a homogeneous fluid

domain or at the interface between two immiscible fluids.

They can be steady or unsteady two-dimensional or three-

dimensional viscous fluid flow. The classical problems of

two-dimensional stagnation point flow of a viscous fluid

over a rigid surface were examined by Hiemenz [1] and

axisymmetric three-dimensional stagnation point flow over

rigid surface was studied by Homann [2]. Hadamard [3]

investigated a problem of forward and reverse two-fluid

stagnation point flows with limited Reynolds number. This

type of flow occurs at the front and rear of a liquid sphere of

one fluid in uniform translation through a different quies-

cent immiscible fluid. Recently, numerous applications of

viscoelastic fluids in several industrial manufacturing pro-

cesses regenerated the interest among researchers to

investigate the stagnation point flow of viscoelastic fluid

flow over a rigid or stretching sheet. The steady flow of a

second-order fluid (viscoelastic) past a stretching sheet was

analysed by Rajagopal et al [4]. Mahapatra and Gupta [5]

considered the steady two-dimensional stagnation-point

flow of an incompressible viscoelastic fluid over a flat

deformable surface. The heat transfer in the steady laminar

flow of an incompressible viscoelastic fluid past a semi-

infinite stretching sheet was investigated by Sarma and

Nageswara Rao [6]. The steady orthogonal stagnation-point

flow of an incompressible viscous fluid on the surface of

another heavier incompressible viscous quiescent fluid was

investigated by Wang [7]. In this problem, although the

pressure is not equalled at the surface, the interface is

considered approximately horizontal by gravity.

Later, Wang [8] studied two dynamic stagnation flows

that are formed on a flat interface. This problem is asso-

ciated with transpiration cooling, extirpation cooling, etc.

Liu [9] extended Wang’s work [8] to investigate the two-

dimensional impingement of a light fluid on the surface of a

heavier fluid at an arbitrary angle of incidence with no

surface distortion. Wang [10] solved for the spatially

developing boundary layers produced by uniform shear

flow of one lighter fluid over a second heavier quiescent

fluid. Tilley and Weidman [11] gave the solution for the

impingement of two viscous, immiscible oblique stagnation

flows forming a flat interface. They found the response of a

quiescent lower fluid to an imposed oblique stagnation-

point flow of the upper fluid. However, Wang [10] studied

the special case of normal stagnation point flow. An

example of such a flow is provided by the continuous

spreading of split oil on water. The similarity solution was*For correspondence
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analysed for the unsteady stagnation point flow on the

surface of quiescent fluid with or without magnetic field by

Surma et al [12]. The effect of magnetic field on the

stagnation-point flow of an incompressible viscous electri-

cally conducting fluid on the surface of another electrically

conducting quiescent fluid was investigated by Reza and

Gupta [13]

The objective of this paper is to extend the work

studied by Wang [7] to the case when a lighter incom-

pressible viscoelastic fluid impinges orthogonally on the

surface of another quiescent heavier incompressible vis-

cous fluid. The boundary conditions are applied at the

interface layer of the two fluids, which is assumed to be

flat. This condition can be accomplished for small x (i.e.,

region near the stagnation-point) or large density differ-

ence (q2 � q1) or when surface tension is large. The

velocity distributions in both fluids are found by matching

the velocities and tangential stresses in the two fluids at

the interface. The energy equations in both the fluids are

solved by matching the temperature and heat flux at the

interface of the fluids to analyse the temperature distri-

bution. The results on heat transfer, with particular ref-

erence to determining the interface temperature, play an

important role in controlling the heat transfer in the

problems involving powering of viscoelastic fluids on a

substrate.

The phenomenon of the frequent accidental spilling of

crude oil [14] (non-Newtonian fluid) on the surface of water

(viscous fluid) has motivated us to study this problem. In

general, crude oils have different rheological properties

based on dilution. For example, crude oil [15, 16] has

viscoelastic prosperities. The oil spreads more or less on the

water surface by balancing the gravity and surface tension.

It is interesting to note that spilling of crude oil model on

water surface can describe the spreading and vaporization

of pools of liquid spilled. The vapour diffusion should be

considered, which motivates us to study the heat transfer

for this problem to investigate the phenomenon of con-

trolling the vaporization process during spill or after spill.

Aims of this work are to study the velocity profile of upper

viscoelastic fluid and interface temperature.

2. Flow analysis

Consider a viscoelastic, incompressible liquid of density q1,
viscosity l1 that impinges orthogonally on the surface of

another quiescent, heavier incompressible viscous Newto-

nian fluid of density q2, viscosity l2. Figure 1 shows a

sketch of the physical problem. Let the upper light fluid be

denoted by the subscript 1 and the lower heavier fluid be

denoted by the subscript 2. Let (x; y1Þ denote the cartesian

coordinates for the upper fluid with x ¼ 0 as the symmetry

plane and x-axis is taken along the interface between the

two fluids. The coordinate system for the lower fluid is

(x; y2Þ as shown in the same figure. It is noted that z-axis is

normal to the ðx; y1Þ plane.
The constitutive equation for an incompressible vis-

coelastic fluid followed by Walters’ liquid B model is

[17, 18]

sik ¼ �pdik þ s0ik ð1Þ

where

s0ikðx; tÞ ¼ 2

Z t

�1
Wðt � t0Þ oxi

ox0m
oxk

ox0r
� eð1Þmrðx0; t0Þdt0: ð2Þ

Further,

Wðt � t0Þ ¼
Z 1

0

NðsÞ
s

e�ðt�t0Þsds; ð3Þ

NðsÞ being the distribution function of relaxation time s. In
these equations, sik is the stress tensor, p an arbitrary

pressure, dik is the metric tensor of a convected coordinate

system xi; x0ið¼ x0iðx; t; t0ÞÞ is the position at time t0 of the

element, i.e., instantaneously at the point xi at time t, and

e
ð1Þ
ik is the rate-of-strain tensor.

The boundary layer approximation is considered to study

the stagnation-point flow of incompressible viscoelastic

fluid (Walters’ liquid B model) on the surface of another

quiescent, heavier incompressible viscous Newtonian fluid.

The behaviours of boundary layer flows of viscoelstic fluid

are mobile and not highly elastic. They have only a very

short (in fact, infinitesimal) part of the history of the

deformation gradient that has an influence on the stress.

These fluids do not exhibit the phenomenon of stress

relaxation, which means that with the instantaneous ces-

sation of all local motion, the stress becomes pure pressure

[19].

The equation of state (2) can then be written in the

simplified form as

s0ik ¼ 2leð1Þik � 2k0
D

Dt
eð1Þik ð4Þ

where l ¼
R1
0

NðsÞds is the limiting viscosity at small

rates of shear, k0 ¼
R1
0

sNðsÞds and terms involvingR1
0

snNðsÞds ðn� 2Þ have been neglected. Further-

more, D / Dt denotes convected differentiation of a

tensor quantity in relation to the material in motion

as defined by Oldroyd [20]. For a contravariant

tensor bik,

Dbik

Dt
¼ obik

ot
þ vm obik

oxm
� ovk

oxm
bim � ovi

oxm
bmk ð5Þ

where vi is the velocity vector and k0 is the elastic constant

of the fluid.

The momentum balance equations for steady two-di-

mensional flow of the upper viscoelastic fluids are
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where m1 ¼ l1
q1
. Here q1, l1 and k0 represent density, vis-

cosity and viscoelastic parameter of the upper fluid,

respectively. The equation of continuity for the upper fluid

is

ou1

ox
þ ov1

oy1
¼ 0: ð8Þ

Similarly, the momentum equations in the lower immisci-

ble viscous fluid are

u2

ou2

ox
þ v2

ou2

oy2
¼� 1

q2

op2

ox
þ m2

o2u2

ox22
þ o2u2

oy22

� �
ð9Þ
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ov2

oy2
¼� 1

q2
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oy2
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o2v2

ox22
þ o2v2

oy22

� �
ð10Þ

where m2 is the kinematic viscosity of lower fluid. The

equation of continuity for the lower fluid is

ou2

ox
þ ov2

oy2
¼ 0: ð11Þ

Eliminating p from Eqs. (6) and (7)
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ð12Þ

The boundary conditions for this problem are

u1 ! U1ðxÞ; v1 ! V1ðy1Þ as y1 ! 1 ð13Þ

u1ðx; 0Þ ¼ u2ðx; 0Þ ð14Þ

u2 ! U2ðxÞ; v2 ! V2ðy2Þ as y2 ! 1: ð15Þ

The potential, stagnation point flow of the lighter fluid

(upper fluid) is described by

U1ðxÞ ¼ ax; V1ðy1Þ ¼ �ay1 as y1 ! 1 ð16Þ

where a[ 0 is a constant. Since the lower (heavier) fluid is

at rest at infinity, it should be stated that the horizontal

velocity tends to zero and the vertical velocity tends to a

constant since the fluid spreads out near the interface and

must be replenished. Hence, we must have

U2ðxÞ ¼ 0; V2ðy2Þ ¼ constant as y2 ! 1: ð17Þ

Figure 1. Physical sketch of the problem.
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To apply the boundary conditions at the interface of two

fluids, it is considered that the interface is flat. This

assumption is made for small x (i.e., region near the stag-

nation point) or large density differences ðq1 � q2Þ or

when surface tension is large.

For the upper lighter fluid, we consider

u1 ¼ axf
0 ðgÞ; v1 ¼ � ffiffiffiffiffiffiffi

m1a
p

f ðgÞ; g ¼ y1ffiffi
ð

p
m1=aÞ ð18Þ

where m1 is the kinematic viscosity and a prime denote

derivative with respect to g. Clearly, the equation of con-

tinuity is satisfied with u1 and v1 given by Eq. (18).

Similarly, for the lower Newtonian fluid (heavier fluid),

we consider

u2 ¼ abxh
0 ðnÞ; v2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
m2ab

p
hðnÞ; n ¼ y2ffiffi

ð
p

m2=abÞ
ð19Þ

where the constant b is interpreted as the lateral motion of

the interface. The value of b will be found out and appar-

ently its values range from zero (at a solid boundary) to one

(at stress-free boundary). It is found that the equation of

continuity for lower fluid is satisfied for the given u2 and v2.

Using (18), the momentum equation for upper fluid (12)

reduces to

f 02 � ff 00 ¼ 1þ f 000 � kð2f 0f 000 � f 002 � ff ivÞ ð20Þ

where k is the positive dimensionless viscoelastic parameter

for upper fluid given by k ¼ k0a
m1
. The boundary conditions

for upper fluid become

f ð0Þ ¼ 0; f 0ð0Þ ¼ b; f 0ð1Þ ¼ 1: ð21Þ

It may be seen from (20) that the presence of elasticity in

the fluid yields a fourth order differential equation,

whereas in the viscous case k ¼ 0, the order of the

equation is three. It would thus appear that an additional

boundary condition has to be imposed to obtain the

solution. However, implicit in the derivation of (20) is

the neglect of the terms of order k2. Therefore we seek a

solution of (20) in the form

f ¼ f0ðgÞ þ kf1ðgÞ þ Oðk2Þ ð22Þ

valid for sufficiently small k.

Substituting (22) in (20) and equating coefficients of k0

and k, we get

f 020 � f0f
00
0 ¼ 1þ f 0000 ð23Þ

f 0001 þ f0f 001 � 2f 00f
0
1 þ f 000 f1 ¼ 2f 00f 0000 � f 0020 � f0f

iv
0 ð24Þ

and the boundary conditions become

f0ð0Þ ¼ 0; f 00ð0Þ ¼ b; f 00ð1Þ ¼ 1 ð25Þ

f1ð0Þ ¼ 0; f 00ð0Þ ¼ 0; f 01ð1Þ ¼ 0: ð26Þ

Since the flow decays to zero as y2 ! 1, using (19), the

Navier-Stokes equations (9) and (10) for the lower

immiscible fluid reduce to

h
000 þ hh00 � h02 ¼ 0: ð27Þ

It is noticed that the velocities must be equal at the inter-

face; the boundary conditions for the lower fluid are

hð0Þ ¼ 0; h0ð0Þ ¼ 1; h0ð1Þ ¼ 0: ð28Þ

The function hðnÞ is independent of b. The solution of (27)

subject to the the boundary conditions (28) is given by

hðnÞ ¼ 1� e�n: ð29Þ

The value of the vertical velocity of the lower Newtonian

fluid (heavier fluid) at infinity is derived using Eqs. (17),

(19) and (29) as

u2ðy2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffi
m2ba

p
as y2 ! 1: ð30Þ

It is observed that it is not an arbitrary constant. It depends

on the physical parameters m2, b and a. This is physically

plausible as the vertical velocity of the lower Newtonian

fluid (heavier fluid) depends on kinematic viscosity (m2,
lateral motion of the interface (b) and the straining motion

of the upper fluid (a).

Further, the tangential stresses of the upper and lower

fluid are continuous at the interface. It gives

q1m1
ou1

oy1
ð0Þ ¼ �q2m2

ou2

oy2
ð0Þ: ð31Þ

This yields

f
00 ð0Þ

�b3=2h
00 ð0Þ

¼ q2
q1

m2
m1

� �1=2

� RðsayÞ: ð32Þ

Using (29), we get from (32) that

f
00 ð0Þ ¼ Rb3=2: ð33Þ

This equation is used to determine b, which depends on the

visco-elastic parameter k.

3. Heat transfer

Heat transfer is important, particularly when there is

forced convective heat transfer. Suppose the temperature

at y1 ! 1 is constant temperature, T11 (say), and the

temperature at y2 ! 1 is also constant temperature,

T21(say).

The energy equations for both fluids without considering

the viscous dissipation are given by
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ui

oTi

ox
þ vi

oTi

oyi

¼ ki

o2Ti

ox2
þ o2Ti

oy2i

� �
ð34Þ

where Ti and ki for i ¼ 1; 2 denote the temperature and

thermal diffusivity of upper and lower fluid, respectively.

Considering the similarity solution of the temperature

distribution in the upper viscoelastic fluid and lower

Newtonian fluid, the dimensionless temperatures h1ðgÞ and
h2ðnÞ are taken as

h1ðgÞ ¼
T1ðx; y1Þ � T11

T0 � T11
; h2ðnÞ ¼

T1ðx; y2Þ � T11
T0 � T21

ð35Þ

where T0 is unknown constant temperature of the interface.

Using Eq. (35), the energy equations (34) reduce to

h001ðgÞ þ P1f ðgÞh01ðgÞ ¼ 0 ð36Þ

h002ðnÞ þ P2hðnÞh02ðnÞ ¼ 0 ð37Þ

where P1 ¼ m1
k1
and P2 ¼ m2

k2
are the Prandtl number for upper

viscoelastic fluid and for lower fluid, respectively. The

boundary conditions are

h1ð0Þ ¼ 1 h1ð1Þ ¼ 0 ð38Þ

h2ð0Þ ¼ 1 h2ð1Þ ¼ 0: ð39Þ

Using the boundary condition (39) and (29) and integrating

(37), we obtain

h2ðgÞ ¼ 1þ C1

Z n

0

e�ðe�sþsÞds ð40Þ

where

C1 ¼ 1=

Z n

0

e�ðe�sþsÞds

� �
: ð41Þ

In this problem, heat flux is continuous at the interface. To

determine the interface temperature, we can write (see

Landau and Lifshitz [21])

k1
oT1

oy1
ð0Þ ¼ �k2

oT2

oy2
ð0Þ: ð42Þ

It is assumed the there is no heat source or contact

resistance on the interface. Since k1 ¼ j1q1ðcpÞ1 and

k2 ¼ j2q2ðcpÞ2 are the specific heat (at constant pressure)
of the upper and lower fluid, respectively, the dimen-

sionless interface temperature can be found from (43)

using (35):

bT ¼ 1

1þ A

� �
þ Tr

A

1þ A

� �
: ð43Þ

Here

bT ¼ T0

T21
; Tr ¼

T11
T21

; ð44Þ

and

A ¼ b�1=2 q2
q1

1

R

P2

P1

h01ð0Þ
h02ð0Þ

: ð45Þ

4. Numerical results and discussion

Equations (23) and (24) subject to the boundary conditions

(25) and (26) are solved numerically to analyse the f 0ðgÞ
and f ðgÞ by a finite-difference method for several values of

R and viscoelastic parameter k.

To discretize Eqs. (23) and (24), we used a central-dif-

ference scheme as follows:

Figure 2. The values of b with viscoelastic parameter k for

several values of R.

Figure 3. Variation of f 00ð0Þ with viscoelastic parameter k for

several values of R.
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ðVgÞi ¼
Viþ1 � Vi�1

2dg
þ O ðdgÞ2

� �
; ð46Þ

ðVggÞi ¼
Viþ1 � 2Vi þ Vi�1

ðdgÞ2
þ O ðdgÞ2

� �
; ð47Þ

where V stands for G or g, i is the grid-index in the g-
direction with

gi ¼ idg; i ¼ 0; 1; 2; :::;

dg being the increment along g-axis. We use Newton’s

linearization method to linearize the discretized equations

as follows. We assumed that the values of the dependent

variables at the kth iteration are known. Then the values of

these variables at the next iteration are obtained from the

following equation:

Vkþ1
i ¼ Vk

i þ ðDVÞk
i ; ð48Þ

where V stands for f
0

0 or f
0

1 and ðDVÞk
i represents the error at

the kth iteration, i ¼ 0; 1; 2; ::: Using (48) in (23) and (24)

and dropping terms quadratic in ðMVÞk
i , we get a system of

linear algebraic equations for ðMVÞk
i . The resulting system

of tri-diagonal equations is solve by the Thomas Algorithm

[22]. In view of the asymptotic analysis representing the

exponential decay of the relevant flow variables at large

distances from the interface, it is found that the boundary

conditions at infinity are effectively satisfied at g� 2.

Figure 2 depicts the variation of R with b for several

values of viscoelastic parameter of the upper fluid when

density of the two fluids q1=q2 is considered constant. It is

interesting to note that the lateral velocity b increases with

increasing visco-elastic parameter k for fixed value of

R. Again, it is observed from this figure that the values of b
increase for fixed values of viscoelastic parameter k and

constant values of
q1
q2
with increasing viscosity ratio m1

m2
( i.e.,

as R decreases). The variation of f
00 ð0Þ with viscoelastic

parameter for several values of R is displayed in figure 3. It

is seen that for a given value of R, f 00ð0Þ increases mono-

tonically with increase in the viscoelastic parameter k. It is

observed that the values of f 00ð0Þ increase with increasing

viscoelastic parameter R for fixed values of k. It is very

interesting to know the effect of R on shear stress at the

interface, which controls the lateral motion of the interface.

Figure 4 shows the variation of f 0ðgÞ with g for several

values of b for fixed value of viscoelastic parameter k ¼
0:005 of the upper fluid. On the other hand, figure 5 dis-

plays the f 0ðgÞ with g for several values of viscoelastic

parameter k for a fixed value of b ¼ 0:5. It is observed that

f 0ðgÞ increases with increasing value of lateral velocity b
for fixed values of k since the lateral motion at the interface

increases on increasing the parameter b. Here, the

momentum that is diffused away from the interface leads to

increasing velocity of upper fluid due to increasing b. It is
observed that b increases with increasing viscolesatic

Figure 4. Variation of f 0ðgÞ with g for several values of b and a

fixed value of k ¼ 0:005.

Figure 5. Variation of f 0ðgÞ with g for different values of k and a

fixed value of b ¼ 0:5.

Figure 6. Variation of f ðgÞ with g for different values of b and a

fixed value of k ¼ 0:005.
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parameter k. This reflects the fact that upper fluid velocity

increases with increasing k (see figure 5).

The variation of f ðgÞ with g for several values of b is

shown in figure 6 when viscoelastic parameter k ¼ 0:005.
We can interpret the observation from figure 6 that when

the lateral motion at the interface increases, the vertical

component of the upper fluid velocity increases due to the

diffusion of momentum from the interface.

Using known values of f ðgÞ from (22), the numerical

solution for h1ðgÞ from (36) subject to the boundary con-

dition (38) has been derived by a finite-difference method.

Thus, the dimensionless interface temperature bT is deter-

mined using the known temperature distributions h1ðgÞ and
h2ðgÞ. Figure 7 shows the variation of h1ðgÞ with g for

several values of b and a fixed value of k ¼ 0:01. It is

noticed that the temperature of a fixed point in the upper

viscoelastic fluid decreases with increasing lateral interface

velocity b for a fixed value of k ¼ 0:01: and P1 ¼ 0:3.
Physically this follows from the fact that conduction heat is

circulated away with the fluid. Since, at the fixed point, the

velocity increases with increasing lateral interface velocity

(b), more heat is circulated away by the fluid than by

conduction, resulting in a decrease in temperature with

increase in the lateral interface velocity.

Figure 8 shows the variation of h1ðgÞwith g for several

values of viscoelastic parameter k and a constant value of

R ¼ 1:5 and Prandtl number P1 ¼ 0:3. It is noticed that the

temperature at a fixed point g decreases with increase in the

value of k. It is also observed that the temperature decreases

with increase of the Prandtl number for a fixed value of

R ¼ 3:0 and k ¼ 0:005 (see figure 9). The variation of

interface temperature bT with viscoelastic parameter is

Figure 7. Variation of h1ðgÞ with g for several values of b with

P1 ¼ 0:3 when k ¼ 0:01.

Figure 8. Variation of h1ðgÞ with g for several values of k with

R ¼ 1:5 and P1 ¼ 0:3.

Figure 9. Variation of h1ðgÞ with g for several values of P1 with

R ¼ 3:0 and P1 ¼ 0:3.

Figure 10. Variation of interface temperature bT with k for

several values R when q1
q2
¼ 2=3, P1 ¼ 0:4, P2 ¼ 0:8 and

ðcpÞ1
ðcpÞ2

¼ 2.
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displayed in figure 10 for several values of R and fixed

values
q1
q2
¼ 2=3, P1 ¼ 0:3, P2 ¼ 0:8,

ðcpÞ1
ðcpÞ2

¼ 2 and Tr ¼ 2:0.

It is interesting to note that interface temperature decreases

with an increase the viscoelastic parameter k for a fixed

value of R. It is also observed that temperature decreases

with an increase of R for a fixed value of the viscoelastic

parameter k.

5. Conclusions

A viscoelastic fluid impinges downward on another heavier

quiescent incompressible viscous fluid. The governing

momentum and energy equations of this problem are

reduced to a set of nonlinear ordinary differential equations

using suitable similarity transformation equations. Numer-

ical solutions of these equations are obtained by a finite-

difference method for upper viscoelastic fluid. On the other

hand, an analytical solution is found for the lower viscous

fluid. It is noticed that for given values of the density ratio

and viscosity ratio of the two fluids, the velocity of the

upper viscoelastic fluid increases with increasing vis-

coelastic parameter. It is also interesting to note that lateral

velocity b at the interface increases with increasing vis-

coelastic parameter. The convective heat transfer is anal-

ysed based on the similarity solutions for the temperature

distribution in the upper viscoelastic fluid and lower vis-

cous fluid. It is found that the interface temperature

increases with increasing viscoelastic parameter.
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