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Abstract. An unsteady two-fluid model of blood flow through a tapered arterial stenosis with variable vis-

cosity in the presence of variable magnetic field has been analysed in the present paper. In this article, blood in

the core region is assumed to obey the law of Jeffrey fluid and plasma in the peripheral layer is assumed to be

Newtonian. The values for velocity, wall shear stress, flow rate and flow resistance are numerically computed by

employing finite-difference method in solving the governing equations. A comparison study between the

velocity profiles obtained by the present study and the experimental data represented graphically shows that that

the rheology of blood obeys the law of Jeffrey fluid rather than that of Newtonian fluid. The effects of

parameters such as taper angle, radially variable viscosity, hematocrit, Jeffrey parameter, magnetic field and

plasma layer thickness on physiologically important parameters such as wall shear stress distribution and flow

resistance have been investigated. The results in the case of radially variable magnetic field and constant

magnetic field are compared to observe the effect of magnetic field in driving the blood flow. It is observed that

increase in hematocrit increases the wall shear stress. The values of wall shear stress and flow resistance are

obtained at various time instances and compared. It is pertinent to note that the magnitudes of flow resistance are

higher in the case of converging tapered than non-tapered and diverging tapered artery.

Keywords. Jeffrey fluid; radially variable viscosity; hematocrit; radially variable magnetic field; tapered

arterial stenosis.

1. Introduction

The blood flow in a stenosed artery and the effect of

physical parameters on blood flow was analysed and stud-

ied in references [1–4]. Several investigators [5–9] dis-

cussed experimental and theoretical studies on blood flow,

which are useful in the diagnosis and treatment of cardio-

vascular diseases. The presence of taper and its implica-

tions on physiologically significant parameters have been

studied in [10, 11]. Many investigators [12–16] analysed

the blood flow in a stenosed artery by assuming blood to be

a Newtonian fluid. At low shear stress this is not applicable.

Blood is generally assumed to be non-Newtonian due to the

presence of formed elements. Haemoglobin is an iron-based

protein inside red blood cells [4]. Several investigators

[17–24] analysed the effects of magnetic field on blood

flow through a stenosed artery. The practical applications of

magnetic field in medicine has been investigated by Motta

et al [25] and Midya et al [26]. Nadeem and Ijaz [27]

analysed the effects of tapering on blood flow through

stenosed artery.

Bugliarello and Sevilla [28] and Cokelet [29] experi-

mentally showed that there exists a cell-free plasma layer in

addition to a core region consisting of erythrocytes. Pon-

alagusamy [30] analysed the blood flow through stenosed

arteries with axially variable peripheral layer thickness and

variable slip at the wall, considering the fluids in both core

and plasma regions as Newtonian. The effects of peripheral

plasma layer thickness and yield stress on wall shear stress

(WSS) and resistive impedance have been studied by

Chaturani and Ponnalagarsamy [31]. Ponalagusamy and

Tamil Selvi [32] developed a two-fluid model for blood

where fluid in the core region is assumed to be Cassonian

and the fluid in the peripheral region to be Newtonian

taking slip velocity into account. Sankar and Lee [33]

analysed the pulsatile flow of blood through stenosed

arteries by assuming blood in the core region to be Cas-

sonian fluid and plasma fluid to be Newtonian. Srivastava

[34] investigated the two-phase model of blood flow

through stenosed tubes in the presence of a peripheral layer.

The problem of non-Newtonian and nonlinear blood flow

through a stenosed artery has been analysed and solved by

Chaturani and Ponnalagarsamy [35], where the non-New-

tonian rheology of the flowing blood is characterized by a

Herschel–Bulkley model. Ikbal et al [36] investigated*For correspondence
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mathematical model on non-Newtonian flow of blood

through a stenosed artery in the presence of a transverse

magnetic field by treating blood as a power-law fluid. The

unsteady nature of blood flow has been further studied by

Mustapha et al [37] and Eldesoky et al [38].

Jeffrey fluid belongs to the class of non-Newtonian

fluid. The Jeffrey fluid as a generalization of Newtonian

fluid and hence Newtonian fluid can be deduced from the

Jeffrey fluid model as a special case. Many investigators

have studied the flow of Jeffrey fluid in the presence of

several factors. Akbar et al [39] have investigated a non-

Newtonian fluid model for blood flow through a tapered

artery with a stenosis by assuming blood as a Jeffrey

fluid taking heat and mass transfer into account. Nallapu

and Radhakrishnamacharya [40] developed a mathemat-

ical model of blood flow as a two-fluid model where the

fluid in the core region is assumed to be a Jeffrey fluid

and plasma in peripheral region to be a Newtonian fluid.

Jyothi et al [41] analysed the flow of blood in a

catherized tapered artery with nanoparticles considering

blood as a Jeffrey fluid. The flow of Jeffrey fluid has

been further discussed in references [42–45]. A non-

Newtonian fluid model for blood flow through a tapered

artery with a stenosis and variable viscosity by mod-

elling blood as Jeffrey fluid has been developed by

Ellahi et al [45]. It is of interest to mention that the

combined effects of physiologically important parame-

ters such as radially variable core viscosity and magnetic

field have not been investigated in the aforementioned

mathematical models.

It is argued that the non-homogeneity of blood should

be accounted for while investigating the flow of blood in

order to have a realistic model [46–48]. These facts

imply that the viscosity of blood is a function of

hematocrit in such a way that it varies radially more near

the tube axis and decreases when one moves towards the

arterial wall and becomes a constant in the peripheral

plasma layer. Further, fluid dynamics of biological fluids

under the influence of magnetic field emerges as a new

trend to investigate their flow behaviour in the presence

of a magnetic field. In view of these, a modest effort has

been made to study the unsteady flow of blood as two-

layered blood, where blood in the core region is assumed

to be a Jeffrey fluid and plasma in peripheral layer to be

Newtonian taking into account variable core viscosity

and variable magnetic field.

2. Formulation of the problem

Let us consider an axially symmetric, pulsatile, laminar and

fully developed flow of blood in a tapered artery with

stenosis and radially variable transverse magnetic field. In

the present study, the flow of blood is represented by a two-

fluid model where the blood in the core region is assumed

to be a Jeffrey fluid and the plasma in the peripheral region

to be a Newtonian fluid. We consider a cylindrical coor-

dinate system ð�r; �h; �zÞ, whose origin is located on the axis of
tapered arterial stenosis (figures 1 and 2).

The consistency function �lð�rÞ may be written as follows:

�lð�rÞ ¼
�lcð�rÞ; 0� �r � �R1ð�zÞ
�lp; �R1ð�zÞ� �r � �Rð�zÞ

(
ð1Þ

where �lcð�rÞ and �lp are the viscosities of the central core

fluid and the plasma, respectively; �R1ð�zÞ and �Rð�zÞ are the

radii of the central core region and the artery in the stenotic

region. The momentum equations governing the unsteady

incompressible Jeffrey fluid in the core region are [42]

o �vc

o�r
þ �vc

�r
þ ouc

o�z
¼ 0; ð2Þ

�qc

o

ot
þ �vc

o

o�r
þ �uc

o

o�z

� �
�uc ¼ � o�p

o�z
þ 1

�r

o

o�r
ð�r�SrzÞ þ

o

o�z
ð�SzzÞ

� �r �B0
2ð�rÞ �uc;

ð3Þ

�qc

o

ot
þ �vc

o

o�r
þ �uc

o

o�z

� �
�vc ¼ � o�p

o�r
þ 1

�r

o

o�r
ð�r�SrrÞ þ

o

o�z
ð�SrzÞ

�
�Shh

�r
:

ð4Þ

The extra tensor �S for Jeffrey fluid is defined as follows:

�S ¼ �lcð�rÞ
ð1þ k1Þ

ð�_cþ �k2�€cÞ ð5Þ

where �_c is the shear rate, �€c is the rate of shear rate, �lcð�rÞ is
the viscosity of core fluid and is given by

�lcð�rÞ ¼ �lp½1þ b�hð�rÞ�, �hð�rÞ ¼ hm Rm2

1 � rm2
� �

, k1 is the

ratio of relaxation to retardation times, �k2 is the retardation
time, �p is the pressure, �qc is the density of the core fluid, �r
is the electrical conductivity of the fluid and �B0

2ð�rÞ is the
variable magnetic field [39]; �uc and �vc are the velocity

components in the core region along the z and r directions,

respectively.

The momentum equations governing the unsteady

Newtonian fluid in the peripheral plasma region are

o �vp

o�r
þ �vp

�r
þ o �up

o�z
¼ 0 ð6Þ

�qp

o

o�t
þ �vp

o

o�r
þ �up

o

o�z

� �
�up ¼ � o�p

oz
þ �lp

� 1

�r

o

o�r
�r
o �up

o�r

� �
þ o2 �up

o�z2

� �
� �r �B0

2ð�rÞ �up

ð7Þ
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�qp

o

o�t
þ �vp

o

o�r
þ �up

o

o�z

� �
�vp ¼ �o�p

o�r
þ �lp

� 1

�r

o

o�r
�r
o �vp

o�r

� �
þ o2 �vp

o�z2
� �vp

�r2

� �
ð8Þ

where �qp is the density of plasma fluid and �lp is the

viscosity of fluid in plasma region; �up and �vp are the

velocity components of plasma in �z and �r directions

respectively.

The following non-dimensional variables are

introduced:

Figure 1. Geometry of an axially non-symmetrical stenosed artery.

Figure 2. Geometry of the stenosed artery for different taper angles.
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r ¼ �r
�R0

; z ¼ �z
�L0

; t ¼ �x�t; uc ¼
�uc

�u0

; up ¼ �up

�u0

;R1 ¼
�R1

�R0

;

M2ðrÞ ¼
�B0
2ð�rÞ�r �R0

2

�lp

;

p ¼ �p �R0
2

�u0 �lp
�L0

; q ¼
�qp

�qc

; a2 ¼
�qp �x �R0

2

�lp

;Re ¼
�qp�u0

�R0

�lp

:

ð9Þ

From literature [49, 50], the values of the average velocity

(�u0) of flow in a uniform artery and its radius (�R0) are,

respectively, taken as 1 cm/s and 0.1 cm.

The appropriate equations in non-dimensional form

governing the pulsatile flow of Jeffrey fluid in the case of

a slightly tapered artery with mild stenosis (taper angle

\3o and
�ds
�R0
\\1) are obtained as follows (see Appendix

A).

In the core region ð0� r �R1ðrÞÞ

a2

q0

ouc

ot
¼ � op

oz
þ 1

1þ k1

1

r

o

or

� �
1þ bhm Rm2

1 � rm2
� 	
 �

ouc

or
� M2ðrÞuc: ð10Þ

In the peripheral plasma region ðR1ðrÞ� r �RÞ

a2
oup

ot
¼ � op

oz
þ o2up

or2
þ 1

r

oup

or
� M2ðrÞup ð11Þ

where MðrÞ ¼ Mea1ðR�rÞ [4].
The main motive mechanism for blood flow is the pre-

vailing pressure gradient. The pressure gradient is given by

� op
oz
ðz; tÞ ¼ A0 þ A1cosðtÞ.

The corresponding boundary conditions are

(i) ouc

or
¼ 0 at r ¼ 0,

(ii) uc ¼ up at r ¼ R1,

(iii) ðsÞp ¼ ðsÞc at r ¼ R1 and

(iv) up ¼ 0 at r ¼ R.

The non-dimensional form of flow geometry is given by

RðzÞ ¼
ð1� wzÞ½1� B ðz � dÞ � ðz � dÞn1f g�;

d � z� d þ 1

1� wz; otherwise

8><
>: ð12Þ

where B ¼ dsn

n1
n1�1

1

n1�1
, w ¼ tan/ and / is the taper angle. For

converging tapering, / becomes greater than 0, /\0

indicates diverging tapering and / ¼ 0 for the case of non-

tapered artery (arterial stenosis).

3. Solution of the problem

The implicit difference scheme for Eq. (10) is as follows

[51]:

uc ¼
ðucÞkþ1

i;j þ ðucÞk
i;j

2
;

ouc

ot
¼

ðucÞkþ1
i;j � ðucÞk

i;j

Dt
;

ouc

or
¼

ðucÞkþ1
i;jþ1 � ðucÞkþ1

i;j�1 þ ðucÞk
i;jþ1 � ðucÞk

i;j�1

4Dr
;

o2uc

or2
¼

ðucÞkþ1
i;jþ1 � 2ðucÞkþ1

i;j þ ðucÞkþ1
i;j�1 þ ðucÞk

i;jþ1 � 2ðucÞk
i;j þ ðucÞk

i;j�1

2ðDrÞ2
:

ð13Þ

Using these finite-difference approximations (13), Eq. (10)

becomes

XðrjÞ
2ðDrÞ2

þ SðrjÞ
4Dr

" #
ðucÞkþ1

i;jþ1 �
XðrjÞ
ðDrÞ2

þ a2

Dt
þ M2ðrjÞ

2

" #
ðucÞkþ1

i;j

þ XðrjÞ
2ðDrÞ2

� SðrjÞ
4Dr

" #
ðucÞkþ1

i;j�1

¼ �ðA0 þ A1cosðtkÞÞ �
XðrjÞ
2ðDrÞ2

þ SðrjÞ
4Dr

" #
ðucÞki;jþ1

þ XðrjÞ
ðDrÞ2

þ a2

Dt
þ M2ðrjÞ

2

" #
ðucÞk

i;j

� XðrjÞ
2ðDrÞ2

� SðrjÞ
4Dr

" #
ðucÞk

i;j�1 ð14Þ

where

XðrjÞ ¼rj 1þ bhm Rm2

1 � rm2

j

� 
h i
;

SðrjÞ ¼
1

ð1þ k1Þrj

1þ bhm Rm2

1 � ðm2 þ 1Þrm2

j

� 
h i
:

Adopting the following implicit scheme:

up ¼
ðupÞkþ1

i;j þ ðupÞk
i;j

2
;

oup

ot
¼

ðupÞkþ1
i;j � ðupÞk

i;j

Dt
;

oup

or
¼

ðupÞkþ1
i;jþ1 � ðupÞkþ1

i;j�1 þ ðupÞk
i;jþ1 � ðupÞk

i;j�1

4Dr
;

o2up

or2
¼

ðupÞkþ1
i;jþ1 � 2ðupÞkþ1

i;j þ ðupÞkþ1
i;j�1 þ ðupÞk

i;jþ1 � 2ðupÞk
i;j þ ðupÞk

i;j�1

2ðDrÞ2
;

ð15Þ
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Eq. (11) becomes

rj

2ðDrÞ2
þ 1

4Dr

" #
ðupÞkþ1

i;jþ1�
rj

ðDrÞ2
þ rja2

Dt
þM2ðrjÞ

2

" #
ðupÞkþ1

i;j

þ rj

2ðDrÞ2
� 1

4Dr

" #
ðupÞkþ1

i;j�1 ¼�rjðA0þA1 cosðtkÞÞ

� rj

2ðDrÞ2
þ 1

4Dr

" #
ðupÞk

i;jþ1þ
rj

ðDrÞ2
þ rja2

Dt
þM2ðrjÞ

2

" #
ðupÞk

i;j

� rj

2ðDrÞ2
� 1

4Dr

" #
ðupÞk

i;j�1

ð16Þ

where MðrjÞ ¼ Mea1ðR�rjÞ [4]. Equations (14) and (16) are

solved by the Thomas algorithm to obtain velocities in

the core region and plasma region, respectively. In order

to solve Eqs. (14) and (16) we need initial velocities for

uc and up.

In the case of a two-fluid flow with radially variable

magnetic field, the initial velocities for uc and up can be

numerically obtained from

0 ¼ðA0 þ A1Þ þ
1

1þ k1

o2uc

or2
þ 1

r

ouc

or

� �
� M2ðrÞuc; ð17Þ

0 ¼ðA0 þ A1Þ þ
o2up

or2
þ 1

r

oup

or
� M2ðrÞup: ð18Þ

Using the following finite-difference approximations in

Eqs. (17) and (18)

ouc

or
¼
ðucÞi;jþ1�ðucÞi;j

Dr
;
o2uc

or2
¼
ðucÞi;jþ1�2ðucÞi;jþðucÞi;j�1

ðDrÞ2
;

oup

or
¼
ðupÞi;jþ1�ðupÞi;j

Dr
;
o2up

or2
¼
ðupÞi;jþ1�2ðupÞi;jþðupÞi;j�1

ðDrÞ2
;

ð19Þ

we get the following difference equations:

�ðA0 þ A1Þð1þ k1Þrj ¼
rj

ðDrÞ2
þ 1

Dr

" #
ðucÞi;jþ1

� 2rj

ðDrÞ2
þ 1

Dr
þ ð1þ k1Þrj

"

M2ðrjÞ
�
ðucÞi;j þ

rj

DrÞ2
ðucÞi;j�1;

ð20Þ

�ðA0 þ A1Þrj ¼
rj

ðDrÞ2
þ 1

Dr

" #
ðupÞi;jþ1

� 2rj

ðDrÞ2
þ 1

Dr
þ rjM

2ðrjÞ
" #

ðupÞi;j

þ rj

ðDrÞ2
ðupÞi;j�1:

ð21Þ

Solving this system of equations, initial values for uc and up

can be obtained.

The non-dimensional shear stress in the core region is

given by

Srz ¼
1þ bhm Rm2

1 � rm2
� 	

1þ k1

ouc

or
: ð22Þ

The non-dimensional form of shear stress in the plasma

region is expressed as follows:

Srz ¼
oup

or
: ð23Þ

The non-dimensional shear stress at the wall is given as

follows:

sw ¼ oup

or

� �
r¼R

: ð24Þ

The flow rate Qcðz; tÞ in the core region can be obtained

from the relation

Qcðz; tÞ ¼ 2
XR1ðzÞ

r¼0

rucðr; z; tÞDr: ð25Þ

The flow rate Qpðz; tÞ in the peripheral plasma region is

given by the relation

Qpðz; tÞ ¼ 2
XRðzÞ

r¼R1ðzÞ
rupðr; z; tÞDr: ð26Þ

The total flow rate is Qðz; tÞ ¼ Qcðz; tÞ þ Qpðz; tÞ, which
implies

Qðz; tÞ ¼ 2
XR1ðzÞ

r¼0

rucðr; z; tÞDr

þ 2
XRðzÞ

r¼R1ðzÞ
rupðr; z; tÞDr

ð27Þ

where R1ðzÞ ¼ cRðzÞ; c ¼ 1� dðzÞ
RðzÞ and dðzÞ is the plasma

layer thickness [4].

The flow resistance k is defined as follows:
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k ¼
Xz

0

� op
oz
ðz; tÞ

Qðz; tÞ

" #
Dz ð28Þ

where z is any point in the section of tapered arterial

stenosis. Flow resistance values are obtained by substituting

� op
oz
ðz; tÞ ¼ A0 þ A1cos t and Eq. (27) in Eq. (28).

4. Results and discussion

The governing equations of the system are solved numeri-

cally using Crank–Nicholson finite-difference schemes to

discretize the spacial derivatives. The flow region has been

discretized by taking the step size in the radial direction

Dr ¼ 0:001 and the time step size is taken to be Dt ¼ 0:001
in order to guarantee the convergence of the numerical

solution to the sixth order. Hence, the solution domain (the

r � z plane) is divided into 10,00,000 meshes in order to

compute the required numerical results, which could be

useful to predict the actual flow phenomenon. Also, it is

observed that further reduction in Dr and Dt does not bring

about any substantial change, which leads to the stability of

the numerical techniques. MATLAB programming codes

are developed to compute the numerical values for velocity

profile, WSS and flow resistance for different values of the

parameters involved in the present study.

When blood flows in a uniform artery, the variation of

the axial velocity profiles of the one-fluid model for the

steady flow of Newtonian fluid and the two-fluid model

consisting of Jeffrey fluid in the core region and Newtonian

fluid in the peripheral region along with the experimental

results of [28] for blood containing 40% RBC has been

displayed in figure 3. It is observed that the rheology of

blood behaves like that of a Jeffrey fluid than that of a

Newtonian fluid. A comparative study of the present

numerical results with the corresponding steady-flow

solutions obtained by [40] and the steady flow of Newto-

nian fluid has been shown in figure 3. One of the remark-

able results is that the axial velocity obtained from the

present study seems to be closer to the experimental result

[28] for b ¼ 2;m2 ¼ 2; hm ¼ 0:4; k1 ¼ 0:1. Based on the

results obtained from the present investigation, one may

infer that the Jeffrey parameter, variable viscosity and the

plasma layer thickness affect the axial flow velocity. Hence

it is important to analyse the effect of these parameters in

this blood flow model. It is pertinent to point out here that

good agreement between the present results and the

experimental results [28] has been found, in the sense that

the experimental results lie within the range of the presently

computed values as displayed in figure 3.

The axial variation of WSS for different values of

parameters involved in the present study is depicted in

figures 4–7. Figures 4– 7 show that there is an increase in

the WSS until it reaches the midpoint of the stenotic region,

and decreases in the downstream of the region. The effect

of maximum stenotic height (ds) can be observed from

figure 4. As the stenotic height increases, the WSS

increases. Figure 5 shows the variation of WSS with axial

distance for different values of radially variable magnetic

field. Increase in parameter a1 causes WSS to increase. The

magnitude of WSS is comparatively lower in the case of

Jeffrey fluid without magnetic field. Therefore the presence

of magnetic field induces higher shear stress at the wall.

Figure 6 is plotted to see the axial variation of WSS in

the presence of a constant magnetic field and variable

magnetic field for the cases of converging tapered

(w ¼ 0:01), non-tapered (w ¼ 0) and diverging tapered

artery (w ¼ �0:01). It can be observed from figure 6 that

WSS increases in the upstream of the stenotic region,

reaches maximum at the midpoint of the throat and

decreases in the downstream of the region. WSS is found to

be more in converging tapered artery than in non-tapered

and diverging tapered artery. The variation of WSS in case

of variable magnetic field is comparatively higher than in

constant magnetic field. It is pertinent to note that as

compared with Jeffrey fluid with variable magnetic fluid,

WSS is higher in the case of constant magnetic field. Fig-

ure 7 shows the effects of time parameter t together with

pulsatile Reynolds number a2. The results presented in

figure 7 reveal that WSS is negatively increased as the

pulsatile Reynolds number a2 increases for a given value of

time t.

The important predictions of the present investigation are

enumerating the combined effects of different values of

Jeffrey parameter ðk1Þ, the plasma layer thickness (in terms

of c), the magnetic parameter (M), the parameter (a1)
involved in the expression of radially variable magnetic

field, the taper angle (w), the parameters involved in the

expression of core fluid viscosity (b; hm;m2) , time t, the

pulsatile Reynolds number (a2) and the axial distance (z) on

0 0.5 1 1.5 2 2.5
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0.6
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1
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r/R
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λ1 = 0.1
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Experimental results [29]
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viscosity

Figure 3. Velocity distribution with radial distance.
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the resistive impedance (figures 8–12). Figure 8 displays

the influence of peripheral layer thickness on the resistive

impedance when the other parameters are held constant.

The increase in the peripheral plasma layer thickness (or a

decrease in the parameter c) leads to a decrease in the

resistive impedance. Figure 8 reveals that for a lower value

of peripheral plasma layer thickness, the percentage of

increase in the axial variation of flow resistance becomes

high but this behaviour becomes less dominant for a higher

value of peripheral plasma layer thickness.

Figure 9 depicts the effect of radially variable magnetic

field on resistive impedance. It is observed from figure 9

that the blood flow experiences higher resistive impedance

for larger values of magnetic field parameter M. It is of

interest to mention that the nature of radially varying

magnetic field induces higher flow resistance in comparison

with that of a constant applied magnetic field. Blood

flowing through the tapered arterial stenosis experiences

lower flow resistance in the case of Jeffrey fluid without

magnetic field than in the presence of magnetic field.

Hence, it can be argued that the presence of magnetic field

slows down the blood flow, which is further aggravated by

increasing the parameter a1 involved in the expression of

radially variable magnetic field. As the value of the

parameter a1 increases, the rate of increase in the flow

resistance is less for the lower value of magnetic number

M whereas it becomes higher for the higher value of

magnetic number M. Figure 10 displays the axial variation

of flow resistance with respect to constant and variable

magnetic fields in the case of converging tapered, non-ta-

pered and diverging tapered artery. The nature of radially

variable magnetic field makes flowing blood to experience

more resistive impedance. Converging tapered artery

exhibits comparatively high resistive impedance than non-

tapered and diverging tapered arteries.

The numerical values of flow resistance for different

values of axial distance and the parameters (b; hm;m2 )

involved in the core viscosity have been computed and

displayed in figure 11. Hematocrit is the main factor that
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Figure 4. Variation of wall shear stress with axial distance for

different values of maximum stenotic height (ds) taking b ¼ 2; hm ¼
0:4;m2 ¼ 2;w ¼ 0:01; a2 ¼ 1; k1 ¼ 0:1; c ¼ 0:8 and t ¼ 1:
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determines the blood viscosity. The resistance to flow

increases as hematocrit level increases. Increase in b leads

to increase in flow resistance. The pertinent role of the

parameter m2 involved in the profile of core viscosity has

been studied and it is observed that increase in the

parameter m2 leads to decrease in the flow resistance, which

is a new information, for the first time, added to the liter-

ature. The significance of unsteady nature of blood flow can

be observed from figure 12. As time parameter t increases,

the resistance to flow increases. The magnitudes of flow

resistances are higher in the case of blood flow in unsteady

state than in steady state.
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Figure 7. Axial variation of wall shear stress for different values

of a2 and t taking b ¼ 2; hm ¼ 0:4;m2 ¼ 2;w ¼ 0:01; k1 ¼
0:3; c ¼ 0:8;M ¼ 2 and a1 ¼ 0:1:
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5. Conclusion

The present mathematical model sheds new light on investi-

gating the combined effects of Jeffrey parameter, peripheral

layer thickness, magnetic field parameter, taper angle, hema-

tocrit, the parameters (b;m2 ) involved in profile of core

viscosity and time on the physiologically important quantities

such asWSS and resistive impedance. Two-fluid models have

been considered where the fluid in the core region is assumed

to be a Jeffrey fluid and plasma in the peripheral plasma region

as a Newtonian fluid with variable viscosity under the influ-

ence of variable magnetic field. Furthermore, the parameters

involved in the present investigation certainly bear the

potential to influence the flow characteristics such as flow

velocity, WSS and flow resistance to considerable extent. The

flow variables such as velocity, WSS and flow resistance are

computed numerically. It is pertinent to point out here that

there is a good agreement between the present results and the

experimental results [28] and it has been found that that the

experimental results lie within the range of the presently

computed values of axial velocity as displayed in figure 3.

It is well known that accurately measuring the arterialWSS

in the case of pulsatile flow in a tapered stenosed tube is very

difficult and 20–50% experimental errors might occur in the

estimation of WSS [7]. Furthermore, the inter-correlation

between the fluid characteristics and atherosclerotic infection

exposes a prevailing association during higher value of WSS,

pulsatile nature of WSS, intimal condensing and plaque for-

mation [2, 6, 46]. Hence, a precise prediction of WSS distri-

bution is particularly useful in the thorough understanding of

the effects of blood flow on endothelial cells. In view of

importance of analysing the variation of WSS with respect to

parameters involved in thepresentwork, figures4–7havebeen

prepared for the WSS distribution. It is observed that WSS is

increased by increasing the values of Jeffrey parameter,

magnetic number (Hartmann number), the parameters b, a1,
hematocrit and the nature of converging tapered artery. The

increase in the peripheral plasma layer thickness (or a decrease

in the parameter c), the parameter (m2) and pulsatile Reynolds

number (a2) leads to a decrease in WSS.

The resistive impedance has been thought to be one of

the physiologically important flow variables, which is to

be investigated along with the effects of other parameters

on it due to the fact that it envisages whether the

required amount of blood (carrying nutrients and oxygen)

supply to vital organs (heart, brain, kidneys, etc.) is

ensured or not. The influence of the radially variable

magnetic field and constant magnetic field on the flow

resistance and WSS has been thoroughly investigated due

to their various applications in medical sciences,

including transport of drugs using magnetic particles as

drug carriers for targeted drug delivery, reducing blood

flow at the time of surgery, separating red cells from

blood and cancer tumour treatment. The peripheral

plasma layer thickness, the rheological behaviour of

blood as a Jeffrey fluid, the constant applied magnetic

field, the diverging tapered arterial stenosis and the

power-law parameter involved in the core fluid viscosity

reduce the resistance to flow, which, in turn, leads to

normalizing the exiting abnormal blood flow to a greater

extent and ultimately preventing sudden death.
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Figure 11. Variation of flow resistance with axial distance for
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It is theoretically observed in the present study that as

compared with the case of flow in a non-tapered arterial

stenosis, the percentage increase in WSS at the midpoint of

stenotic region (z ¼ 2:5) due to the presence of convergent

tapering in the stenosed artery becomes 12.39% while the

percentage decrease in WSS (at z ¼ 2:5) due to the pres-

ence of divergent tapering in the stenosed artery becomes

10.41%. Further, the percentage increase in the flow

resistance (at z ¼ 3:0) due to the presence of convergent

tapering in the stenosed artery becomes 41.84% while the

percentage decrease in the flow resistance (at z ¼ 3:0) due

to the presence of divergent tapering in the stenosed artery

becomes 24.67%. The observed results show that the effect

of tapering in blood vessel on flow characteristics (WSS

and flow resistance) is significant even for the case of mild

tapering (w ¼ 0:05 or -0.05).

Although the present analysis enlightens the effects of

pulsatility, radially variable magnetic field and core fluid

viscosity, non-uniform cross-section of artery and non-

Newtonian rheology on the flow characteristics, the math-

ematical model has to be further extended by taking into

account several properties of blood. Apart from the pul-

satile nature of the blood flow, blood is a concentrated

mixture of viscoelastic particles. Blood flow in the arteries

shows many other fluid dynamic complexities such as

curvature, viscoelastic nature, tapering, narrowing and

branching, and hence velocity, flow rate, WSS and resistive

impedance will be affected by these phenomena [52].

Further, the motion and nature of the arterial wall are to be

considered. Hence, an active research has to be performed

in these directions to develop a realistic model that over-

comes the limitations of this study. In view of this, a

modest effort will be made to investigate the problem of

blood flow by incorporating the factors mentioned earlier

(two or three factors at a time, impossible to consider all the

factors simultaneously) and the numerical findings will be

published in the future papers.
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List of symbols

Dimensional
�z axial distance

�r radial distance
�t time
�R1ð�zÞ radius of the central core region
�Rð�zÞ radius of the artery in the stenotic region

�uc axial velocity of the core fluid

�vc radial velocity of the core fluid

�up axial velocity of plasma

�vp radial velocity of plasma

�p pressure
�B2
0ð�rÞ variable magnetic field

�lð�rÞ consistency function

�lcð�rÞ variable viscosity of the central core fluid

�lp viscosity of the plasma

�qc density of the central core fluid

�qp density of plasma

�r electrical conductivity of the fluid
�k2 retardation time

Non-dimensional
ds maximum stenotic height

d location of the stenosis

n1 shape of stenosis

w taper angle

k1 ratio of relaxation to retardation times

A0 amplitude of steady pressure gradient

A1 amplitude of pulsatile pressure gradient

b constant in variable core viscosity

hm hematocrit

Qc flow rate in the core region

Qp flow rate in the peripheral plasma region

Q total flow rate

M magnitude of magnetic field strength

a1 constant in variable magnetic field

Srz shear stress

sw wall shear stress

d plasma layer thickness

k flow resistance

Appendix A

The continuity and momentum equations governing the

pulsatile flow of Jeffrey fluid in the presence of magnetic

field are given by (Eqs. (2)–(4)) in section 2)

o�vc

o�r
þ �vc

�r
þ o�uc

o�z
¼ 0 ðA-1Þ

�qc

o�uc

o�t
þ �vc

o�uc

o�r
þ �uc

o�uc

o�z

� �
¼ � op

oz
þ 1

�r

o

o�r
ð�r�SrzÞ

þ o

o�z
ð�SzzÞ � �r�B2

0ð�rÞ�uc

ðA-2Þ

�qc

o�vc

o�t
þ �vc

o�vc

o�r
þ �uc

o�vc

o�z

� �
¼ � op

or
þ 1

�r

o

o�r
ð�r�SrrÞ þ

o

o�z
ð�SrzÞ

�
�Shh

�r
ðA-3Þ
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where the stress components are expressed as follows:

�Srr ¼
2�lcð�rÞ
1þ k1

1þ �k2 �vc

o

o�r
þ �uc

o

o�z

� �� �
o�vc

o�r
; ðA-4Þ

�Srz ¼
�lcð�rÞ
1þ k1

1þ �k2 �vc

o

o�r
þ �uc

o

o�z

� �� �
o�vc

o�z
þ o�uc

o�r

� �
;

ðA-5Þ

�Szz ¼
2�lcð�rÞ
1þ k1

1þ �k2 �vc

o

o�r
þ �uc

o

o�z

� �� �
o�uc

o�z
; ðA-6Þ

�Shh ¼
2�lcð�rÞ
1þ k1

1þ �k2 �vc

o

o�r
þ �uc

o

o�z

� �� �
�uc

�r
: ðA-7Þ

Using non-dimensionalization as in Eq. (9), the gov-

erning equations in dimensionless form are given as

follows:

ds

ovc

or
þ vc

r

� �
þ ouc

oz
¼ 0 ðA-8Þ

a2

q0

ouc

ot
þ Re�ds

�L0

vc

ouc

or
þ Re�uc

ouc

oz
¼ � op

oz
þ 1

r

o

or
ðrSrzÞ

þ �2
o

oz
ðSzzÞ � M2uc

ðA-9Þ

a2

q0
ds�

2 ovc

ot
þ Re

q0
d2s �

3vc

ovc

or
þ Reds�

3uc

ovc

oz
¼ � op

or

þ �2
1

r

o

or
ðrSrrÞ þ �2

o

oz
ðSrzÞ � �2

Shh

r

ðA-10Þ

where

Srr ¼
2ds

1þ k1
f1ðrÞ 1þ k2ds vc

o

or
þ uc

ds

o

oz

� �� �
ovc

or

� �
ðA-11Þ

Srz ¼
f1ðrÞ
1þ k1

1þ k2ds vc

o

or
þ uc

ds

o

oz

� �� �
ds�

2 ovc

oz
þ ouc

or

� �
ðA-12Þ

Szz ¼
2

1þ k1
f1ðrÞ 1þ k2ds vc

o

or
þ uc

ds

o

oz

� �� �
ouc

o�z

� �
ðA-13Þ

Shh ¼
2�

1þ k1
f1ðrÞ 1þ k2ds vc

o

or
þ uc

ds

o

oz

� �� �
u

r

� 

ðA-14Þ

and f1ðrÞ ¼ 1þ b1hmðRm2

1 � rm2Þ. The non-dimensional

retardation time may be defined as k2 ¼
�k2 �u0
�L0
.

In the initial stage of mild stenosis, ds ¼
�ds
�R0
\\1; in this

case, from Eq. (A-8), ouc

oz
\\1. Using the assumptions in

[1, 4, 10] subject to the conditions

(i)
Re�dsn

1
n1�1

1
�L0

\\1 and (ii) �n
1

n1�1

1 �Oð1Þ ð� ¼ �R0
�L0
Þ,

the lumen radius is very small compared to the wave-

length of pressure wave, equation of motion in radial

direction (A-10) will reduce to op
or
¼ 0 [53] and low-Rey-

nolds-number approximation [54, 55], and the momentum

equations become

a2

q0

ouc

ot
¼ � op

oz
þ 1

1þ k1

� �
1

r

o

or
1þ bhm Rm2

1 � rm2
� 	� � ouc

or

� M2ðrÞuc;

ðA-15Þ

op

or
¼ 0: ðA-16Þ

Similarly, the governing equation for Newtonian fluid in

peripheral plasma region can be obtained by performing an

order of magnitude analysis as done here. For further

details regarding the order of magnitude analysis, see ref-

erences [56, 57].
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