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Abstract. Leaks in pipelines of the oil and gas industry are an economic and environmental problem that

needs to be detected early and effectively. Wireless sensor networks (WSNs) have been researched as one of

those technologies to be used in the remote monitoring of pipeline infrastructure. The idea of using tiny sensor

nodes on pipelines seemingly provides industries with effective and reliable real-time monitoring, and better

coverage density per area. The benefits are apparent in the deployment of WSNs for pipeline monitoring.

However, what really lacks is an actual comparison in the detection performance between deployment in

overground pipelines and underground pipelines. Extensive research has been going on the use of wireless

underground sensor networks for a number of applications. This paper attempts to provide a statistical insight on

the concepts of leak detection performance of WSNs when deployed on overground and underground pipelines.

The approach in the study employs the hypothesis testing problem to formulate a solution on the detection plan.

Through the hypothesis test, the maximum likelihood ratio scheme is used to provide an optimal performance

analysis of the detection idea. The test also takes into consideration the signal to noise ratio performance of the

two settings of underground and overground and is crucial in bringing up a conjecture on the performance of

detection. As would be shown in the paper, thresholds, determined by probability, are the key in ensuring a good

detecting performance for the WSN.

Keywords. Wireless sensor networks; underground pipelines; overground pipelines; leak detection; maximum

likelihood ratio test; hypothesis test.

1. Introduction

The need to transport the high-demand products of oil and

gas from a production point to an area of supply has led to

the usage of pipeline infrastructure. These pipelines, which

can either be deployed overground or underground, are

specifically designed and manufactured to carry these

usually toxic and dangerous products through vast areas of

a few hundred metres to several thousand kilometres. The

areas are often close to hubs of high population or of high

environmental sensitivity. With such risks, methods have to

be sought to preserve these lines and maintain their con-

dition at a good level [1, 2]. Furthermore, with the inten-

tional tampering of pipeline infrastructure on the increase,

through terrorism and vandalism, the need for a reliable

pipeline monitoring system is highly significant [3, 4].

Wireless sensor networks (WSNs) are just one of those

technologies used in the remote monitoring of pipeline

infrastructure [5–7]. With the deployed nodes, a sensor

network can check the infrastructure condition for corro-

sion and most importantly leaks, which are essential

occurrences to determine intentional tampering or a natural

phenomenon due to degrading or ruptured equipment.

Compared with other technologies that use a wired form of

communication, the deployment of sensor networks that

communicate wirelessly for pipeline monitoring offers

several advantages, which include ease of deployment, real-

time and reliable data capturing, concealment and better

coverage density [8, 9].

This paper focuses on the leak detection performance of

WSNs when deployed on an overground pipeline and an

underground pipeline. The investigation is through a sta-

tistical analysis and evaluation by the maximum likelihood

ratio (MLR) technique used in the detection theory. The

reason for approaching the MLR scheme in the analytical

evaluation of the detection plan is the fact that the MLR is a

simpler and more straightforward approach than other

estimations such as those using the Bayesian criteria [10].

Through this paper, it would be shown that statistically the

MLR criterion needs only a prior distribution model to turn
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the detection or estimation problem into an analytical

optimization problem, which is the focus of this paper.

Additionally, under the general assumption that leak

occurrence comes with a large number of observed mea-

surements, the MLR scheme is seen to achieve the smallest

possible variance of any estimator. In other words, it is the

best guaranteed estimator that will achieve the most opti-

mum parameter estimation in the detection problem.

Therefore, the single focus on the MLR scheme to evaluate

detection performance is an apparent approach [11].

The need for such a study is apparent. The occurrence of

leaks leads to environmental pollution and a dangerous

hazard. Additionally, these leaks are also an economic

problem with millions of tonnes of oil and billions of m3 of

gas lost each year, which amount to about 7% of the total

transported oil or gas [12]. Early leak detection is therefore

of paramount importance and over the years, WSNs are

being used for just this in overground and, more recently,

underground pipelines [13–17]. This study attempts to

provide an insight on the mathematical approach of leak

detection performance with WSNs to establish the param-

eters required for performance. It is important to note that

this paper is entirely conceptual and aims to use theory to

bring up a conjecture. The approach is for the two settings

of overground and underground pipelines, which are dis-

tinguished through their wireless communication channel.

2. Related works

Works on pipeline leak detection with WSNs have been

pursued at different levels. Magnetic Induction (MI)-based

WSN for underground pipeline monitoring, also known as

MISE-PIPE, is pursued by Sun et al [18]. Through the

study it is discovered that the MISE-PIPE scheme involves

sensors deployed both inside and outside the pipeline,

which include pressure sensors, acoustic sensors and soil

property sensors that cooperatively work together to detect

and localize a pipeline leak. The MI-based WSN comprises

coils connected to the various sensors that are systemati-

cally placed along the underground pipeline structure to

provide the sensors with efficient and robust wireless

communication among themselves. Sun et al [18] provide a

methodology and theory in deploying the MISE-PIPE idea

but do not really provide the detection scheme or detection

approach in detecting a leak. To be precise, Sun et al [18]

focus on the design architecture of the MISE-PIPE rather

than on the actual detection performance analysis.

Reference [19] is a research manuscript on WSNs for

pipeline water loss detection. Though not entirely focusing

on pipelines of the oil and gas industry, Christodoulou et al

[19] offer a framework on the WATERSENSE project,

whose aim is to receive sensor signals of a deployed WSN

on a water pipeline for the purpose of a leakage decision

support and management system. They focus on the

development and implementation of the WATERSENSE

project but again do not provide an actual conceptual idea

on the detection performance analysis, which can be

important in improving the operational performance of the

deployed system.

Nawaz and Rehman [20] provide insight into the dif-

ferent leakage problems that may arise in various pipeline

industries and how WSN is used as an applied solution to

monitor the pipeline leakage. This reference is more of a

general paper that puts some of the WSN leakage detection

techniques into one manuscript and aims to briefly describe

and compare their functionalities. The study provides good

insight on the technologies of pipeline monitoring using

WSNs but yet again fails to provide insight on the actual

detection approach.

Boaz et al [21] focus on wireless sensor nodes for gas

pipeline leak detection and localization. They discuss the

theories and environmental constraints for wireless sensor

nodes and its usage in the detection of sound excited by

jetting gas indicating a gas pipeline leakage, and about its

frequency. This work is precise and focuses on the envi-

ronmental characteristics of gas in air for sensor detection

in depth. An architecture was even proposed and designed

using various components such as the XBee RF module and

a microcontroller, whose results were produced by simu-

lation. However, just like the previous works, [21] fails to

deliver on the performance analysis of detection. This is

also the case for references [22–25]; all of them focus on

architecture and implementation.

This paper, unlike the others, attempts to provide an

actual detection scheme that provides insight on the

detection performance analysis of pipeline leakage. This

study and application of discussed concepts can enable

designing of systems to improve performance. The work

also provides a comparison of detection between under-

ground and overground pipelines, which are the two most

important scenarios pipelines deployed in industries. The

entire work of this paper is based on the MLR scheme,

which, as previously mentioned, is the best guaranteed

estimator that will achieve the most optimum parameter

estimation since, after all, leak detection is a decision

estimation process.

3. Overview of study

Consider the scenario of figure 1, where acoustic omni-

directional sensor nodes operating at narrowband frequen-

cies are deployed in cross sectional groups across a

pipeline.

Each group makes up a WSN and has a maximum of four

sensors covering each cylinder section of the pipeline.

A Base Station (BS), also a sensor device, is deployed at

the top of the structure to act as a hub where all information

from the sensors goes to. The hub can be placed at the very
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end of the pipeline or at intermediate stops between groups

of sensors. The sensors are connected with a strip that also

has sensing abilities but with very limited capabilities.

Practically, these WSNs consist of MICAz motes with

acoustic and pressure sensing capabilities. The outdoor

range of these sensor devices would be about 100 m [26].

Therefore, the optimal distance between the sensor strips

would also be 100 m. Hence, for a 1000-km pipeline, for

example, the structure would need precisely 10,000 strips

each equipped with four motes. Assuming that each mote

costs $100, the default deployment costs of the WSNs on

the pipeline infrastructure would be $4 million minus the

BS sensor nodes. This $4 million, compared with other

schemes such as the Fibre optic leak detection cable, which

costs around $8 million [27], is a cheaper approach. Fun-

damentally, the deployment costs of the WSNs would

depend on the sensing range capability of the sensor devi-

ces. Therefore, an improved sensing range would drasti-

cally decrease costs.

When a leak occurs, as shown in figure 2, the sensor

nodes of each group detect this leak, make a decision on

whether the leak occurred or not and send the information

wirelessly to the corresponding nearest BS of the group for

a further and final decision on the existence of the leak. A

sensor device decides to detect the leak by estimating the

approximate distance between it and the occurrence

depending on its coverage capability. If within coverage,

detection is carried out with the BS making its own deci-

sion based on multiple decisions from the detecting sensors.

With this scenario played out, the WSN detection system is

visualized as shown in figure 3 [28].

In figure 3, K is the number of sensors (S), i represents

the individual sensor number (i.e., S1, S2, S3, …, Si, …, K),

Ai represents the acoustic signal from the leak at sensor

i (i.e., A1, A2, A3, …, Ai, …, K) and f(xi) is the function of

measurements that is sent to the BS if the sensor decides

that a leak is present. Fundamentally, a sensor makes this

decision based on its noise-degraded measurements

whereas the BS makes a decision based on multiple deci-

sion functions of measurements from the sensors.

4. Detection testing synthesis

In this section of the paper, a testing problem is formulated

to provide insight on the parameters involved with the

detection scheme. It is through this preparation that further

evaluation is made on the detection performance of WSNs

for pipeline leaks.

4.1 Testing problem

The signal picked up by the sensor nodes, in accordance

with figure 3, is the effective sound pressure produced by

the leak under the surrounding background noise. To be

precise, the occurred leak emits an acoustic sound signal

that alters the normal state of background noise. The aim is

to detect the sound signal amidst noise; since this is random

and undefined with uncharacterized possibilities, investi-

gating whether the leak is present or not is a hypothesis

testing problem [28–30].

Statistically, to carry out the detection testing involves

taking measurements and through those measurements a

decision is made on the occurrence of the leak. Thus, there

are two probable outcomes, which are

• whether a leak is absent amidst the background noise

measurements, defined as the zero hypothesis H0.

• whether a leak is present amidst the background noise

measurements, defined as the alternate hypothesis H1.

To investigate the two possibilities, also referred to as the

binary testing procedure, the sound measurements are first

considered to be modelled as a continuous random variable

x. This random variable is a function that maps the random

occurrence of the leak to an infinite number of values and a
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good representation in describing the endless unpre-

dictable nature of noise. Under the hypothesis H0, the

testing measurements are modelled as the acoustic back-

ground noise that affects the sound pressure measurement

of the leak. They consist of sounds of surroundings where

the pipelines are deployed, which includes a sum of many

sources of sound noise. For simplicity and due to the central

limit theorem, which states that the sum of several inde-

pendent random variables tends to a normal distribution as

the number of random variables in the sum grows to infinity

[28, 31], the background noise is approximated by a mean

square of sets of random variables that follow normal dis-

tribution. Thus, without the occurrence of the leak, sound

measurements and under the null hypothesis H0; the

acoustic background noise is modelled by a normal distri-

bution N with mean lo and variance r2:

x ¼ Nðlo; r2Þ Under H0 ð1Þ

On the other hand, when a leak occurs this assumption is

presumed under the alternative hypothesis H1. Here, the

normal distribution of the background noise is excited to

produce a different normal distribution under H1. This

excitation includes the effects of H0 and an unknown mean

shift value A, depending on the loudness of the leak.

Therefore, the new and alternate sound measurement under

H1 is modelled as follows:

x ¼ Nðlo þ A; r2Þ Under H1 ð2Þ

It is important to note that the mean shift here is always a

positive value because it is assumed that the A value is an

additional parameter to the normal state of noise. In other

words, A is an added occurrence and therefore an added

shift that can only be positive is included to fit into the

intuition of an occurred leak amidst noise. Equations (1)

and (2) are considered to be the probability density func-

tions (PDFs) that characterize the probable behaviour of the

sound measurements under each hypothesis, hence simpli-

fying the subsequent test.

Given this set-up, the performance characterization of

the binary test is approached through different probabilities,

namely, the probability of detection, the probability of false

alarm and the probability of miss. The following are their

definitions [32]:

• The probability of detection (PD) is where H1 is true it

is decided, denoted as prob{H1 true, decide H1} = PD.

• The probability of false alarm (PFA) is where H1 is

decided but H0 is actually true, expressed as prob{H0

true, decide H1} = PFA.

• The probability of miss (PM) is where H0 is decided

but H1 is actually true, represented as prob{H1 true,

decide H0} = PM.

Note that the probability of detection can also be expressed

as follows: PD = 1 - PM, and additionally, the outcome

where H0 is decided and is true can be expressed as follows:

prob{H0 true, decide H0} = 1 - PFA.

The two most important probabilities that characterize

the performance of the testing are PD and PFA, where the

ultimate goal is make the correct decision given the sce-

nario. In deciding which one is true between the two

probabilities, the sound measurements are observed to see

whether they lie underneath the PDF of PFA or the PDF of

PD. This essentially means the separate integration of the

two probabilities with their corresponding PDFs.

Let us assume that RO indicates the region where the

measurements lie under the PDF of PFA, and R1 describes

the region for the PDF of PD. RO and R1 are defined using

the function of distribution and a threshold. Assume that

T(x) is the function and c is the threshold. Then, if T(x) is

greater than c; it is decided that R1 is true and the mea-

surements lie in the region R1. Alternatively, if T(x) is less

than c; then the measurements lie in R0. This is intertwin-

ingly linked to the binary test, where the corresponding

decisions of R0 and R1 also lead to the decisions of H0 and

H1, respectively, and expressed as follows:

T xð Þ[ c ¼ R1;H1 ð3Þ

T xð Þ\c ¼ R0;H0: ð4Þ

The entire testing problem is therefore illustrated as shown

in figure 4 [32],

where fH0
ðTÞ ¼ PDF of T(x) when H0 is true and fH1

ðTÞ ¼
PDF of T(x) when H1 is true. In essence, PFA and PD are as

follows:

PFA ¼
Z1

c

fH0
Tð ÞdT ; ð5Þ

f (T)HO

f (T)H1

T

Decide HO Decide H1

Ho

1H

Figure 4. PD and PFA illustration for a normal distribution of

measurement x.
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PD ¼
Z1

c

fH1
Tð ÞdT: ð6Þ

Putting PFA and PD together provides a conjecture on the

receiver performance of the sensor in detecting the leak. To

be precise, what is observed is the variation of PD and PFA

with respect to a changing c. The next step to the testing is

finding the test procedure T(x) that provides optimal per-

formance in the leak detection ability.

4.2 Likelihood ratio test and maximum likelihood

detection

In providing an optimal test procedure T(x), the known

PDFs of H0 and H1 are further analysed. It is understood

that a good performance detector is one where PD is as high

as possible and PFA is as low as possible. This means the

sensor detector has to maximize PD for a given PFA. To

achieve this, the Neyman Pearson (NP) test is used, where

the measurements x are observed below a ratio of the PDF

of H1 to that of H0 and and plugged into Eqs. (3) and (4).

The new equations give rise to the Likelihood ratio L(x),

which enables the test to maximize PD for a given PFA

expressed as follows [33]:

L xð Þ ¼ fH1
ðxÞ

fH0
ðxÞ [ c to decide that H1 is true ð7Þ

L xð Þ ¼ fH1
ðxÞ

fH0
ðxÞ\c to decide that H0 is true ð8Þ

In summary, Eqs. (7) and (8) say that a comparison is

made between the likelihood of observing a value x given

that H1 is true to the likelihood of observing a value x

assuming H0 is true. The aim based on Eq. (7) is to get a

bigger fH1
ðxÞ for the purpose of choosing H1. A bigger

fH1
ðxÞ will mathematically maximize PD for a given PFA;

hence the MLR test is introduced through Lmax(x), where all

attempts are made to maximize fH1
ðxÞ by estimating

unknown parameters [34].

LmaxðxÞ ¼
maxðfH1

ðxÞÞ
fH0

ðxÞ : ð9Þ

5. Detection testing application with WSNs

Given the scenario of figure 3 in section 3, the detection

system follows a decentralized scheme where sensor nodes

detect a leak, make a decision on whether a leak is present

or not and sends the relevant information to a BS for further

decision evaluation on the presence or absence of the leak.

Thus, the testing and evaluating scheme has two rules to

follow:

1. sensor decision rule

2. BS decision rule

Both rules are tested with the MLR test in evaluating the

detection performance of a leak.

5.1 Sensors’ decision rules

In accordance with figure 3 and in relation to the derived

synthesis in section 4, the MLR test is computed for each

sensor i. It is assumed that q samples of measurements are

taken per distribution for each sensor i, where q = 1,…, Q.

Therefore, Eqs. (1) and (2) are modified to the following

single equation [28]:

xi½q� ¼
N lo;i; r

2
i

� �
Under H0

N lo;i þ Ai; r2i
� �

Under H1

�
ð10Þ

where uo,i and r2i can be calculated as follows:

lo;i ¼
1

Q

XQ
q¼1

x½q�; ð11Þ

r2i ¼
1

Q� 1

XQ
q¼1

ðx q½ � � lo;iÞ2: ð12Þ

Since the measurements follow a normal distribution, the

PDF equations defined for each hypothesis are expressed as

follows:

fH0
ðxiÞ � N lo;i; r

2
i

� �

¼ 1

ð2pr2i Þ
Q
2

exp � 1

2r2i

XQ
q¼1

ðxi q½ � � lo;iÞ2
( )

ð13Þ

fH1
ðxiÞ � N lo;i þ Ai; r

2
i

� �

¼ 1

ð2pr2i Þ
Q
2

exp � 1

2r2i

XQ
q¼1

ðxi q½ � � ðlo;i þ AiÞÞ2
( )

ð14Þ

With the defined PDFs of (13) and (14), the likelihood

ratio test for each sensor is expressed as follows:

Li xð Þ ¼ fH1
ðxiÞ

fH0
ðxiÞ

[ ci ð15Þ

MLR of (15) requires maximizing (14); if l1;i ¼ l0;i þ
Ai; ri then (14) is modified to

fH1
ðxiÞ ¼

1

ð2pr2i Þ
Q
2

exp � 1

2r2i

XQ
q¼1

ðxi q½ � � l1;iÞ2
( )

ð16Þ

It is very common with exponential densities to simplify

things by taking the natural logarithm. This is because the

natural logarithm is a function that essentially does not
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change the characteristics for a given order [28]. Thus, the

natural log of (16) is

lnðfH1
ðxiÞÞ ¼ �lnð 2pr2i Þ

Q
2

� �
� 1

2r2i

XQ
q¼1

ðxi q½ � � l1;iÞ2:

ð17Þ

The equation to be maximized is (17) and it is known

that the extrema of any function is where the derivative

equals zero. Therefore, taking the derivative of (17) with

respect to l1;i gives

olnðfH1
ðxiÞÞ

ol1;i
¼ 1

r2i

XQ
q¼1

ðxi q½ � � l1;iÞ ¼
1

r2i

XQ
q¼1

ðxi q½ � � Ql1;iÞ

ð18Þ

Equating equation (18) to zero and solving for l1;i;max

yields

l1;i;max ¼
1

Q

XQ
q¼1

xi q½ �: ð19Þ

Thus, replacing l1;i;max of (19) with its equivalent in (16)

maximizes the likelihood ratio of (15), defining the MLR.

In perspective, if a sensor decides that a leak is present, it

sends its estimated MLR of (15) to the BS.

In addition to maximizing (15), further clarifications

are pursued as regards the decision rules of the sensor

in detection. A threshold, qi; is introduced to replace

the assumption of Eq. (8) given that H0 is true.

Therefore, a combination of this threshold with that of

H1 yields the final decision rule for the sensors given as

follows:

Ui xið Þ ¼ Li xið Þ if Li xið Þ� ci
qi if Li xið Þci

;

�
ð20Þ

where qi and ci are thresholds that are set.

5.2 BS’s decision rules

At the BS, all decisions are received from the sensors

depending on Eq. (20). The job of the BS is to decide

whether a leak occurred or not depending on the product of

the sensors’ information. Again, if K is the number of

sensors, the decision rule at the BS is formulated as

follows:

U0 U1; . . .UKð Þ ¼ 1 if
Qk
i¼1

UiðxiÞ� c0

0 otherwise

8<
: ð21Þ

where 1 is when leak is present and 0 is when leak is

absent; co is the set threshold.

According to Koskiahde [28], a reasonable co is calcu-

lated as follows:

c0 ¼ aqK ð22Þ

where r is a factor that depends on:

• the number of sensors in the network,

• the PFA of the sensors and

• the PFA of the BS.

6. Leak sound and communication channel
characteristics

As reiterated, when a leak occurs it emits an acoustic

energy that propagates both inside and on the outer surface

of the pipeline. This energy gives off a sound pressure,

which can be measured and analysed. The sound pressure is

converted to sound power and depending on the distance

from the leak, the sound pressure level at the sensor node

can be calculated as follows [35–37]:

LP ¼ LW � Adiv ð23Þ

where LW is the sound power level relative to a 1 pW

reference sound power and Adiv is attenuation due to geo-

metrical divergence given by Eq. [28]

Adiv ¼ 20log10
d

d0

� �
þ 11: ð24Þ

In Eq. (24), d is the distance the sound propagates and do
is the reference distance, do = 1 m. Thus, the sound pres-

sure level Lp [dB] at a sensor is

LP ¼ LW � 20log10
d

d0

� �
� 11: ð25Þ

Equation (25) gives the measure of Lp in terms of dis-

tance and sound power level. The relative measure of Lp
[dB], however, which is used to determine the pressure

level in terms of a reference power level is given by [38]

LP ¼ 20log10
Prms

Pref

� �
ð26Þ

where Prms is a given sound power in Pascals (Pa) and Pref

is the reference level. Pref is usually given as

20 lPa RMSð Þ ¼ 2� 10�5 Pa, which is the typical value

for hearing in air.

To distinguish between the underground and overground

settings for the performance of sound pressure level

detection, it is assumed that an underground WSN

deployment takes into consideration the presence of soil or

rock that hampers performance. It is also assumed that

overground there is no such hampering. Therefore, with this

consideration, the signal to noise ratio (SNR) would be
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different for the two settings, which also affects the prob-

ability of detection performance. The SNR is estimated by

the following equation [12]:

SNR ¼ 10 log10
LW

r

� �
dB ð27Þ

where LW is the sound power in Watts or numeric represen-

tation, and r is the noise variance. Using Eq. (27), the vari-

ance is adjusted to suit the conditions of the settings. Since it

is assumed that underground setting has more signal ham-

pering effect than overground, the variance for underground

would be significantly higher than the variance of overground

rUnder [ rOverð Þ: To elaborate on this notion of variance, in

the underground environment, signal propagation would be

heavily affected and attenuated by the presence of soil and

rock. Hence, measurements coming from the leak to the

sensor devices or communication between the sensor devices

and theBSwould be less precise and less accurate. In terms of

the variance of the PDF, a larger variance would indicate a

less precise estimator, which consequentlywouldmean a less

accurate hypothesis testing [39]. This higher variance flattens

the probability distribution curve more than that of the lower

variance. Therefore, this decreases the SNR and decreases

the probability of detection performance for the underground

setting. The SNR percentage difference between the two

settings is calculated as follows:

SNR ¼ SNROver dBð Þ � SNRUnder dBð Þ
SNROver dBð Þ � 100%: ð28Þ

Linked to the SNR is the packet loss probability for

performance. According to [40], the probability of a packet

lost in the wireless communication channel is

Pc packet lostð Þ ¼ ð 1� pð Þ þ pð1� 1� pÞB�1
� �

ÞS ð29Þ

where B is the number of sensors in the network involved in

the detection and S is time slots. The optimal probability (p)

of sending data in one time slot is

p ¼ 2

K þ 2
ð30Þ

where K is the total number of sensors in the network.

7. Evaluating leak detection performance
with WSN

This evaluation follows the works of Koskiahde [28] and

reference [41], where sensors were deployed and a leak

occurred 172.5 m away with an acoustic power of 35 dB.

Using Eq. (24), Prms was calculated to be 1 mPa. This value

was used as the mean of the system, whose variance and

SNR values were chosen to fit the settings of an under-

ground and overground environment.

The leak detection with WSNs uses the MLR scheme,

and the parameters presented in to analyse performance for

the two settings of underground and overground are pre-

sented in table 1. The parameters of table 1 are of a general

case and apply to all materials transported through the

pipeline. The simulation procedure was as follows.

Sensor nodes and a leak occurrence were first placed in

x–y coordinates. It was assumed that both sensor and leak

placement were within 1 m in diameter of pipeline struc-

ture. Hence, in a two-dimensional setting, the y-axis or

height extends from 0 to 1 m, while x-axis extends from 0

to ? m. The distance of the leak from all placed sensors

and sound pressure were then computed. The sensor range

value is presented in table 2; a distance less than the range

implies that the associated sensors had detected the leak

determined by Eq. (25). Noise was added into the sensor

computation using the following equation:

x ¼ lþ
ffiffiffi
r

p
� ðrandom valuesÞ: ð31Þ

To generate data of the sensors for the H0 and H1 criteria,

the following condition was used:

H0 ¼ x and H0 ¼ xþ LP ð32Þ

where Lp is the calculated sound pressure from leak to all

associated sensors determined by range. Once H0 and H1

were sought, the maximum likelihood was then calculated

using the derivations in section 5.1 (Eqs. (10)–(20)) based

on a set threshold q: A wireless communication simulation

for sensor to BS was then carried out using Eqs. (29) and

(30) based on q: A centre fusion processing scheme at the

BS was then established using Eqs. (21) and (22) with a

general simulated result and insight into the number of

packets dropped and the number of detections at the BS.

The simulated results and discussion are as follows.

A deployment of two sensors with a varying q in the

detection of the leak was first simulated for the under-

ground and overground settings. Figure 5 shows the result.

From figure 5, it can be seen that as proven, an

increasing q (threshold for the probability of false alarm)

Table 1. Simulation parameters.

Overground parameters Underground parameters

l ¼ 10�3 l ¼ 10�3

r ¼ 10�6 r ¼ 10�3

a ¼ 1 a ¼ 1

SNR = 0.02 SNR = 0.58

Table 2. Sensor parameters

Range 100 m

q 1–11
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decreases the probability of detection, therefore ham-

pering performance. However, this degradation is

noticeably significant for an underground pipeline than

an overground pipeline; in fact, about a 15% and greater

difference for a high performing q (i.e. q = 1, 2, 3) and

about a 5% and less difference for a low performing q
(i.e., q = 6, 7, 8). This just proves that in order to

achieve a good detector for the sensorq must be as low

as possible. However, this low threshold comes with a

cost as shown in figure 6.

As observed from figure 6, a low q also means more

packets dropped during wireless communication between

sensor node and the BS. This again is more significant for the

underground pipeline than overground, indicating that the

presence of soil or rock significantly hampers communica-

tion and therefore also affects performance. Consequently, in

the underground situation, there needs to be some kind of

compromise in setting the threshold to achieve adequate

detection and a low rate of dropping of packets.

A further insight is obtained in determining the other

factor that can affect the performance of detection. The

number of sensors in the WSN was investigated. Figure 7

shows performance through the number of sensors for the

best observed threshold of q = 1.

As observed and as proven, the low threshold achieves

100% detection for all number of sensors in the WSN for

the overground setting. However, for the underground, a

considerable number of sensors will be needed to achieve

100%. This means, according to the default configuration of

deployment, a total of two sensors, one on each (opposite)

side of the pipeline will be enough to achieve 100%

detection for an overground setting; whereas for an

underground pipeline, two groups of four sensors, spaced

out accordingly, will be required to achieve 100% detec-

tion. This indicates that an underground WSN deployment

will be a much more expensive endeavour than an over-

ground deployment.

In observing the worst possible scenario, q was set high

at 10 and figure 8 shows the results.

It can be seen that a high threshold significantly hampers

performance and a lot of sensors will be needed to achieve

adequate detection. However, this is noticeably worse for

an underground setting than an overground one.

A plot of the probability of detection against the total

number of packets dropped given the number of sensors

and threshold, q; was pursued as shown in figures 9–12.

Figure 5. Probability of detection vs. qat Base Station for two

sensors.

Figure 6. Total number of packets dropped at Base Station vs. q
for two sensors.

Figure 7. Probability of detection vs. number of sensors for

q = 1.

Figure 8. Probability of detection vs. number of sensors for

q = 10.
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As observed from the figures, the probability of detection

has a linear relationship with the total number of packets

dropped. To be precise, as the probability of detection

increases so does the total number of packets dropped.

Additionally, as the number of the sensors increases in the

network so does the probability of detection and

consequently the total number of packets dropped. In

essence, the number of sensors is directly proportional to

the detection capability and network communication per-

formance of the WSN.

Applying these observations to the deployment scenario

of underground and overground is the fact that the under-

ground setting has more severe packet loss than overground

as the probability of detection increases. This literally

indicates that the detection performance in underground is

weak compared with overground based on the set

assumptions. Again, as proven in figure 6, threshold is a

significant factor in the total number of packets dropped

and hence the detection performance of the WSN. At q = 1

the total number of packets dropped is more than the

packets dropped at a higher set threshold of 10. Equally,

also proven in figure 6 is the fact that a higher threshold

also means a lower probability of detection. Hence, in

perspective, the threshold is inversely proportional to both

the total number of packets dropped and the probability of

detection.

In summary, to achieve adequate detection for the

underground pipeline scenario, q must be low enough with

a compromise consideration in the total number of packets

dropped. Equally, the total number of sensors used for

monitoring the pipeline must be more and spaced out at

smaller distances between each other than an overground

deployment.

8. Conclusion

This paper provides an analysis and evaluation on the leak

detection performance for underground and overground

pipelines. It was discovered that the threshold for the prob-

ability of false alarm is crucial in determining adequate

detection of the source. Additionally, the number of

deployed sensors is also another factor that affects perfor-

mance. In relation to the surrounding environment of the

underground and overground pipeline, it was discovered that

Figure 11. Total number of packets dropped vs. probability of

detection at BS for q = 10 with two sensors.

Figure 10. Total number of packets dropped vs. probability of

detection at BS for q = 1 with four sensors.

Figure 9. Total number of packets dropped vs. probability of

detection at BS for q = 1 with two sensors.

Figure 12. Total number of packets dropped vs. probability of

detection at BS for q = 10 with four sensors.

A statistical analysis on the leak detection performance 1897



leak detection performance is severely hampered in the

underground situation because of the presence of soil and

rock, which affects the noise variance and therefore

decreases the probability of detection. For overground

pipelines, because of the assumption that there is no presence

of any such obstacle, detection performance is pretty much at

a high level, with a low noise variance and hence a high

probability of detection. From the study, it can be concurred

that any kind of underground sensor deployment for detec-

tion would require more sensors and as low threshold as

possible that also takes into consideration the number of

packets dropped for adequate detection performance.
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