
An integrated framework for software vulnerability detection, analysis
and mitigation: an autonomic system

MANOJ KUMAR1,* and ARUN SHARMA2

1University Teaching Department of Computer Science and Application, Makhanlal Chaturvedi National

University of Journalism and Communication, Bhopal 462011, India
2Department of Information Technology, Indira Gandhi Delhi Technical University for Women, Delhi 110006,

India

e-mail: m_pachariya1@yahoo.com; arunsharma2303@gmail.com

MS received 30 June 2016; revised 12 January 2017; accepted 25 January 2017; published 15 July 2017

Abstract. Nowadays, the number of software vulnerabilities incidents and the loss due to occurrence of

software vulnerabilities are growing exponentially. The current existing security strategies, the vulnerability

detection and remediating approaches are not intelligent, automated, self-managed and not competent to combat

against the vulnerabilities and security threats, and to provide secured self-managed software environment to the

organizations. Hence, there is a strong need to devise an intelligent and automated approach to optimize security

and prevent the occurrence of vulnerabilities or mitigate the vulnerabilities. The autonomic computing is a

nature-inspired and self-management-based computational model. In this paper, an autonomic-computing-based

integrated framework is proposed to detect, fire the trigger of alarm, assess, classify, prioritize, mitigate and

manage the software vulnerability automatically. The proposed framework uses a knowledge base and inference

engine, which automatically takes the remediating actions on future occurrence of software security vulnera-

bilities through self-configuration, self-healing, self-prevention and self-optimization as per the needs. The

proposed framework is beneficial to industry and society in various aspects because it is an integrated, cross-

concern and intelligent framework and provides more secured self-managed environment to the organizations.

The proposed framework reduces the security risks and threats, and also monetary and reputational loss. It can

be embedded easily in existing software and incorporated or implemented as an inbuilt integral component of

the new software during software development.

Keywords. Autonomic computing; software security; software vulnerability; vulnerability detection;

vulnerability mitigation; vulnerability optimization.

1. Introduction

Nowadays, software systems are playing vital and multi-

faceted roles in our daily life. The software components are

the heart and prominent constituent of the almost all

modern and complex systems. Therefore, interdependent

and networked software systems are widely used by several

organizations for their business decisions. These software

systems are used to manage and control the business

operations and performance. Almost all industries have

expanded their business horizons, improved the business

performance and earned huge profit through the usage of

the software systems but simultaneously several organiza-

tions have also incurred huge loss in terms of money and

reputations due to security breaches, low security standard,

violation of security, security threats and attacks, and

induced software vulnerabilities in legacy and modern

systems [1–3].

In the present scenario, the software systems are being

assembled by integrating several Commercial Off-The-

Shelf (COTS) components by their manufacturers. These

software systems have high security risks due to insertion

of known or unknown software vulnerabilities in the COTS

during their development. The insertion of the software

vulnerabilities in the COTS during software development is

one of the prominent reasons and factors for enhancement

of incidents of security breaches and reduction of the per-

formance of software systems assembled by integrating

these COTS. These risky software systems are used to

operate and control business. The high extent usage of these

risky software system increases the number of occurrences

of vulnerability incidents, security threats, attacks and the

monetary and reputational losses incurred due to security

breach and vulnerability occurrence. These risky software

systems are not capable of reducing the security risks,*For correspondence

1481

Sādhanā Vol. 42, No. 9, September 2017, pp. 1481–1493 � Indian Academy of Sciences

DOI 10.1007/s12046-017-0696-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0696-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-017-0696-7&domain=pdf

attacks, threats and financial losses, and preventing the

occurrences of vulnerabilities. These risky software sys-

tems are not able to provide secure environment to the

organizations because they can be easily exploited by

hackers or attacker to get entry into the software systems to

break the security. It implies that the vulnerability offers a

possible entry point to the software system [3–5].

The software vulnerability is a weakness or flaw or

defect left unaddressed or untested in the software com-

ponents during their development, knowingly or unknow-

ingly. Vulnerabilities may be exploited at any point of time

and tend to violate security policies. Several incidents of

threats and attacks are reported to the Computer Emergency

Response Team (CERT). These vulnerability incidents

have caused huge loss of money and reputation. The loss

due to Code Red Worm was estimated to be $2.6 billion. In

all, 4129 number of incidents of vulnerabilities were

reported to CERT Coordination Center in 2003, which was

70% increment of the incidents of 2002. Currently, the rate

of reporting vulnerabilities to CERT Coordination Center is

4,000 per year; the number of vulnerability incidents and

the monetary loss are growing exponentially. This is very

serious concern for CERT, software industry and also for

security research community [3, 5, 6].

The exponential growth rate of incidents of occurrence of

software security breaches and huge irreparable loss of the

organization have forced and motivated the software

industry to develop software 100% free from vulnerabili-

ties. The vulnerability-free software is highly needed to

reduce security breaches, risks and the irreparable loss, and

to improve the performance of software system. Though the

software industry has employed the penetration testing to

develop the software 100% free from vulnerabilities, it is

impractical to develop a software that is completely free

from vulnerabilities [7–9]. The software industry also

employs the patch management for reducing the security

risks and optimizing the performance of software system

but the penetration testing, patch management and legacy

security tools are not sufficient to attain the target level of

security. In vulnerability detection and management, the

scanning of operating environment and software systems is

the prime activity and requires automation and continuation

because the delay in scanning the system for vulnerabilities

makes environment and system more vulnerable for a long

period. The delay in scanning of environment and system

enhances the irreparable loss, possibility of violation of

security policy and the number of vulnerability incidents

[10–12]. The study of literature and CERT reports proves

that the legacy security systems, the existing vulnerability

detection and remediating approaches are outdated, and are

not intelligent, automated and self-managed. Hence, the

outdated systems are not competent to provide secured,

intelligent and self-managed software environment to the

organizations. Therefore, cost-effective, scalable, intelli-

gent, cross-concern, automatic and autonomic alternative-

knowledge-based approaches for vulnerability detection,

assessment and optimization of security and vulnerability,

vulnerabilities analysis, mitigation and management activ-

ities are highly required to reduce the security risks, threats,

occurrence of vulnerabilities incidents and the monetary

loss [13–15].

The autonomic computing is a nature-inspired and self-

management-based computational model. The Self-Star

property of autonomic computing efficiently manages and

controls the components of complex systems without any

input from the user. The self-configuration, self-healing,

self-optimization, self-protection (CHOP), self-regulation,

self-awareness, self-learning, self-creation, self-governance,

self-description and self-organization form the common

thread of Self-Star of the autonomic computing. In this

paper, an autonomic computing-based integrated framework

for software vulnerability detection, assessment, classifica-

tion, prioritization, mitigation and management is proposed.

The proposed framework incorporates the CHOP properties

to manage the software vulnerabilities. In the proposed

framework, nature-inspired intelligent techniques are used

for automatic identification, firing the trigger of alarm,

assessment and analysis of software vulnerabilities. The

proposed framework is beneficial to industry and society in

various aspects because it is an integrated, intelligent, cross-

concern, autonomic, nature-driven novel framework, which

automatically detects the vulnerabilities, assesses their crit-

icality and assigns priorities. The proposed framework uses

knowledge base and inference engine, which automatically

takes the remediating actions on future occurrence of soft-

ware security vulnerabilities through self-configuration, self-

healing, self-prevention and self-optimization as per the

needs. The proposed autonomic integrated framework fulfils

the security needs of organization and reduces the loss due to

vulnerabilities occurrence. The proposed cross-concern

framework can be embedded easily in existing software and

incorporated or implemented as inbuilt integral component

of the new software during software development.

This paper is organized as follows. Section 2 discusses

the literature review of software security estimation, vul-

nerability detection, estimation and its optimization. Sec-

tion 3 describes the basics of the autonomic computing.

Section 4 describes the proposed autonomic computing-

based intelligent framework for software vulnerability

detection, assessment, prioritization, classification, mitiga-

tion and management. The final conclusion that can be

drawn from this study is presented in section 5. Section 6

provides some pointers and guidelines for future research.

2. Existing works in the area of software
vulnerability mitigation and management

The research in the area of software security quantification,

vulnerability detection, estimation, analysis, mitigations

and management has been carried out for years. Still,

several issues are alive and left unaddressed. Hence, the

1482 Manoj Kumar and Arun Sharma

current state of art of the research in the area of software

security and vulnerability management is still immature

and ongoing. A brief literature study of research is as

follows.

2.1 Vulnerability identification

Kannan et al [15] suggest a software vulnerabilities iden-

tification approach and point out that the disclosure of

vulnerability is very important in vulnerability mitigation

and management (VMM). Gilliam et al [17] strongly rec-

ommended that it is essential to incorporate the imple-

mentation of security in software during software

development life cycle to protect corporate resources. Jia-

dong et al [18] proposed a clustering and model analysing

method for detection of software vulnerabilities. They

pointed out that the existing static vulnerability detection

methods have high false positive and false negative rates.

Hence, they used clustering technology to mine the pattern

from the set of vulnerability sequences and constructed the

Vulnerability-Pattern Library (VPL) to improve the effi-

ciency of proposed method. Experimental results show that

proposed method has lower false positive and false negative

rates. Wang et al [19] proposed a new method for detecting

software vulnerabilities based on rapid density clustering

called DSVRDC. They used rd-entropy and s-order. In this

proposal, they classified the vulnerability sequences using a

density-based clustering approach. They used the variation

of s-order for analysing the software vulnerabilities

sequences. The proposed method improves the efficiency in

terms of the accuracy.

2.2 Vulnerability analysis and assessment

Alhazmi et al [6] proposed an approach to categorize the

software vulnerabilities on the basis of the cause or severity

of vulnerability. Alves-Foss and Barbosa [20] developed a

System Vulnerability Index (SVI) method to measure the

susceptibility of computer system to common attacks. This

approach helps system administrators to assess the starting

point for security policy. Wang and Wulf [21] designed a

security measurement framework for assessing security

strength of a software system. Of course, this framework is

not standard and universal. Gilliam et al [22] proposed and

developed a Software Security Assessment Instrument

(SSAI), to aid developers in assessing and assuring the

security of software in early stage of development and

maintenance. Butler [23] developed the SAEM approach to

estimate and prioritize multi-criteria risk. Gilliam et al [17]

developed an SSAI to produce secure software. Halkidis et al

[24] proposed a quantitative approach for evaluating the

known patterns of security using security guidelines. Hall-

berg et al [25] developed a framework for system security

assessment. They claimed that their framework is able to

categorize existing security vulnerabilities and threats. For

the categorization of purpose, they used the CAESAR

method to calculate overall system security values. Alhazmi

et al [26] proposed the Vulnerability Density Metric (VDM)

to measure the vulnerability of software. VDM is defined as

the number of vulnerabilities per unit size of code. Chandra

et al [27] proposed a framework to estimate software security

in early stage of software development life cycle. Chen et al

[28] presented a quantitative threat modelling method using

Attack Path Analysis (APA). Chowdhury et al [29] defined a

number of code level security metrics to assess the level of

security of a given program using code inspections.

Alshammari et al [30] proposed seven design metrics for the

software security of an object-oriented software. These

metrics help designers to determine and fix security vulner-

abilities at an early stage of software development. Agrawal

and Khan [31] developed an algorithm to measure Attribute

Vulnerability Ratio (AVR) of an OOD. The proposed

approach is implemented and validated on a case study of

Automated Teller Machine (ATM).

Alkussayer and Allen [32] developed a framework to

assess software architecture. It can also be used to determine

the satisfaction level of the projected security requirements.

Christopher et al [33] proposed an integrated framework for

measurement and analysis of software security for distributed

environment. Agrawal and Khan [34] proposed the design

metric to quantify the vulnerability of object-oriented design

(OOD). The proposedmetric is used to determinewhether the

design of one version of a software system ismore vulnerable

than another with respect to propagation of vulnerability.

They also pointed out that coupling is responsible for prop-

agation of vulnerabilities in the design of object oriented

software. Agrawal and Khan proposed [35] the Vulnerability

Confinement Capacity (VCC) metric to find out the role of

encapsulation in improving security of an OOD. The

encapsulation protects software system from unauthorized

access. Their previous works have proved that inheritance

and coupling support vulnerability propagation and hence

decrease security.

Alhazmi et al [36] examined the feasibility of quantita-

tively characterizing some aspects of security. They pre-

dicted the number of undiscovered vulnerabilities present in

a software system using dynamics of vulnerability discovery.

They used several major operating systems as complex

software for validation of the proposal. They found that the

density of vulnerabilities in a program is a usefulmeasure and

can be used to minimize the vulnerability of software secu-

rity. Khan and Han [37] introduced a component security

characterization framework. This framework characterizes

security properties using software security profiles.

2.3 VMM

In a separate study, Wang et al [38] presented the ontology

for vulnerability management. In this study, the attack

An integrated framework for software vulnerability detection 1483

patterns were ranked based on the vulnerability information

present in the ontology. Agrawal and Khan [39] proposed a

framework for security vulnerability minimization using

design of object-oriented software. The proposed frame-

work minimizes vulnerability by restricting the flow of

vulnerable information. Agrawal and Khan [40] proposed a

framework to identify, analyse and mitigate vulnerabilities

during the development life cycle. They prepared the

security checklists for various phases of software devel-

opment life cycle to examine the vulnerability.

3. Autonomic computing

Autonomic computing is a self-managing computing

model. It is derived from the autonomic nervous system of

human. In human body, the autonomic nervous system

regulates body subsystems without conscious input from

the individual. In a similar way, an autonomic computing-

based software system controls the functioning of its sub-

systems without user intervention. In this framework, the

CHOP properties of autonomic computing system (ACS)

are incorporated into the complex software system to

develop inbuilt self-managed and self-run characteristics

without external or user intervention for software vulnera-

bility mitigation and management (SVMM) [3, 4, 16, 41].

The ACS has the following key components or elements:

• ACS maintains complete, correct and specific knowl-

edge about all its components.

• ACS has ability of self-configuration on occurrence of

unpredictable conditions.

• For optimal functionality, ACS must have self-moni-

toring ability.

• ACS must have ability of self-healing of the system,

i.e., to provide an alternative way to function when any

problem occurs in the system.

• ACS must have the ability of self-protection from

vulnerabilities.

• ACS must be able to adapt to environmental

conditions.

• Open standards are the basis for ACS. It must not use

the proprietary technologies; it must anticipate demand

while remaining transparent to the user.

4. Proposed autonomic computing-based
integrated framework for software vulnerability
detection and mitigation

The complexity of software systems, the amount of

irreparable loss, numbers of cybercrimes and vulnerabilities

incidents are growing day by day. The usage of artefacts of

penetration testing, patch management, firewall and

antivirus is not sufficient to combat the security threats, and

to reduce the irreparable loss and the number of the vul-

nerability incidents. Hence, vulnerability-free software

should be developed to reduce security risks, irreparable

loss and improve the performance of software system.

However, it is very difficult to develop a software that is

completely free from vulnerabilities. Therefore, an alter-

native approach is required to be devised to optimize

security and prevent the occurrence of vulnerabilities. The

integrated framework may be one of the best alternative

remedies for software vulnerability detection, assessment,

classification, prioritization, risk analysis, mitigation and

management.

In this paper, the autonomic computing-based integrated

framework is proposed to identify, analyse, classify, miti-

gate and manage software vulnerability. The proposed

framework uses the CHOP properties to manage the vul-

nerabilities. In this framework, the nature-inspired intelli-

gent techniques are used for automatic identification and

measurement of software vulnerabilities. The proposed

framework uses a knowledge base and inference engine,

which automatically directs the self-executer to take cor-

rective actions on future occurrence of security vulnera-

bilities through self-configuration, self-healing, self-

prevention and self-optimization as the needs. The pro-

posed framework will reduce vulnerabilities incidents, cost

of maintaining security, risk and loss. The proposed

framework is also helpful in preventing the occurrence of

security threats and vulnerabilities.

The SVMM process is the cyclical approach of discov-

ering, classifying, remediating and mitigating software

vulnerabilities. Figure 1 presents phases of the SVMM

process.

Figure 2 presents the autonomic computing-based inte-

grated framework for vulnerability detection, assessment,

classification, risk analysis, mitigation and management. In

the proposed framework, an intelligent scanner performs the

self-monitoring and self-scanning of the software system for

vulnerability identification. The vulnerability analysis is

carried out automatically by the autonomous components of

integrated framework. The VMM is a cross-cutting concern

of security requirement. The remediating actions on occur-

rence of vulnerabilities are automatically taken by the soft-

ware systems through the self-configuration, self-healing,

self-optimization and self-protection activities. The self-

monitoring, automated identification and assessment of

vulnerability, knowledge management (database of vulner-

abilities and rules, inference engine) self-effecter, autonomic

VMM are the integrated components of proposed autonomic

computing-based framework for software security vulnera-

bilities mitigation and management. Figure 2 presents and

outlines the integrated intelligent autonomic framework for

software security VMM. The details of individual compo-

nents of the proposed integrated intelligent autonomic

framework are as follows.

1484 Manoj Kumar and Arun Sharma

4.1 Self-monitoring for vulnerability

The software system can be scanned manually or auto-

matically by employing an online or offline scanner. Most

of the existing vulnerability scanning approaches carry out

static code analysis and review to identify weak points in

the software. The existing vulnerability scanning approa-

ches can scan only the source code of software. They are

not competent enough to scan the exe file of software

•Vulnerability Alert
•Vulnerability
Assessment

•Vulnerability
Exploita�on

•Confirmance

Vulnerability
Iden�fica�on

•Vulnerability
Measurement

•Vulnerability Classifica�on
and Priori�za�on

•Vulnerability Impact
Analysis

•Vulnerability Risk Analysis

Vulnerability
Analysis

•Respond
• Remediate
•Implement

Vulnerability
Mi�ga�on

•Self Configura�on
•Self-Healing
•Self-Op�miza�on
•Self-Preven�on

Self-Manage

-

Figure 1. Software security vulnerability mitigation and management.

Vulnerability
AnalysisAutoma�on

Computa�onal
Intelligent

Techniques

Vulnerability
Measurement

Vulnerability
Classifica�on &

Priori�za�on

Vulnerability
Impact Analysis

Vulnerbility Risk
Analysis

informa�on of
security threats,

historical and
recurring

vulnerabili�es, Assets,
IP address of hackers
and a�ackers, Most

Vulnerable
components in

so�ware, loss due
vulnerability, severity
of vulnerability, etc)

Inference
Engine

Knowledge base

(Rules and Evalua�on
Criteria)

Autonomic
Compu�ng

Vulnerability
Management

Vulnerability
Mi�ga�on

and
Management

Self-
Configura�on

Self-Healing

Self-
Op�miza�on

Self-
Protec�on

Vulnerability
Iden�fica�onAutoma�on

Computa�onal
Intelligent

Techniques

Vulnerability
Alert

Vulnerability
Assessment

Vulnerability
Exploita�on

Conformance

Self-Monitoring for Vulnerability

Intelligent Vulnerability Scanner

Self-Effecter
•Intelligent Implemen�ng Manager

So�ware

Opera�ng System Banking Domain So�ware E-commerce and Networking So�ware

Knowledge
Management

Figure 2. Autonomic computing-based framework for software security vulnerability mitigation and management.

An integrated framework for software vulnerability detection 1485

system but the source codes of software systems are not

available. Almost all vulnerability scanners are offline but

at any point of time, hackers or attackers may exploit the

weak point or development flaws to break the security. The

existing vulnerability scanners cannot be used to carry out

any type of vulnerability assessment.

Since the source codes of software systems are not

available and the attackers or hackers never tell the time of

attacks or threats, the existing vulnerabilities scanning

approaches are not suitable for effective and efficient

scanning and monitoring of software systems for vulnera-

bility. The cost of existing vulnerability scanning approa-

ches is also very high. Therefore, there is a need to develop

a cost-effective, scalable, more accurate, intelligent, auto-

matic scanning approach for self-monitoring of the soft-

ware systems for known vulnerabilities. The genetic

algorithms, clone detection, case-based reasoning (CBR)

and other nature-inspired approaches may be the best suited

for self-monitoring activity of vulnerability discovery.

In this framework, an automatic intelligent scanner is

used for self-scanning and self-monitoring of the software

system. The intelligent scanner is considered as an integral

part of the software system. The proposed framework uses

nature-driven intelligent techniques to scan the software

system itself automatically for detection of occurrence of

software vulnerability. This component of the proposed

integrated framework searches the software security vul-

nerability, i.e., identifying the weak points of software or

development flaws in software system for maintaining high

security using database of known flaws, security holes and

artefacts of security testing. The intelligent scanner

explores the software system for occurrence of these flaws.

The intelligent scanner provides an approach to identify the

postern, vengeful code and other security threats in com-

plex software. The self-monitoring component of proposed

framework uses static and dynamic analysis of source and

binary codes of software system. The intelligent scanner

also automatically determines the weak points or missing

functionalities of software system, whose absence could

lead to security breaches.

The proposed integrated framework automatically gener-

ates a report and summary of its findings also. The report is

prepared on the basis of business value, priority, criticality,

severity of vulnerabilities and level of risks associated with

them. The report also contains information about associated,

effective and possible remediating actions and the time

duration in which remediating actions are to be taken and

completed. This report can be used by other autonomous

component vulnerability identifiers for identification of type

of vulnerability and firing the trigger of alert.

4.2 Identification of vulnerability

The vulnerability alert, assessment, exploitation and con-

formance of security requirements are autonomic sub-

components of the vulnerability identification component

of the proposed integrated framework.

4.2a Vulnerability alert: The report generated by an

intelligent scanner during self-monitoring of software sys-

tems is the input for the vulnerability identification com-

ponent. The vulnerability alert sub-component uses

vulnerability description report for automatically firing the

trigger of alert for occurrence of software vulnerability in

software systems. The alert sub-component of proposed

framework fires the trigger of alert for occurrence of vul-

nerability in software system after discovery of the pre-

conditions of occurrence of the pre-existing flaws or known

vulnerability with the help of a knowledge-based system

(KBS).

4.2b Vulnerability assessment: In the proposed frame-

work, a standard metric is used to measure and assign the

criticality and severity of the vulnerability. The vulnera-

bility assessment techniques identify the type of vulnera-

bility present in software while the intelligent vulnerability

scanner determines the occurrence of vulnerability. The

vulnerabilities can be classified on the basis of the business

value, severity and priority of vulnerability, and the

importance of the assets lost due to vulnerabilities using an

intelligent approach.

4.2c Vulnerability exploitation: The penetration testing is

performed to exhibit the way of exploiting for real attack

through destructive flaws. The prime purpose of penetration

testing is to find out the unauthorized access or malevolent

activity of software system by exploiting the known

weakness points or vulnerabilities of software system. It is

helpful in identifying the flaws, which may create the

gesture for threat to software system. The penetration

testing determines the exploitable flaws and also measures

severity of vulnerability. Therefore, in this framework, the

artefacts of penetration testing and KBS are used to find out

the exploitable flaws in software system, which are prone to

hacking and attacking.

4.2d Conformance of security requirements: The com-

pliance of security requirements is the foremost activity of

VMM. In this framework, the intelligent sub-component

automatically determines the compliance of the organiza-

tional security requirements by measuring deviations

between the implemented and the required security. It is

carried out automatically, quickly, accurately and effi-

ciently to protect the internal components of software

system, sensitive data and reputation of organization.

4.3 Vulnerability location finder

In the proposed framework, the intelligent vulnerability

location finder uses both the KBS and code analyser to

automatically locate the weak points in software system. It

can be accomplished by carrying out the following activi-

ties (figure 3).

1486 Manoj Kumar and Arun Sharma

• Automatically discover the known vulnerabilities

using KBS and domain knowledge. The mapping of

known vulnerabilities with the source code of software

system is carried out automatically using KBS.

• Automatically find the dangerous system calls because

the user-defined functions call the system calls and the

system calls are the privileged entry points to get into

the software system.

• Automatically identify the possible entry points of

software system for attacks or threats.

• Find the tentative location of vulnerability or weak

point in software system.

• Automatically carrying out the reachability analysis

between entry point and tentative location of vulner-

ability using the call relationships with the help of

system dependency graph.

• Automatically measure the exploitability risk of the

individual vulnerability.

• Finally, the intelligent vulnerability location finder

provides reachability category information. The reach-

ability category information may contain one of the

following options:

a. reachable with dangerous system calls,

b. reachable with non-dangerous system calls,

c. not reachable.

4.4 Vulnerability analysis

The vulnerability measurement, classification, prioritiza-

tion, risk analysis and impact analysis are the common

concerns of vulnerability analysis (figure 4). In this

framework, the vulnerability analysis is carried out by

automatically conducting the vulnerability assessment and

exploiting the artefacts of penetration testing. The vulner-

ability analysis component of proposed integrated frame-

work performs the following steps:

• apply the nature-inspired intelligent techniques to

measure the severity and criticality level of vulnera-

bility automatically using vulnerability and security

metrics,

• automatically define, identify and classify the system

resources and software vulnerability,

• automatically assign the importance and weight value

to the resources and priorities to known software

vulnerabilities,

• automatically identify the potential vulnerability along

with associated risks, and store them in database,

• automatically perform the risk analysis and also

analyse their consequences,

• design efficient and effective strategies for treating the

severe vulnerabilities on priority basis using KBS,

• devise and implement approaches to automatically

optimize the consequences or impact of vulnerability

occurrence,

• automatically prepare the vulnerability disclosure

report.

4.4a Vulnerability assessment: The vulnerability assess-

ment component of proposed integrated framework

employs the appropriate and efficient soft computing

techniques to estimate the severity and criticality level of

vulnerability and security level automatically using differ-

ent vulnerability and security metrics. The vulnerability

assessment can also be used to predict the effectiveness of

security measures used for software vulnerability detection,

mitigation and management. The assessment of

Source
Codes

Iden�fy
possible

Entry Point
for A�ack

Find the
Loca�on of

Vulnerability in
Source Code

Find System /
User

func�ons
Calls the

Vulnerable
func�on

Conduct
Approachability

Analysis

Measure
Exploitabilty of
Vulnerability

Category of
Reachability

Figure 3. Finding the location of vulnerability in software system.

An integrated framework for software vulnerability detection 1487

vulnerability is based on multiple criteria. In this proposed

framework, detective-, descriptive- and discovery-based

approaches are used to carry out automatic assessment of

vulnerabilities (figure 5). Advanced intelligent techniques

such as artificial neural networks, genetic algorithm, grey

wolf optimization, etc. are the most suitable for vulnera-

bility assessment purpose and may be explored.

4.4b Vulnerability classification: For efficient and

effective classification of vulnerabilities, the exploration

and exploitation of descriptive-, detective- and discovery-

based intelligent techniques along with automation of

multifaceted vulnerability assessment are highly needed. It

will also help in mitigation and management of software

vulnerabilities. The automation of vulnerability assessment

will increase the performance of classification, and also

reduce the cost and effort of VMM.

In this framework, the computational intelligent tech-

niques are used to automatically classify the vulnerabilities

with the help of KBS. The vulnerability classification

component of proposed framework exploits the artefacts of

penetration testing, vulnerability occurrence data, data of

current trends of vulnerability, data of recurring and

exploitable historical vulnerability and their association

with incidents and impacted assets stored in knowledge

base. Since the fitness or assessment of vulnerability is a

multifaceted concept, the intelligent classifier assigns a

class to the known vulnerability using multifaceted fitness

score. The fitness of vulnerability is measured using criti-

cality, severity, loss incurred, business value of impacted

asset, level of associated risks and performance data of

vulnerability assessment techniques. The intelligent clas-

sifier automatically classifies the vulnerabilities into low,

medium and high classes. The vulnerability analysis report

is the input for the vulnerabilities classification approaches.

The pair-wise analysis of attribute value is carried out for

multifaceted vulnerability assessment and classification.

4.4c Vulnerability prioritization: All vulnerabilities are

not equally important for remediation and mitigation. Some

of them are severe in nature and have high consequences

and impact on resources and software system itself also. In

this framework, the vulnerability prioritization component

automatically prioritizes the software vulnerabilities on the

basis of their fitness score and class of belongingness. The

fitness values of known software vulnerabilities are asses-

sed using criticality, severity, loss incurred, business value

of impacted asset and level of associated risks. The degree

of belongingness of the vulnerabilities to different classes is

computed using the multifaceted fitness score. The maxi-

mum value of the degree of belongingness of the vulnera-

bility is considered to be the final class of the vulnerability.

Immediate remedial and mitigation actions are to be carried

out for the vulnerabilities of the high class, i.e., the most

harmful vulnerability. In this framework, a list of assets,

resources and critical software components is prepared for

remediating actions. The components of software system

having the most harmful vulnerabilities are identified as

critical software components. These software components

require immediate update through the latest version of

patch of software components.

4.4d Risk and impact analysis: If the cost of software

systems is high and they cater sensitive information and

business decisions then it essential to know the risks,

impacts and consequences of compromising with the vul-

nerability, the remediating actions to be performed for

mitigation and management of vulnerabilities and when the

remediating action would be taken. The organizations want

to know risk, impact and consequences of occurrence of

software on their business. Therefore, a careful analysis for

risk, impact and consequences is required to fix errors and

configure the software system. Hence, the analysis process

must be automatically carried out minimize the errors in

assessment.

In this framework, an automatic analysis for risk, impact

and consequences is carried with the help of KBS. The

proposed framework also determines the time frame for

execution and completion of the remediating actions and

Assessment

Risk and
Impact

Analysis

Priori�za�on

Classifica�on

Figure 4. Vulnerability analysis.

Detec�ve

Descrip�ve

Discovery

•Black -Box (Scanning)
•Configura�on Analysis
•Correla�on Approaches

•Configura�on Descrip�on
•Signature Descrip�on
•Enumera�on Descrip�on

•Tes�ng
•Forensics
•Exploi�ng

Automated of Vulnerability Assessment

Figure 5. Automated software vulnerability assessment

approaches.

1488 Manoj Kumar and Arun Sharma

re-scanning also. The proposed framework also rings the

tocsin for taking immediate remediating actions against the

occurrence of high severity vulnerability also.

4.5 Knowledge management

The KBS is an integral component of proposed autonomic

computing-based integrated framework. In this proposed

framework, the KBS component is also used for sharing

vulnerability information and remediating actions to self-

scanner, intelligent vulnerability identifier and analyser and

VMM components for effective identification of vulnera-

bility, firing the trigger of alert of occurrence of vulnerability,

vulnerability analysis and vulnerabilities remediation. The

databases of vulnerability information, knowledge base and

inference engine are the key sub-components of KBS of the

proposed integrated framework. It uses the CBR and

knowledge base to identify, estimate, classify, remediate,

mitigate and manage software vulnerabilities, automatically.

In KBS, the database and knowledge base are used for

capturing information about vulnerabilities, their remedi-

ating actions and time duration for completion of remedi-

ating, and a rule-based inference system is also developed.

The information of security threats, historical and recurring

vulnerabilities, detailed information of assets, IP address of

hackers and attackers, the most vulnerable components in

the software, loss due to vulnerability, severity and priority

of vulnerability, etc. are stored in the database. The update

in database is carried out as the changes occur in facts and

information.

The knowledge base represents facts about the vulnera-

bility world in the form of logical assertions and pre-con-

ditions of occurrence of vulnerability, and inference rules.

The inference rules are in the form of IF-THEN rules. In

this framework, the KBS component is developed as an

inbuilt integral part of software system for the following

prominent reasons:

• To find out the unauthorized access or malevolent

activity of software system by exploiting the known

weakness points or vulnerabilities of software system.

• To determine the weak points or missing functional-

ities of software system automatically.

• To fire the trigger of alert for occurrence of vulner-

ability in software system after discovery of the pre-

conditions of occurrence of the pre-existing flaws or

known vulnerability.

• To update the database and knowledge base on

occurrence of new types of software vulnerabilities.

• The normalized database of remedial actions taken

against occurrence of vulnerabilities is designed and

implemented. It is used to provide reference for

remedial actions for future occurrence of

vulnerabilities.

• After execution of remediating actions, a re-scanning

of software system is performed by the self-monitoring

component to verify the performance and functionality

of software system.

• To measure the effectiveness of patch and vulnerability

management after executing the autonomic corrective

actions.

• To know the criticality and severity of the vulnerability

and associated risks and the irreparable loss.

• To generate vulnerability disclosure report.

• To ensure the compliance of security requirement.

• To manage the patches efficiently.

• For exploration and exploitation of the artefacts of

penetrating testing.

4.6 VMM

SVMM process is about discovering, classifying, remedi-

ating and mitigating software vulnerabilities. In this pro-

posed framework, the remediating actions are determined

by the KBS. The intelligent and automated vulnerability

analyser identifies the vulnerability and associated risks,

fires the trigger of alert and classifies and prioritizes vul-

nerabilities. The intelligent vulnerability analyser, with the

help of KBS, also provides pointers to VMM component.

The autonomic-feature-based VMM component selects an

effective and feasible remedy for vulnerabilities from self-

protection, self-configuration, self-healing and self-opti-

mization. These remedial actions may use patch manage-

ment, self-configuration and timeline framework.

During self-monitoring, the intelligent scanner notices

whether any component of software system is not available

or delaying in response. This delay in response should be

recorded in database along with vulnerability for future

reference. In future, such type of incident may occur again;

for maintaining the stability or target security and perfor-

mance, the alert component of integrated framework will

immediately fire the trigger of alarm and direct the VMM

component to take effective and feasible remedial action

with the help of KBS.

The SVMM component of the proposed framework

employs the CHOP properties of the ACS to manage the

vulnerabilities. The SVMM component of the proposed

framework uses knowledge base and inference engine to

automatically select the appropriate and possible remedi-

ating actions on occurrence of software vulnerability in

software system. The SVMM component also directs the

self-executer or implementer to execute the directed and

planned remediating actions. The possible and effective

remediating actions are performed by the self-executer by

executing self-configuration, self-healing, self-prevention

and self-optimization operations as per the needs. The

details of subcomponents of VMM component of proposed

framework are as follows.

In this framework, the detective, the alert and the diag-

nostic components are used for adequate mitigation and

An integrated framework for software vulnerability detection 1489

management of software vulnerabilities. The mitigation

operations are performed by the source or binary codes of

different subsystems of software. In this framework, an

intelligent source code analyser is used to carry out auto-

matic code analysis or review to eliminate the software

flaws. For VMM, the self-managing activities such as self-

protection, self-configuration, self-optimization and self-

healing are carried out with the help of patch management,

runtime libraries, bypassing the source codes that represent

security flaws and eliminating the necessary pre-conditions

of creating vulnerabilities.

4.6a Self-protection: The self-protection component of

proposed framework automatically prevents the occurrence

of vulnerabilities in software system. It is an integral

component of software system. This component provides

more secure software system to societies and organizations.

The self-protection component of framework provides a

shield to the software system from vulnerabilities and

threats. The self-protection is runtime preventive mecha-

nism of vulnerability mitigation. This component auto-

matically prevents the occurrence of vulnerability and

threats. The self-scanning component scans the software

system for vulnerability. However, the self-protection

component detects the necessary pre-conditions of occur-

rence vulnerabilities, and automatically takes immediate

vulnerability remediating action to break or eliminate the

necessary condition of vulnerability occurrence. The self-

protection component of software automatically monitors

and senses malicious behaviour of itself at runtime.

4.6b Self-healing: The patch management is one of the

most vital steps of the vulnerability management. In patch

management, time frame is important for managing the

vulnerability. In this framework, the patching is carried out

for maintaining the operational availability, confidentiality,

performance and integrity of target software system. Since

the developing, updating, selecting and execution of

deployable patch package for target system is costly, time

consuming and tedious activity, testing the patch before

actual deployment and analysing post-implementation

results is highly required for vulnerability management. In

this framework, the intelligent self-healing component is

used for automatic selection and timely installation of

deployable patch package. The self-healing component of

proposed integrated framework is an intelligent and auto-

nomic component and used for patch management. The

self-healing component automatically selects appropriate

version of patch for target software. The self-healing

component also directs the self-executer to copy or install

the appropriate version of patch on impacted component of

target software system.

4.6c Self-configuration: The self-configuration operation

is carried out to prevent wrong results due to configurations

setting errors. Some average-severity vulnerabilities change

the environmental configuration setting, which mandates

for smooth operation of software system. If the configura-

tion settings of software systems are not compatible with

operating environment then the operational availability,

confidentiality, performance, reliability and integrity of

target software system break. The self-configuration com-

ponent of the proposed framework is used to automatically

ensure configuration setting of operating environment of

software system. The self-configuration component sear-

ches for deviations of configuration settings with compati-

ble or initial configuration settings. It automatically

measures the similarity or dissimilarity between the current

configuration settings and the compatible or initial config-

uration settings. On the basis of dissimilarity value, the self-

configuration component automatically fetches the appro-

priate configuration setting from the KBS and directs the

self-executer to apply the configuration setting to target

software system as per the direction of self-configuration

component of proposed framework.

4.6d Self-optimization: The self-optimization component

of proposed framework is used to maintain the performance

of software systems in terms of efficiency, response time,

waiting time, availability, reliability and so forth. The self-

optimization-component-proposed framework updates or

upgrades the software system for enhancing the perfor-

mance of the software system.

4.7 Self-effecter

The self-executer component of integrated framework is

responsible for automatic execution or implementation

of remediating actions as directed by VMM component

with the help of KBS as a result of detected vulnera-

bilities. The self-executer will follow the defined time-

line framework while executing defined and planned

directive remediating actions against detected vulnera-

bility. If any problem occurs during the execution of

defined remedial actions, it should be reported to KBS

and VMM system by the self-executer. Therefore, the

alternative remedial actions should also be defined and

the self-executer will execute or implement the defined

alternate remedial actions. The automatic verifier should

track the execution of remedial actions and ensure its

successful completion.

After successful implementation or execution of defined

remediating actions, the self-monitoring component of

integrated framework will rescan the software system. This

rescanning will be carried out by an intelligent scanner. If

the intelligent scanner reports the same problems before

vulnerability detection, the follow-up actions should be

taken automatically on the basis of CBR and KBS.

The proposed integrated framework will also ensure

that after successful execution of remedial action, the

software system has the identical configuration setting as

it was before the occurrence of vulnerability. If the

1490 Manoj Kumar and Arun Sharma

software system does not have compatible or initial

configuration setting, the proposed framework directs

the self-configuration and self-optimization components

to recover the initial configuration setting or update the

current setting by compatible configuration setting to

maintain the system performance. The self-optimization

component updates the software for maintaining the

performance of the software system. The self-configu-

ration operation is carried out to prevent wrong results

due to configurations setting errors and the self-opti-

mization operation is carried out to maintain the per-

formance of software systems in terms of efficiency,

response time, waiting time, availability, reliability and

so forth.

4.8 Vulnerability management policy

The vital step in vulnerability management is to define and

fix the policy for vulnerability management. In this

framework, the self-configuration, self-healing and self-

protection are used for effective VMM. The remediating

action of self-optimization is carried out to boost up the

performance of software system. The self-managing and

self-controlling activities are performed to determine the

level of security of an organization by minimizing the level

of vulnerability and maximizing the level security. The

KBS component of proposed integrated framework is used

to define the standards and guidelines for vulnerability

level, security level and access control policy for connected

components of proposed integrated framework. The pro-

posed KBS helps in classifying vulnerabilities on the basis

of severity of threats and level of risks. The time and effort

for remediating the vulnerability are determined automat-

ically on the basis of severity, criticality and associated

risks and loss incurred due to occurrence of vulnerability.

The allocated time frame for completion of remediating

actions determines the schedule for re-scanning of software

system.

5. Conclusion

The software industry has made several efforts to develop

vulnerability-free software systems but failed in achieving

the objective of developing software systems 100% free

from vulnerabilities. Hence, software industry is looking

for alternative adequate remediating approach to combat

the security threats, to reduce security risks and irreparable

loss, and to improve the performance of software system.

In this paper, an autonomic computing-based integrated

framework is proposed to identify, analyse, classify, pri-

oritize, analyse risks, impacts on assets and consequences,

mitigate and manage the software vulnerability. The pro-

posed framework is beneficial to industry and society in

various aspects. Some of them are as follows:

• The proposed framework provides inbuilt self-manag-

ing ability to software systems to fight with security

threats.

• Proposed framework is a cross-cutting-concern, plat-

form-independent framework of integrated compo-

nents of activities of VMM.

• It provides online automatic intelligent scanning and

monitoring of source and binary codes of the software

system for detection of the occurrence of vulnerability.

• It also provides an intelligent and automated assess-

ment, classification and prioritization of vulnerabilities

and assets.

• The proposed framework automatically conducts anal-

ysis for risks, impact on assets and consequences of

software vulnerability on software systems and

business.

• The proposed framework stores and updates the data

and knowledge base, and also devises and evolves an

inference engine for automatically executing the

possible effective remediating actions within the time

frame.

• It provides autonomic ability to software system

through self-monitoring, self-configuration, self-heal-

ing, self-prevention, self-optimization and self-

execution.

• The proposed framework will fulfil the security

requirement of the organization and reduce the number

of vulnerabilities incidents, cost, risks and loss.

6. Future scope

Though the proposed framework provides an inbuilt auto-

nomic facility to existing and new software systems and is

beneficial to the organizations and society, the commercial

implementation of proposed integrated framework has not

been carried out and is pending. For global usability and

scalability, it should be developed as a cross-cutting con-

cerns and platform-independent software using aspect-ori-

ented or component-oriented software development

paradigm.

References

[1] Agrawal A, Chandra S and Khan R A 2009 An efficient

measurement of object oriented design vulnerability. In:

Proceedings of the International Conference on Availability,

Reliability and Security, ARES’09

[2] Dai H, Murphy C and Kaiser G 2010 Configuration fuzzing

for software vulnerability detection. In: Proceedings of the

International Conference on Availability, Reliability and

Security, pp. 525–530

[3] Kumar M 2016 A paradigm shift towards incorporation and

exploration of autonomic computing for software vulnerability

An integrated framework for software vulnerability detection 1491

detection, mitigation and management. Communicated to

Informatica

[4] Sharma A, Chauhan S and Grover P S 2011 Autonomic

computing: paradigm shift for software development. CSI

Commun. 35(6): 16–18

[5] Howard M and Lipner S 2003 Inside the Windows security

push. IEEE Security Privacy 1(1): 57–61

[6] Alhazmi O H, Woo S W and Malaiya Y K 2006 Security

vulnerability categories in major software systems. In: Pro-

ceedings of Communication, Network, and Information

Security 2006, 138–143

[7] Bansiya J and Davis C G 2002 A hierarchical model for

object-oriented design quality assessment. IEEE Trans.

Softw. Eng. 28: 4–17

[8] Bansiya J 1997 A hierarchical model for quality assessment

of object-oriented designs. PhD Thesis, University of Ala-

bama in Huntsville

[9] Bishop M and Bailey D 1996 A critical analysis of vulner-

ability taxonomies. Technical Report, CSE-96-11, Depart-

ment of Computer Science at the University of California at

Davis, September

[10] Bishop M 2003 Computer security: art and science. Boston:

Addison-Wesley

[11] Byres D and Shahmehri N 2007 Design of a process for

software security. In: Proceedings of the Second Interna-

tional Conference on Availability, Reliability and Security

(ARES’07), 10–13 April, IEEE Press, Vienna, pp. 301–309

[12] McGraw G 2006 Software security: building security. Upper

Saddle River, NJ: Addison-Wesley

[13] Meland P H and Jensen J 2008 Secure software design in

practice. In: Proceedings of the Third International Confer-

ence on Availability, Reliability and Security (ARES’09), 4–7

March, IEEE Press, Fukuoka, Japan, pp. 1164–1171, doi:10.

1109/ARES.2008.48

[14] Walsh L 2003 Trustworthy yet? Inf. Security Mag. February

[15] Kannan K, Telang R and Xu H 2004 Economic analysis of

the market for software vulnerability. In: Proceedings of the

37th Hawali International Conference on System Sciences

[16] Sahadeva K, Kumar Y S and Sharma A 2012 A new SDLC

framework with autonomic computing elements. Int.

J. Comput. Appl. 54(3): 17–23

[17] Gilliam D P, Wolfe T L, Sherif J S and Bishop M 2003

Softawre secuirty checklist for the software life cycle. In:

Proceedings of the Twelfth IEEE International Workshop on

Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETIC’03), IEEE Press, Allahabad, India

[18] Ren J, Cai B, He H and Hu C 2011 A method for detecting

software vulnerabilities based on clustering and model ana-

lyzing. J. Comput. Inf. Syst. 7(4): 1065–1073

[19] Wang Y, Wang Y and Ren J 2011 Software vulnerabilities

detection using rapid density-based clustering. J. Inf. Com-

put. Sci. 8(14): 3295–3302

[20] Alves-Foss J and Barbosa S 1995 Assessing computer

security vulnerability. ACM SIGOPS Oper. Syst. Rev. 29:

3–13

[21] Wang C and Wulf W A 1997 A framework for security

measurement. In: Proceedings of the National Information

System Security Conference (NISSC’97), pp. 522–533

[22] Gilliam D, Powell J, Bishop J and Kelly M 2001 Reducing

software security risk through an integrated approach. In:

Proceedings of the NASA IV&V Symposium, September 4–7

[23] Butler S A 2002 Security attribute evaluation method: a

cost–benefit approach. In: Proceedings of the International

Conference on Software Engineering (ICSE 2002), ACM

Press, Orlando, Florida, pp. 232–240, doi:10.1145/581339.

581370

[24] Halkidis S T Chatzigeorgiou A and Stephanides G 2004 A

qualitative evaluation of security patterns. In: Proceedings of

ICICS 2004, Lecture Notes in Computer Science 3269,

Springer-Verlag, Málaga, Spain, pp. 132–144

[25] Hallberg J, Hunstad A and Peterson M 2005 A framework for

system security assessment. In: Proceedings of the 6th

Annual IEEE System, Man and Cybernetics (SMC) Infor-

mation Assurance Workshop, IEEE Press, Budapest,

pp. 224–231, doi:10.1109/IAW.2005.1495956

[26] Alhazmi O A, Malaiya Y K and Ray I 2005 Security vul-

nerabilities in software systems: a quantitative perspective.

In: Proceedings of Data and Applications Security 2005,

Lecture Notes in Computer Science 3654, pp. 281–294,

doi:10.1007/11535706

[27] Chandra S, Khan R A and Agrawal A 2009 Security esti-

mation framework: design phase perspective. In: Proceed-

ings of the Sixth International Conference on Information

Technology, New Generations, ITNG 2009, 27–29 April,

IEEE Computer Society, pp. 254–259

[28] Chen Y, Boehm B and Sheppard L 2007 Value driven

security threat modeling based on attack path analysis. In:

Proceedings of the 40th Annual Hawaii International Con-

ference on System Sciences (HICSS’07), 3–6 January, IEEE

Press, Big Island, Hawaii, p. 280

[29] Chowdhury I, Chan B and Zulkernine M 2008 Security

metrics for source code structures. In: Proceedings of the

Fourth International Workshop on Software Engineering for

Secure Systems, Leipzig, Germany: ACM

[30] Alshammari B, Fidge C and Corney D 2009 Security metrics

for object-oriented class designs. In: Proceedings of the 9th

Quality Software International Conference, QSIC ‘09,,

24–25 August, pp. 11–20, doi:10.1109/QSIC.2009.11

[31] Agrawal A and Khan R A 2009 An algorithm to measure

attribute vulnerability ratio of an object oriented design. Int.

J. Recent Trends Eng. 2(3): 61–63

[32] Alkussayer A and Allen W H 2010 A scenario-based

framework for the security evaluation of software architec-

ture. In: Proceedings of the International Conference on

Computer Science and Information Technology (ICCSIT’10),

9–11 July, IEEE Press, Chengdu, China, pp. 687–695

[33] Alberts C, Allen J and Stoddard R 2010 Integrated mea-

surement and analysis framework for software security.

Technical Report, CMU/SEI-2010-TN-025, CERT� Pro-

gram, Software Engineering Institute, http://www.sei.cmu.

edu/library/abst

[34] Agrawal A and Khan R A 2010 A vulnerability metric for the

design phase of object oriented software. In: Proceedings of

the Conference on Communications in Computer and Infor-

mation Science

[35] Agrawal A and Khan R A 2011 Assessing and improving

encapsulation for minimizing vulnerability of an object ori-

ented design. In: Communication in Computer and Infor-

mation Science, vol. 250, Springer-Verlag, pp. 531–533

[36] Alhazmi O H, Malaiya Y K and Ray I 2015 Measuring,

analyzing and predicting security vulnerabilities in software

systems. Comput. Security 26(3): 219–228

1492 Manoj Kumar and Arun Sharma

http://dx.doi.org/10.1109/ARES.2008.48
http://dx.doi.org/10.1109/ARES.2008.48
http://dx.doi.org/10.1145/581339.581370
http://dx.doi.org/10.1145/581339.581370
http://dx.doi.org/10.1109/IAW.2005.1495956
http://dx.doi.org/10.1007/11535706
http://dx.doi.org/10.1109/QSIC.2009.11
http://www.sei.cmu.edu/library/abst
http://www.sei.cmu.edu/library/abst

[37] Khan K M and Jun Han J 2002 Composing security-aware

software. IEEE Softw. 19(1): 34–41

[38] Wang J A, Wang H, Guo M, Zhou L and Camargo J 2010

Ranking attacks based on vulnerability analysis. In: Pro-

ceedings of the 43rd Hawaii International Conference on

System Sciences (HICSS’10), 5–8 January, IEEE Press,

Hawai, USA, pp. 1–10

[39] Agrawal A and Khan R A 2011 A framework for vulnera-

bility minimization—object oriented design perspective. In:

Proceedings of the 2nd International Conference on

Computer and Communication Technology, ICCCT, 15–17

September, IEEE Computer Society, pp. 499–504

[40] Agrawal A and Khan R A 2009 A framework to detect and

analyze software vulnerabilities—development phase per-

spective. Int. J. Recent Trends Eng. 2(2): 82–84

[41] Ahuja K and Dangey H 2014 Autonomic computing: an

emerging perspective and issues. In: Proceedings of the

International Conference on Issues and Challenges in

Intelligent Computing Techniques (ICICT), Ghaziabad,

pp. 471–475

An integrated framework for software vulnerability detection 1493

	An integrated framework for software vulnerability detection, analysis and mitigation: an autonomic system
	Abstract
	Introduction
	Existing works in the area of software vulnerability mitigation and management
	Vulnerability identification
	Vulnerability analysis and assessment
	VMM

	Autonomic computing
	Proposed autonomic computing-based integrated framework for software vulnerability detection and mitigation
	Self-monitoring for vulnerability
	Identification of vulnerability
	Vulnerability location finder
	Vulnerability analysis
	Knowledge management
	VMM
	Self-effecter
	Vulnerability management policy

	Conclusion
	Future scope
	References

