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Abstract. The implementation of extended Kalman filter-based simultaneous localization and mapping is

challenging as the associated system state and covariance matrices along with the memory requirements become

significantly large as the information space increases. Unique and consistent point features representing a

segment of the map would be an optimal choice to control the size of covariance matrix and maximize the

operating speed in a real-time scenario. A two-wheel differential drive mobile robot equipped with a Laser

Range Finder with 0.02 m resolution was used for the implementation. Unique point features from the envi-

ronment were extracted through an elegant line fitting algorithm, namely split only technique. Finally, the

implementation showed remarkably good results with a success rate of 98% in feature identification and ±0.08

to ±0.11 m deviation in the generated map.
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1. Introduction

Simultaneous localization and mapping (SLAM) has been a

thrust area of research for the past two decades owing to its

significant contribution in the field of disaster management,

defence, under-water navigation, unmanned aerial vehicles,

etc. [1–11]. In the recent past, the combination of autono-

mous mobile robot and SLAM algorithm played an indis-

pensable role in the field of disaster management.

Especially, autonomous robots have been used for rescue

and maintenance operation as a part of disaster manage-

ment during gas or radioactivity leak accidents. Since the

affected area becomes inaccessible, concurrent mapping of

the environment and localization of the robot becomes vital

to identify the exact location of the source. SLAM has been

an egg or chicken problem as the degree of localization

depends upon effective mapping and vice versa. The

implementation of SLAM using extended Kalman filter

(EKF) is quite challenging due to the approximation of

real-time stochastic type system and sensor noises as

Gaussian. Thus, improper tuning of noise covariance may

lead to divergence of the filter over time, resulting in

instability of the entire system [12]. Alternate algorithms

that are relatively straightforward but computationally

intensive have the advantage of accommodating noise

model other than Gaussian such as Monte Carlo

localization [13–15], FastSLAM [16], occupancy grid

method [17] and unscented Kalman filter (UKF) [18] were

also proposed.

Recently, the implementation of EKF with a Laser

Range Finder (LRF) and wheel encoder model using lines

as a feature was carried out in which the accuracy of

SLAM was improved by incorporating the derived input

and output covariance matrices through least-square

techniques [6, 11]. However, implementation of EKF with

line features led to increased computational time in

addition to memory requirements. Also, the authors

concluded that the point features of the environment may

be a better solution to enhance the computational speed in

implementing SLAM. The type of features, their state and

placement play a crucial role in successful implementa-

tion of EKF [1, 19]. Bacca et al [20] proposed a feature

stability histogram method inspired by human memory

system to identify static or dynamic features through

short- and long-term memory models. This approach was

able to improve the mapping accuracy and scalability.

Above all, the effective implementation of SLAM lies in

proper data association between two sets of features taken

at different time instances. A Joint Compatibility Test

(JCT) approach was proposed over the direct nearest

neighbour method to minimize possibility of wrong

association [21].
The classic recursive least-square algorithm has been

widely regarded as a useful tool to reduce the cost function.

Hamzah and Toru [22] have shown how the measurement*For correspondence
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innovation matrix can be used to effectively localize the

mobile robot through EKF with intermittent measurements

even if the data from the sensors are partially or fully

missing. It was reported that the success of this method lies

in effective initialization of the state and measurement

noise covariance matrix. To overcome the limitation of

EKF due to its memory requirement, a complete hardware

implementation of scan-matching genetic SLAM (SMG-

SLAM) on Field Programmable Gate Array (FPGA) was

proposed [23].

Among the available algorithms, the simplicity of EKF

in predicting the true state of a system amidst noise has

made it unique and popular. Hence, in this work, EKF-

based SLAM in a structured environment using range-only

sensor along with other associated tasks such as line fitting,

feature extraction and data association has been imple-

mented. In this approach, one of the recommendations

proposed in the literature, namely point features of envi-

ronment, has been considered for effective implementation

of EKF-based SLAM in real time.

2. EKF-based SLAM and mathematical models

2.1 Mathematical models

EKF is a mathematical-model-based optimal state estima-

tor. Basically, two types of mathematical models, namely

the system and sensor models, are established in EKF as

given in the following equation:

Xkþ1 ¼ f Xk;Uk;xkð Þ

Zkþ1 ¼ h Xkþ1; #kþ1ð Þ ð1Þ

xk �N 0;Qkð Þ

#k �N 0;Rkð Þ ð2Þ

where Xkþ1 is the estimated state vector at a discrete time

instant k?1 for a known input Uk assuming all the noises to

be xk, which is of zero mean and Gaussian in nature. The

Zkþ1 is the estimated measurement vector of the sensor at

k?1th instant for the estimated state and #k is the sensor

noise, again of zero mean and Gaussian. The system noise

and measurement noise are assumed to be independent in

nature. Qk and Rk are the noise covariance functions of the

system and sensor noise, respectively. For a more robust

system the noise covariance itself can also be assumed to be

a function of discrete time instant k or it can be just

assumed to be non-varying with respect to time.

2.2 Robot model

The mobile robot that was used for the experimental

application is shown in figure 1. It is a two-wheeled dif-

ferential drive robot with a 2.5 GHz Intel core i7 quad-core

processor. An LRF of 5.6 m range with 0.02 m resolution

and scanning angle 240� with 0.36� angular resolution is

used for environmental scanning. Figure 2 depicts a line

diagram of the robot.

The system state vector constitutes the rectangular global

coordinates (xk, yk), bearing of the robot (hk) and global

feature coordinates (xfi, yfi) given by Eq. (3). The basic

system model is the velocity model of the mobile robot,

which exhibits a linear or angular motion depending upon

the voltage excitation given to the servos attached to the

wheels. A derived parameter of the velocity through an

odometer is used as a model for this experiment. Thus,

Eq. (1) can be rewritten with the odometer model as given

in Eq. (4):

Xk ¼ XR
K XF

k

� �T ð3Þ

Figure 1. The Corobot CL2 mobile robot used for the

experiment.

CR – Centre of Rotation 

wR – Wheel Radius 

LRF(CR) Wheel Encoder 

Free Wheel 

wR

RW

Figure 2. Line diagram of the mobile robot.
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where XR
k ¼ xk yk hk½ � and XF

k ¼ xf1 yf1 xf2 yf2. . .xfN yfN½ �

Xkþ1 ¼ AXk þ BUk þ xk ð4Þ

where A is the system state matrix and B the input

matrixxkþ1 ¼ xk þ Dx,ykþ1 ¼ yk � Dy,hkþ1 ¼ hk þ Dh:
Assuming the noise covariance of the odometer and

features to be QR
k and QF

k , respectively, Qk can be written as

Qk ¼
QR

k QR
k QF

k

QF
k QR

k QF
k

� �
: ð5Þ

Similarly, the error covariance Pk of the robot and the

environmental features is given as follows:

Pk ¼

r̂xð Þ2 r̂xr̂y r̂xr̂h
r̂yr̂x r̂y

� �2
r̂yr̂h � � �

r̂hr̂x r̂hr̂y r̂hð Þ2

..

. . .
. ..

.

r̂xNð Þ2 r̂xN r̂yN

� � �
r̂yN r̂xN r̂yN

� �2

2

66666666664

3

77777777775

:

ð6Þ

2.3 Measurement model

With a known state Xk of the robot at kth instant for a given

input Uk the k?1th state is estimated using Eq. (4) and the

same is used to predict the observable measurement using

the model (7) derived from Eq. (1):

Zkþ1 ¼ HXkþ1 þ #kþ1 ð7Þ

where Zk contains the observable feature states ri,k and ui,k.

For illustration, let us assume two states of a robot as shown

in figure 3. The global map (GM,k) at kth instant contains the

features GM,k = {F1, F2, F3}, of which the visible features

VF during state k is VF,k = {F1, F2, F3} and state k?1 is

VF,k?1 = {F2, F3, F4}. To reduce the computational burden,

associated features between the current observation (k?1)

and global map at kth instant alone are considered for

measurement estimation using Eq. (8). From figure 3 one

can see the associated features between the map and k?1th

state to be AF,k = VF,k?1\GM,k = {F2, F3}. The measure-

ment model given by Eq. (7) can be elaborated as follows:

Zk ¼
r1;k r2;k r3;k rm;k

..

.

u1;k u2;k u3;k um;k

2

64

3

75 ð8Þ

Fi(xfi,yfi) – Global location of ith feature 
ri,k – Distance of the ith feature from the robot at kth

instant 
i,k – Angle of the ith feature with respect to the robot 

local plane 
xk, yk, k – Rectangular coordinates and the bearing of 
mobile robot 

x (m) 

y (m) 

k
k+1

F3(xf3,yf3) 
r3,k

r2,k

r1,k

r2,k+1

r3,k+1

1,k

3,k+1

2,k+1

2,k

3,k

F2(xf2,yf2) 

F1(xf1,yf1) 

F4(xf4,yf4) 

4,k+1

Figure 3. Illustration of data variables with respect to local and global frame of reference.
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Assume the noise covariance of the sensor to be

Ri;k ¼
rr

i;k

� 	2

0

0 rui;k

� 	2

2

64

3

75;

where the noise of r and u are completely independent and

hence the cross-diagonal elements are assumed to be zero.

Initializations of the noise covariance Qk and Rk of the

system and measurement, respectively, are very crucial in

implementing EKF as improper initialization may lead to

divergence and instability. The values of Q and R were

initialized as follows for the experimental studies:

Q ¼
0:0225 0 0

0 0:0225 0

0 0 0:5

2

4

3

5; R ¼ 0:0125 0

0 0:035

� �

Pk ¼

1 0 0

0 1 0 � � �
0 0 1

..

. . .
. ..

.

1 0

� � �
0 1

2

666666664

3

777777775

The size of P increases as the number of features identified

from the environment increases. The off-diagonal elements

immediately change from zero after the first update. The

value of P decreases if innovation reduces, and moves in the

same direction, and the matrix remains symmetrical.

2.4 State correction using EKF

After examining Eqs. (4)–(8) it is understood that the system

and sensor models are nonlinear; hence obtaining the A and H

matrix directly is not possible as both vary dynamically with

respect to k. A first-order Taylor series approximation is done

to find the Jacobian of A and H as follows:

AJ;k ¼
AR

J;k 0

0 AR
J;k

� �

where

AR
J;k ¼

of

oXR
k

¼
1 0 �Dyk

0 1 Dxk

0 0 1

2

4

3

5

and

AF
J;k ¼

of

oXF
k

¼

1 0

0 1
� � � 0 0

0 0

..

. . .
. ..

.

0 0

0 0
� � � 1 0

0 1

2

66664

3

77775
:

HJ;k ¼
oh

oZi;k
¼

xk � xfið Þ
ri;k

yk � yfið Þ
ri;k

0

yfi � ykð Þ
ri;k

� �2
xfi � xkð Þ

ri;k

� �2 �1

2

6664

3

7775
: ð9Þ

The prior error covariance matrix, which is generated

prior to any observation of the environment through the

sensor during state k, is updated using Eq. (10), which is

used to determine the Kalman gain Kk using Eq. (11). The

HJ,k and Ri,k are calculated for every associated feature

during state k:

P�
kþ1 ¼ AJ;kP

þ
k AT

J;k þ Qk ð10Þ

Kk ¼ P�
kþ1HT

J;k HJ;kP
�
kþ1H

T
J;k þ Ri;k

� 	�1

ð11Þ

Xþ
kþ1 ¼ Xkþ1 þ Kk Ẑkþ1 � Zkþ1

� �
ð12Þ

where Ẑkþ1 � Zkþ1

� �
is the innovation Ck, Zk is the esti-

mated measurement data from Eq. (7) and Ẑk is the

observed data at kth instant. The posterior covariance is

updated as follows:

Pþ
kþ1 ¼ I � KkHJ;k

� �
P�

kþ1: ð13Þ

3. Line fitting and feature extraction

Two types of line fitting approach are used for the experi-

mental study.

3.1 Scaled split and merge technique (SSM)

The data set U containing the processed data from LRF

is divided into subsets Si, where i varies from 1 to

N. The Si is created such a way that it contains data

points from U if the distance between two consecutive

data points in U is less than or equal to (Ed) 30 mm. If

the distance is greater than (Ed) 30 mm then a new subset

Si is created with the same condition. A subset Si is valid

only if the number of continuous points in the set is at

least (Np) 5, assuming that the validity of a line to exist

is (15 9 Np) 75 mm in length. A different Si indicates a

break in the continuous line segment, which may suggest

end of a wall, a door opening or invisibility due to angle

of view of the environment by LRF. Si is again divided

into small subsets Wi,j containing five points each and

j varies from 1 to M.

Normal line fitting is done with W1,1 and the perpen-

dicular distances of the points from W1,2 are checked. If at

least three point distances from set W1,2 to the line from set

W1,1 is less than or equal to the threshold Td then the sets

W1,1 and W1,2 are combined to form a new line, and this
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process is repeated with the successive sets. If the threshold

condition Td fails then an edge is detected and a new line

fitting is started. The algorithm shown in figure 4 explains

the line fitting approach in a much simpler way and a

schematic of the same is shown in figure 5.

3.2 Split only (SO) technique

The subset Si is created in the same way as in the previous

technique from set U. The end point in the subset Si for i =

1 is joined by a straight line L1, and the point from the same

set that has the maximum deviation from the line is iden-

tified. If this deviation exceeds the allowable deviation Td

then S1 is broken at this point into two subsets S11 and S12.

Straight line fitting is done for S11 by line L11. The initial

and final values of S12 are joined by a straight line L12 and

the point from set S12 that has the maximum orthogonal

deviation is identified. Again S12 is broken into subsets S121
and S122. Straight line fitting L121 is done for S121 and the

procedure is repeated until all the possible lines are fitted in

the set S1. The same is carried out for all Si for i varying

from 1 to N. This is the simplest method for identifying

straight lines with a set of points from LRF. The algorithm

used for this approach is shown in figure 6 and a schematic

of the same is depicted in figure 7.

3.3 Comparison of SSM and SO

A detailed comparison is done between the SSM- and SO-

based line fitting algorithms. Though both these technique

identify all the edges, only orthogonal edges were considered

as features for localization purpose. The SSM technique is

able to identify long lines but it fails for short lines as the

subset size has to be reinitialized for short walls. Sometimes

this approach detects false edges and end points are wrongly

interpreted due to the restriction on sample size. The SO

technique proved to be better for shorter walls as well as

longer walls. Themanipulation time was considerably less in

SO approach as the line fitting was done only when an edge

was detected, unlike in SSM, where the line fitting was car-

ried out with every additional subset. The SO technique is

primarily used in this application but SSM approach is used

when a conflict occurs in identifying a feature. The very idea

behind SO technique is to keep the identification process very

close to human interpretation of a scene and extraction.

Figure 8 shows the line fitting done using the SSM

method and figure 9 through SO on real-time data. It is

evident from figure 8a, where SSM approach is used, and

figure 9a that SO approach enables fitting straight lines as

the laser beam is intercepted by longer walls. It is seen in

figure 8b, where SSM approach is used, that it performs

Algorithm to identify breaks in 
data set which signify the 
existence of doors or open space 

k = 1, r = 1 
d

Si(k) = U(r) 
k = k+1, r = r+1 
else 
Si(k-1) = U(r-1) 
k = 1, i = i+1 

end 

Algorithm to identify edges or 
corners 

for  k = 1 to i 
if  length(Sk) < Np

Sk = NULL 
else 
j = 1 
for  t = 1 to length(Sk) 

Wk,j = Sk(t : t+Np-1) 
j = j + 1 

end 
end 

end 
Algorithm for line fitting 

m = 1, k = 1, t = 1 
Lk,m = linefit(Wk,t) 
for  k = 2 to i 

for  t = 2 to j 
if  50% (|L1,Wk,t d

Wk,t = Wk,t-1  Wk,t
Lk,m = linefit(Wk,t) 
else 
Lk,m = linefit(Wk,t) 
m = m+1 

end 
end 

end  

Figure 4. Algorithm for line fitting using SSM technique.

The orthogonal 
distance is more 
so break here 

L1

L2

Figure 5. Schematic of line fitting approach using SSM

technique.

Initialize Td
for  k = 1 to i 

N = length(Sk) 
L = linefit(Sk(1),Sk(N)) 
d = max(|L + Sk|) 

d) 
Im = Identify the index for max(|L + Sk|) 
break L into 2 lines at Im
repeat till d < Td

end 
end 

Figure 6. Algorithm for line fitting using SO technique.
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L

Break 

L1
L12

L12

L1

L11 L12

L121 L122

L1

L12
Break 

Figure 7. Schematic of line fitting approach using SO technique.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3(a) (b)

-1.5 -1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8. (a) Line fitting using SSM technique for long walls. (b) Line fitting using SSM technique for short walls.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0
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1

1.5

2

2.5

3
(a) (b)

-1.5 -1 -0.5 0 0.5

-0.5

0

0.5

1

1.5

2

2.5

Figure 9. (a) Line fitting using SO technique for long walls, (b) Line fitting using SO technique for short walls.
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badly in fitting a straight line as compared with figure 9b,

where SO method is employed. Finally, figure 10 shows the

extracted features using SO technique. Table 1 shows a

comparison between SSM and SO techniques in terms of

potential line fitting and feature identification. The analysis

was done based on 500 scans collected around the experi-

mental arena at three different places. It is very much

evident from the analysis that the SO algorithm gives better

results when compared with the SSM in terms of %

potential wall identification per scan for both the long and

short walls. The ratio of walls identified by the SSM and

SO algorithm to the actual number of walls present in the

environment is % potential wall.

However, the performance of the SSM algorithm can be

improved by adding strict constraints and setting an adap-

tive threshold in selecting all possible points to form a line.

However, this comes at the cost of computational time and

complexity.

4. Association of features

Association of features identified at kth instant with the

global map build till k-1th instant is very important to find

the innovation Ck. A simple Mahalanobis-distance-based

nearest-neighbour method is used for data association. Sk as

derived from Eq. (11) is the innovation covariance function

given as follows:

Sk ¼ HJiP
�
k H

T
Ji þ R: ð14Þ

Once the innovation covariance is obtained, the features

observed by the sensor at kth instant and the features

mapped till k–1th instant are passed through a basic pre-

validation gate to remove spurious data, and it passes the

most probable solutions for Mahalanobis distance calcula-

tion given by Eq. (15). This validation gate will signifi-

cantly reduce the computational overhead of the entire

algorithm and also eliminate the probability of wrong

association.

Bk � D2
k ¼ Z� Ẑ

� �T

k
S�1 Z� Ẑ

� �
k
\v2d;a ð15Þ

where Bk contains the best possible associated features that

clear the chi-square hypothesis, a is the significance level

and d the degrees of freedom, which is 2 in this case. The

significance level a is set at 0.9 to reject the null hypothesis

that the features are associated. This was arrived after

repeated trials for various environmental conditions.

5. Practical implementation of EKF

The Corobot CL2 mobile robot with skid steering was used

for implementing EKF-based SLAM in real time with a

structured environment. The environment is designed in

such a way that the mobile robot exhibits twists and turns

very frequently, which introduces lots of drift and slip.

Thus the effectiveness of the algorithm in predicting the

states of the robot amidst slip and other noises can be

estimated. The navigated path and resultant map generated

are shown in figure 11a. Further, to analyse the short-term

loop closing performance, which is a major parameter to

validate the effectiveness of the SLAM algorithm [24], the

proposed point-feature-based localization method was tes-

ted and the results are shown in figure 11b. The robot

travelled nearly 80 m distance with a looping length of

18 m. It is evident from figure 11b that the path updated

through EKF is consistent and matched 100% with the

actual robot path. This has validated the robustness of the

implemented SLAM algorithm.

The convergence of the filter may be largely affected at

times where the noise covariances are not properly tuned.

Table 1. Comparison of potential wall identification using SSM and SO techniques.

Assessment parameter

SSM algorithm (% per scan) SO algorithm (% per scan)

7.5 cm\Wall length\30 cm Wall length C30 cm 7.5 cm\Wall length\30 cm Wall length C30 cm

Potential wall 58 85 95 98

False wall 30 12 3.5 2

No wall 12 3 0.5 –

Potential features 55 80 96 98

Unidentified features 33 4 2 –

False features 17 16 2 2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
Plot After Noise Removal & Feature Identification

Figure 10. Extracted features after line fitting and noise removal.
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Hence, repeatability of the algorithm was analysed through

multiple runs and deviation in the generated map was found

to be less than 2% at all times. With respect to the

effectiveness of feature extraction algorithm, almost all the

visible features are identified and also associated with a

maximum deviation of ±0.08 m in X direction and

±0.11 m in Y direction as shown in figure 12.

The analysis of EKF algorithm is quite important in

terms of error covariance variation on X, Y and h of the

mobile robot. It is seen from figure 13 that at two points

the error covariance has exceeded the threshold of 0.02

and this can be attributed to the absence of associated

features in the observed map. This can also be corrob-

orated with the map generated in figure 11, where one

can observe the thickness of wall growing

Figure 11. (a) Map generated using EKF along with the robot

trajectory. (b) Path of the mobile robot depicting loop closure.

-0.1

-0.05

0

0.05

0.1

Features

D
ev

ia
tio

n 
(m

)

X coordinates of the features

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Features

D
ev

ia
tio

n 
(m

)

Y coordinates of the features

(a)

(b)

Figure 12. (a) The deviation of X coordinates of the identified

features from its mean. (b) The deviation of Y coordinates of the

identified features from its mean.
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Figure 13. Error covariance plot for X, Y and h (bearing) of the

mobile robot.

Figure 14. Filter innovations for distance and angle of features

with respect to the robot.

Figure 15. Correlation of estimated positions, angle of the

features against measured values.
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inappropriately at two instances till a feature association

is done again. Once a feature association is done it is

simultaneously observed from figure 13 that the error

covariance reduces in a continuous manner, thus vali-

dating the performance of EKF algorithm.

Figure 14 shows the filter innovations for distance and

angle of features with respect to the mobile robot during

part of the trial. The effect of variations in filter inno-

vation can be attributed to abnormal variations in wall

thickness of the generated map. Figure 15 illustrates the

residuals of the estimated position, angle of the features,

against the measured values, through correlations that are

white. The position and angle of the mobile robot are

derived parameters from these estimates. It can be

observed that the auto-correlation shows a single peak at

the centre of the plot.

6. Conclusion and further work

The implementation of EKF considering only point features

is done in a real-time environment designed to be complex

in terms of feature locations and spacing. Effective tuning

of system and measurement noise covariance values

through experiments lead to highly precise implementation

of SLAM with a mapping accuracy of ±0.11 m. The

variation in error covariance matrix is consistent with

respect to the variation in the finally predicted state of the

mobile robot against its actual position. The entire work is

done in a real-time simulated environment and can be

extended for outdoor implementation. More number of

distinct point features can be identified so that temporary

robot kidnapping problem, which may occur due to inter-

mediate data association failure, may be avoided. The

robustness of the proposed algorithm confirmed through

short- and long-term loop closure encourages its application

for real-time outdoor environment.
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